Yang-Mills and bundles over algebraic curves

  • M F Atiyah
  • R Bott


Modulus Space Vector Bundle Chern Class Betti Number Morse Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    Atiyah M F, Drinfeld V G, Hitchin N J and Manin Yu I 1978 Construction of instantons.Phys. Lett. A65 185–187CrossRefMathSciNetGoogle Scholar
  2. [2]
    Atiyah M F, Hitchin N J and Singer I M 1978 Self-duality in four-dimensional Riemannian geometry.Proc. R. Soc. (London) A362 425–461MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Atiyah M F and Jones J D S 1978 Topological aspects of Yang-Mills theory.Commun. Math. Phys. 61 97–118MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Bott R 1956 An application of the Morse theory to the topology of Lie groups.Bull. Soc. Math. France 84 251–281MATHMathSciNetGoogle Scholar
  5. [5]
    Grothendieck A 1957 Sur la classification des fibres holomorphes sur la sphere de Riemann.Am. J. Math. 79 121–138MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Harder G 1970 Eine Bemerkung Zu einer Arbeit von P E Newstead.J. Math. 242 16–25MATHMathSciNetGoogle Scholar
  7. [7]
    Harder G and Narasimhan M S 1975 On the cohomology groups of moduli spaces of vector bundles over curves.Math. Ann. 212 215–248MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Narasimhan M S and Seshadri C S 1965 Stable and unitary vector bundles on a compact Riemann surface.Ann. Math. 82 540–567CrossRefMathSciNetGoogle Scholar
  9. [9]
    Newlander A and Nirenberg L 1957 Complex analytic co-ordinates in almost complex manifolds.Ann. Math. 65 391–404CrossRefMathSciNetGoogle Scholar
  10. [10]
    Newstead P E 1967 Topological properties of some spaces of stable bundles.Topology 6 241–262MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Seshadri C S 1967 Space of unitary vector bundles on a compact Riemann surface.Ann. Math. 85 303–336CrossRefMathSciNetGoogle Scholar
  12. [12]
    Weil A 1961 Adeles and algebraic groups. Lecture Notes, PrincetonGoogle Scholar

Copyright information

© Indian Academy of Sciences 1981

Authors and Affiliations

  • M F Atiyah
    • 1
  • R Bott
    • 2
  1. 1.Mathematical InstituteOxfordUK
  2. 2.Department of Mathematical ScienceHarvard UniversityCambridgeUSA

Personalised recommendations