Advertisement

Journal d'Analyse Mathématique

, Volume 87, Issue 1, pp 103–150 | Cite as

Laplacian path models

  • L. Carleson
  • N. Makarov
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. A. Aleksandrov,Parametric Continuations in the Theory of Univalent Functions, Nauka, Moscow, 1976. (Russian)zbMATHGoogle Scholar
  2. [2]
    F. Calogero,Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials, J. Math. Phys.12 (1971), 419–436.MathSciNetCrossRefGoogle Scholar
  3. [3]
    L. Carleson and N. Makarov,Some results connected with Brennan’s conjecture, Ark. Mat.32 (1994), 33–62.MathSciNetCrossRefGoogle Scholar
  4. [4]
    L. Carleson and N. Makarov,Aggregation in the plane and Loewner’s equation, Comm. Math. Phys.216 (2001), 583–607.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Yu. Hohlov, S. Howison, C. Huntingford, J. Ockendon and A. Lacey,A model for non-smooth free boundaries in Hele-Shaw flows, Quart. J. Mech. Appl. Math.47 (1994), 107–128.MathSciNetCrossRefGoogle Scholar
  6. [6]
    K. Kassner and F. Family,Scaling behavior of generalized diffusion-limited aggregation: the correct form of the m-spike model, Phys. Rev.A39 (1989), 4797–4800.CrossRefGoogle Scholar
  7. [7]
    J. Krug, K. Kassner, P. Meakin and F. Family,Laplacian needle growth, Europhys. Lett.27 (1993), 527.CrossRefGoogle Scholar
  8. [8]
    G. Lawler, O. Schramm and W. Werner,Values of Brownian intersection exponents I, Acta Math.187 (2001), 275–308.MathSciNetCrossRefGoogle Scholar
  9. [9]
    P. Meakin,Diffusion-limited surface deposition in the limit of large anisotropy, Phys. Rev.A33 (1986), 1984.MathSciNetCrossRefGoogle Scholar
  10. [10]
    J. Moser,Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math.16 (1975), 197–220.MathSciNetCrossRefGoogle Scholar
  11. [11]
    G. Rossi,Diffusion-limited aggregation without branching, Phys. Rev.A34 (1986), 3543–3546.CrossRefGoogle Scholar
  12. [12]
    G. Selander,Two deterministic growth models related to diffusion-limited aggregation, Thesis, KTH, Stockholm, 1999.Google Scholar
  13. [13]
    B. Sutherland,Exact results for a quantum many-body problem in one dimension, II, Phys. Rev.A5 (1972), 1372–1376.CrossRefGoogle Scholar
  14. [14]
    T. A. Witten and L. M. Sander,Diffusion-limited aggregation, a kinetic phenomenon, Phys. Rev. Lett.47 (1981), 1400–1403.CrossRefGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2002

Authors and Affiliations

  1. 1.Department of MathematicsRoyal Institute of TechnologyStockholmSweden
  2. 2.Department of MathematicsCaufornia Institute of TechnologyPasadenaUSA

Personalised recommendations