Journal d'Analyse Mathématique

, Volume 87, Issue 1, pp 231–263 | Cite as

New bounds for Kakeya problems

  • NetsHawk Katz
  • Terence Tao


We establish new estimates on the Minkowski and Hausdorff dimensions of Kakeya sets and we obtain new bounds on the Kakeya maximal operator.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Bourgain,Besicovitch-type maximal operators and applications to Fourier analysis, Geom. Funct. Anal.22 (1991), 147–187.MathSciNetCrossRefGoogle Scholar
  2. [2]
    J. Bourgain,On the dimension of Kakeya sets and related maximal inequalities, Geom. Funct. Anal.9 (1999), no. 2, 256–282.MathSciNetCrossRefGoogle Scholar
  3. [3]
    J. Bourgain,Harmonic analysis and combinatorics: How much may they contribute to each other? inMathematics: Frontiers and Perspectives, IMU/Amer. Math. Soc. Providence, RI, 2000, pp. 13–32.Google Scholar
  4. [4]
    A. CordobaThe Kakeya maximal functions and the spherical summation operators, Amer. J. Math.99 (1977), 1–22.MathSciNetCrossRefGoogle Scholar
  5. [5]
    S. Drury,Lp estimates for the x-ray transform, Illinois J. Math.27 (1983), 125–129.MathSciNetzbMATHGoogle Scholar
  6. [6]
    N. Katz and T. Tao,Bounds on arithmetic progressions and applications to the Kakeya conjecture, Math. Res. Lett.6 (1999), 625–630.MathSciNetCrossRefGoogle Scholar
  7. [7]
    N. Katz, I. Laba and T. Tao,An improved bound on the Minkowski dimension of Besicovitch sets in R 3, Ann. of Math.152 (2000), 383–446.MathSciNetCrossRefGoogle Scholar
  8. [8]
    I. łaba and T. Tao,An x-ray estimate in R n, Rev. Mat. Iberoamericana17 (2001), 375–408.MathSciNetCrossRefGoogle Scholar
  9. [9]
    I. łaba and T. Tao,An improved bound for the Minkowski dimension of Besicovitch sets in medium dimension, Geom. Funct. Anal., to appear.Google Scholar
  10. [10]
    D. Müller,On weighted estimates for the Kakeya operator, Colloq. Math.60/61 (1990), 457–475.MathSciNetCrossRefGoogle Scholar
  11. [11]
    I. Ruzsa,Sums of finite sets, inNumber Theory: New York Seminar (D. V. Chudnovsky, G. V. Chudnovsky and M. B. Nathanson, eds.), Springer-Verlag, Berlin, 1996.CrossRefGoogle Scholar
  12. [12]
    T. Tao,From rotating needles to stability of waves: emerging connections between combinatorics, analysis, and PDE, Notices Amer. Math. Soc.48 (2001), No. 3, 294–303.MathSciNetzbMATHGoogle Scholar
  13. [13]
    T. Tao, A. Vargas and L. Vega,A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc.11 (1998), 967–1000.MathSciNetCrossRefGoogle Scholar
  14. [14]
    T. Wolff,An improved bound for Kakeya type maximal functions, Rev. Mat. Iberoamericana11 (1995), 651–674.MathSciNetCrossRefGoogle Scholar
  15. [15]
    T. Wolff,A mixed norm estimate for the x-ray transform, Rev. Mat. Iberoamericana14 (1998), 561–600.MathSciNetCrossRefGoogle Scholar
  16. [16]
    T. Wolff,Recent work connected with the Kakeya problem, inProspects in Mathematics (Princeton, NJ, 1996), Amer. Math. Soc., Providence, RI, 1999, pp. 129–162.Google Scholar

Copyright information

© Hebrew University of Jerusalem 2002

Authors and Affiliations

  1. 1.Department of MathematicsWashington UniversitySt. LouisUSA
  2. 2.Department of MathematicsUCLALos AngelesUSA

Personalised recommendations