Advertisement

Chelation behaviour of biologically activeo-hydroxy naphthaldehyde derivatives with bivalent metal ions in different solvents: A potentiometric study

  • Sahadev
  • R K Sharma
  • S K Sindhwani
Inorganic and Analytical

Abstract

Equilibria between the derivatives ofo-hydroxy naphthaldehyde and protons or bivalent metal ions have been investigated potentiometrically at constant ionic strength while varying the solvents in definite ratios (solvent: water). The method of Bjerrum and Calvin as modified by Irving and Rossotti (1954) has been used to find the values of\(\tilde n\) and pL. The formation constants of metal chelates have been calculated using a weighted least squares method. The values of\(S_{\min } = \chi ^2 \) have also been calculated. The order of stability constants is determined as Mg2+<Mn2+<Cd2+<Pb2+<Zn2+<Co2+<Ni2+<Cu2+<UO 2 2+ Solvent effects on stability constants and comparative studies of both the derivatives ofo-hydroxy naphthaldehyde have been reported.

Keywords

Stability constants o-hydroxy naphthaldehyde derivatives bivalent metal ions weighted least squares method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bareet P A 1965Nature (London) 1340Google Scholar
  2. Bates R C, Paobo M and Robinson R A 1966J. Phys. Chem. 70 247CrossRefGoogle Scholar
  3. Bauer D J, Vincent L St, Kempe C H and Downe A W 1963Lancet 2 494CrossRefGoogle Scholar
  4. Bjerrum J 1941Metal amine formation in aqueous solutions (Copenhagen: P Hasse)Google Scholar
  5. Braude E A and Stern E S 1948J. Chem. Soc. 1976Google Scholar
  6. Braude E A 1948J. Chem. Soc. 1971Google Scholar
  7. Doamaral R, Blenz E J and French F A 1969J. Med. Chem. 12 21CrossRefGoogle Scholar
  8. Domagk G, Behnisch R, Mietzsch F and Schmidt H 1946Naturwissenschaften 33 315CrossRefGoogle Scholar
  9. Deguchi M, Ananda K and Kikku K M 1983Hokoko 31 71Google Scholar
  10. Franks F and Ives D J G 1966Q. Rev. Chem. Soc. (London) 1 20Google Scholar
  11. Gergely A and Kiss T 1977J. Inorg. Nucl. Chem. 39 109CrossRefGoogle Scholar
  12. Hammet L P 1940Physical organic chemistry (New York: McGraw Hill) p. 204.Google Scholar
  13. Irving H and Williams R J P 1952Analyst 77 813CrossRefGoogle Scholar
  14. Irving H M and Williams R 1948Nature (London) 77 813Google Scholar
  15. Millor D P and Meley L 1947Nature (London) 159 370CrossRefGoogle Scholar
  16. Petering H G, Buskirk H H and Underwood G E 1964Cancer Res. 64 367Google Scholar
  17. Rao U B and Mathur H B 1969Indian J. Chem. 7 1234Google Scholar
  18. Rorabacher D B, Mackeller W J, Shu F R and Bonavita M 1971Anal. Chem. 43 561CrossRefGoogle Scholar
  19. Russay R 1980 Patent No. Cl 424-324; AO1N 37/18Google Scholar
  20. Sahadev Sharma R K and Sindhwani S K 1988Indian J. Chem. A27 643Google Scholar
  21. Sahadev, Sharma R K and Sindhwani S K 1988Thermochim. Acta 126 1CrossRefGoogle Scholar
  22. Stability constants of metal ion complexes, Part I, The Chemical Soc., London, Special publication 1957 pp. 2, 3, 5, 10, 13Google Scholar
  23. Sullivan J C, Rydberg J and Miller W F 1959Acta Chem. Scand. 13 2023, 2059CrossRefGoogle Scholar
  24. Van Uitert L G and Hase C G 1953J. Am. Chem. Soc. 75 751CrossRefGoogle Scholar
  25. Varshney A, Tandon J P and Crowe A J 1986Polyhedron Vol. 5 No. 3 739CrossRefGoogle Scholar
  26. Vogel A I “A text book of practical organic chemistry” (New York: Longman) 1956 p. 177Google Scholar
  27. West D X, Carlson C S and Whyte A C 1990Transition Met. Chem. 15 43CrossRefGoogle Scholar

Copyright information

©  0144 V 2 1993

Authors and Affiliations

  • Sahadev
    • 1
  • R K Sharma
    • 1
  • S K Sindhwani
    • 1
  1. 1.Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations