Existence and determination of optimal estimators relative to convex loss

  • M. M. Rao


Convex Function Unbiased Estimator Orlicz Space Optimal Estimator Direct Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    T. Andô, “Linear functionals on Orlicz spaces,”Nieuw Arch. v. Wisk. (3), 8 (1960), 1–16.MathSciNetzbMATHGoogle Scholar
  2. [1]
    E. W. Barankin, “Locally best unbiased estimates,”Ann. Math. Statist., 20 (1949), 477–501.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [2]
    [2]M. M. Day,Normed Limar Spaces, Springer-Verlag, Berlin, 1958.CrossRefGoogle Scholar
  4. [3]
    M. H. DeGroot and M. M. Rao, “Bayes estimation with convex loss,”Ann. Math. Statist., 34 (1963), 839–846.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [4]
    N. Dunford and J. T. Schwartz,Linear Operators, Part I: General Theory Interscience, New York, 1952.Google Scholar
  6. [4a]
    K. Isii, “Inequalities of the types of Chebyshev and Cramér-Rao and mathematical programming,”Ann. Inst. Stat. Math., 16 (1964), 277–293.MathSciNetCrossRefGoogle Scholar
  7. [5]
    M. A. Kransnosel’skii and Ya. B. Rutickii,Convex Functions and Orlicz Spaces, (Translation), P. Noordhoff Ltd., Groningen, 1961.Google Scholar
  8. [6]
    M. M. Rao, “Lower bounds for risk functions in estimation,”Proc. Nat. Acad. Sei. (U.S.A.), 45 (1959), 1168–1171.CrossRefGoogle Scholar
  9. [7]
    M. M. Rao, “Linear functionals on Orlicz spaces,”Nieux Arch. v. Wisk. (3), 12 (1964), 77–98.MathSciNetzbMATHGoogle Scholar
  10. [7a]
    M. M. Rao, “Smoothness of Orlicz spaces,”Indag. Math., 27 (1965), (to appear).Google Scholar
  11. [8]
    A. Zygmund,Trigonometric Series, Vol. I, (2nd ed.), Cambridge University Press, 1959.Google Scholar

Copyright information

© Institute of Statistical Mathematics 1965

Authors and Affiliations

  • M. M. Rao

There are no affiliations available

Personalised recommendations