Advertisement

An identity involving stirling numbers

  • H. W. Gould
Article

Keywords

Binomial Coefficient Stirling Number Tohoku Math Principal Variation Respective Meaning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Andreas von Ettingshausen,Die combinatorische Analysis, als Vorbereitungslehre zum Studium der theoretischen höheren Mathematik, Vienna, 1826.Google Scholar
  2. [2]
    H. W. Gould, “Stirling number representation problems,”Proc. Amer. Math. Soc., 11 (1960), 447–451.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    H. W. Gould, “The Lagrange interpolation formula and Stirling numbers,”Proc. Amer. Math. Soc, 11 (1960), 421–425.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    H. W. Gould, “Note on a paper of Klamkin concerning Stirling numbers,”Amer. Math. Monthly, 68 (1961), 477–479.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Z. Govindarajulu and Y. Suzuki, “A note on an identity involving binomial coefficients,”Ann. Inst. Stat. Math., 15 (1964), 83–85.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    J. G. Hagen,Synopsis der höheren Mathematik, Berlin, Vol.1, 1891.Google Scholar
  7. [7]
    Charles Jordan, “On Stirling's numbers,”Tohoku Math. J., 37 (1933), 254–278.zbMATHGoogle Scholar
  8. [8]
    Charles Jordan,Calculus of Finite Differences, Budapest, 1939, Chelsea Reprint, N.Y., 1950.Google Scholar
  9. [9]
    Christian Kramp,Sammlung combinatorisch-analytischer Abhandlungen, edited by Carl Friedrich Hindenburg, Erste Sammlung, Leipzig, 1796, p. 111.Google Scholar
  10. [10]
    E. Netto,Lehrbuch der Combinatorik, Leipzig, Sec. ed., 1927, Chelsea Reprint, N.Y., 1958.Google Scholar
  11. [11]
    John Riordan,An Introduction to Combinatorial Analysis, N.Y., 1958.Google Scholar
  12. [12]
    I. J. Schwatt,An Introduction to the Operations with Series, Univ. of Pa. Press, 1924. Chelsea Reprint, N.Y., 1962.zbMATHGoogle Scholar
  13. [13]
    Problem 4108,Amer. Math. Monthly,51 (1944),96; Solutions,52 (1945), 281–284.Google Scholar

Copyright information

© Institute of Statistical Mathematics 1965

Authors and Affiliations

  • H. W. Gould

There are no affiliations available

Personalised recommendations