Advertisement

Economic Botany

, Volume 54, Issue 1, pp 7–42 | Cite as

Homeotic Sexual Translocations and the Origin of Maize (Zea Mays, Poaceae): A New look at an old problem

  • Hugh H. Iltis
Article

Abstract

In the Origin of Maize Controversy, the Orthodox Teosinte Hypothesis (OTH; Beadle 1939, 1972; Iltis 1971), five key mutations change 2-ranked (distichous) ears of teosinte (wild Zea) with a single row of grains per rank to 4- to many-ranked (polystichous) maize ears with a double row of grains per rank. BUT teosinte ears are lateral to the 1° branch axes, maize ears, like their male homologues, the teosinte I° branch tassel spikes, terminal, an enigma long unrecognized, hence ignored. In the Catastrophic Sexual Transmutation Theory (CSTT; Iltis 1983b, 1987), now abandoned, the I° branch tassel (male) of teosinte (spikelets soft-glumed, paired, i.e., double-rowed per rank, as in maize ears), when brought under female hormonal control by branch condensation, becomes feminized into a maize proto-ear. BUT lateral ears should then have remained teosintoid (2-ranked, each rank with a single row of grains), yet are in fact double-rowed.

Combining OTH and CSTT, the new Sexual Translocation Theory (STLT) is based on: first, the branching pattern of teosinte ear clusters (Cámara-H. & Gambino 1990), sequentially maturing, sympodially branching, typically Andropogonoid systems, called rhipidia (sing, rhipidium), where each higher order (younger) ear originates as a lateral branch of its lower order, earlier maturing predecessor; and second, on 3 or 4 key mutations [cupule reduction, softening of glumes, doubling of female spikelets], which, by projecting outward the grains, invited human domestication by making them accessible. Within each ear cluster, the earliest maturing, hence nutrient-monopolizing and largest ear would be selected, all younger ears, already nutrientinhibited, suppressed. As fewer, larger ears evolved, and branch internode condensation moved male tassels into female hormonal zones, homeotic conversions translocated female morphology to terminal male positions: first replacing each of the II° branch tassels, and ultimately the 1° branch tassel (male), with an ear (female). With this, now female structure in the apically dominant, hence most nutrient-demanding terminal position gradually suppressing all subsidiary ears on the 1° branch beneath it, mutations for polystichy (contingent on nutrient overload) were finally allowed to become expressed, and the multi-rowed maize ear (at first with an atavistic male tail) evolved. Favored by human selection, these increases in apical dominance by stepwise homeotic sexual conversions explain both archeological and morphological realities, but need to be harmonized with recent results of developmental genetics.

Current evidence suggests that teosinte was first tended for its green ears and sugary pith by hunter-gatherers as an occasional rainy-season food in small “garden” populations away from its homeland, and not for its abundant grain-containing, hard fruitcases, which easily mass-collected but useless as food, are as yet unknown from the archeological record. A rare grain-liberating teosinte mutation (probably expressed in only one “founder” plant, a mazoid “Eve”), which exposed the encased grain for easy harvest, was soon recognized as useful, collected and planted (or self-planted). Thus maize was started on its way to a unique horticultural domestication that is not comparable to that of the temperate Old World mass-selected agricultural grains.

Key Words

Zea mays maize corn teosinte homeotic sexual translocation horticultural origin mazoid “Eve” taxonomic history 

En la controversia sobre el origen del maíz, la Hipótesis Ortodoxa del Teosinte (OTH; Beadle 1939, 1972; Iltis 1971) propuso que fueron cuatro o cinco las mutaciones cloves que cambiaron las mazorcas del teosinte (el Zea silvestre) de doble fila (dísticas) con una sola hilera de granos por fila a una mazorca de cuatro a muchas filas (polística) con dos hileras de granos por fila.

Résumé

Pero las mazorcas del teosinte están en una posición lateral orientadas a la rama principal, en forma similar a las estructuras homólogas masculinas, la espiga terminal, un enigma que no se había reconocido y por lo tanto ignorado. En la Teoría Catastrófica de la Transmutación Sexual (CSTT, Iltis 1983b, 1987), actualmente abandonada, se propuso que la espiga masculina de la rama principal del teosinte (con las glumas suaves, en pares, o sea con dos hileras por fila, como la mazorca del maíz) cuando sucede el cambio a un control hormonal femenino, por condensatión de la rama, se convierte en un órgano femenino, como un “prototipo” de mazorca de maíz. Sin embargo, las mazorcas laterales debieron haberse que dado como las del teosinte, es decir, en doblefila y coda fila con una hilera sencilla de granos, aunque en realidad denen dos hueras. La nueva Teoría de la Translocatión Sexual (STLT) combina el OTH y CSTT en base a ciertas características como son: primero el patrón de ramificación de los racimos de las mazorcas del teosinte (Cdmara-H. & Gambino 1990) y el tiempo de maduración, en una secuencia simpodial, como es típico de un Sistema Andropogonoide (ripidio), donde la mazorca de un nivel superior (más jóven) se origina como la de una rama lateral de un nivel inferior y así su predecesor madura más tempranamente. Segundo, como resultado de las tres o cuatro mutaciones cloves (reductión de la cúpula, ablandamiento de las glumas y duplicatión de las espiguillas femeninas), los granos quedaron expuestos, invitando asi a su domesticatión por el ser humano por facilitarse los granos a ser cosechados. Dentro de coda racimo, la mazorca que maduraba más tempranamente, por consiguiente la que acaparaba los nutrientes y por consecuencia la de mayor tamaño síria seleccionada, mientras que, las otras no bien desarrolladas, por falta de nutrientes se verían suprimidas. En el transcurso de la evolutión de las mazorcas más grandes, los internudos se vieron disminuidos en tamaño y con ésta reductión, las espigas masculinas se trasladaron hacia las zonas de hormonas femeninas. Mediante éstas conversiones homeóticas, se cambió la morfologia femenina hacia los sitios masculinos terminales: primero, reemplazando cada uno de los racimos masculinos y posteriormente, el racimo masculino de la rama primaria. Ahora con la estructura femenina en una posición terminal o con dominancia apical y siendo la que necesitaba una mayor concentración de nutrientes, gradualmente inhibió el crecimiento de todas las mazorcas auxiliares inferiores. Las mutaciones poísticas (eventual sobrecargo de nutrientes) finalmente pudieron ser evidentes, evolucionando así en una mazorca con muchas hileras, aunque a menudo, con una espiga atávica. Con el tiempo, las mazorcas fueron mejoradas y seleccionadas por el hombre aumentando así la dominancia apical, originalmente promovida por las conversiones sexuales homeóticas, lo que explican la mayoria de las evidencias arqueológicas y morfológicas. Es necesario comparar tales evidencias con los resultados derivados de la genética de la ontogenia. Ahora se crée que los cazadores y recolectores en la temporada de lluvias, inicialmente utilizaban las mazorcas verdes y tiernas del teosinte, traídas de poblaciones o pequeños “jardines” de áreas alejadas a sus hogares. En realidad, ellos consumían sólo la médula dulce de la mazora y no los granos duros encapsulados, difíciles de comer y aunque éstos eran fáciles de cosechar, el registro aqueológico no demuestra que fueron utilizados. Es probable que haya ocurrido una mutatión en el teosinte en la que se liberó el grano de la cápsula, hecho ocurrido en una sola planta “fundadora” (la “Eva” del maíz), la cual expuso el grano encapsulado haciéndolo fácil de cosechar, al que muy pronto se le reconoció como útil, se colectó y sembró (o sembró por si mismo). Es así como el maíz tuvo una domestication unica en la horticultura, la cual no se compara con la de los cereales seleccionados de cosechas masivas en el Viejo Mundo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alava, R. O. 1952. Spikelet variation inZea mays L. Annals of the Missouri Botanical Garden 39:65–66.CrossRefGoogle Scholar
  2. Anderson, E. 1945. Maize in the New World. Pages 27–42in C. M. Wilson, ed., New Crops for the New World. MaCmillan, New York.Google Scholar
  3. —. 1969. What I found out about the corn plant. Missouri Botanical Garden Bulletin 57:7.Google Scholar
  4. Ascherson, P. 1875. UeberEuchlaena mexicana Schrad. Sitzungsberichte des Botanischen Vereins Provinz Brandenburg 17:76–80.Google Scholar
  5. Balick, M. J. and P. A. Cox. 1997. Plants, people, and culture: the science of ethnobotany. Scientific American Library, W H. Freeman, New York.Google Scholar
  6. Beadle, G. W. 1939. Teosinte and the origin of maize. Journal of Heredity 30:245–247.Google Scholar
  7. —. 1972. The mystery of maize. Field Museum of Natural History Bulletin 43(10):2–11.Google Scholar
  8. —. 1977. The originof Zea mays. Pages 615–635in C. A. Reed, ed., The origins of agriculture. Moulton, The Hague.Google Scholar
  9. —. 1978. Teosinte and the origin of maize. Pages 113–128in D. B. Waiden, ed., Maize breeding and Genetics. John Wiley and Sons, New York.Google Scholar
  10. —. 1980. The ancestry of corn. Scientific American 242(1): 112–119, 162.Google Scholar
  11. Benz, B. F. 1990. ed. The Professor Hugh H. Iltis Commemorative Issue: an avid investigator and searcher for the origin of corn. Maydica 35(2): 78–186.Google Scholar
  12. — 1993. éd. Biología, Ecología y Conservacíon del GéneroZea. Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.Google Scholar
  13. — 1995. El maíz silvestre de Tehuacán revisitado. Pages 45–54in Aurora Montúfar López, ed. Investigaciones Recientes en Paleobotánica y Palinologia. Coleccion Cientifica No. 294, Instituto Nacional de Antropologia e Historia, Series Arqueologia (Mexico).Google Scholar
  14. —. 1999. On the origin, evolution, and dispersal of maize. Pages 25–38in M. Blake, ed., Pacific Latin America in Prehistory, the Evolution of Archaic and Formative Cultures. Washington State University Press, Pullman, Washington.Google Scholar
  15. —,and H. H. Iltis. 1990. Studies in archeological maize I: the “wild” maize from San Marcos cave reexamined. American Antiquity 55(3):500–511.CrossRefGoogle Scholar
  16. —,and H. H. Iltis. 1992. Evolution of female sexuality in the maize ear (Zea mays L. ssp. mays— Gramineae). Economic Botany 46:212–222.Google Scholar
  17. Benz, B. F., and A. Long. 2000. Early evolution of maize in the Tehuacán valley, Mexico. Current Anthropology 41(3): in press.Google Scholar
  18. —,L. R. Sanchez-Velásquez, and F. J. Santana Michel. 1990. Ecology and ethnobotany ofZea diploperennis: preliminary investigations. Maydica 35:85–98.Google Scholar
  19. Bird, R. McK. 1978. A name change for Central American teosinte. Taxon 27:361–363.CrossRefGoogle Scholar
  20. Bonnett, O. T. 1954. The inflorescence of maize. Science 120:77–87.PubMedCrossRefGoogle Scholar
  21. Buckler, E. S. IV, D. M. Pearsall, and T. P. Holtsford. 1998. Climate, plant ecology and Central Mexican archaic subsistence. Current Anthropology 39(1):151–164.CrossRefGoogle Scholar
  22. Cámara-Hernández, J. and S. Gambino. 1990. Ontogeny and morphology ofZea diploperennis inflorescences and the origin of maize (Zea mays ssp.mays). Maydica 35:113–124.Google Scholar
  23. —,and P. C. Mangelsdorf. 1981. Perennial corn and annual teosinte phenotypes in crosses ofZea diploperennis and maize. Bussey Institution of Harvard University Publication 10:1–37.Google Scholar
  24. Cohen, M. N. 1977. The Food Crisis in Prehistory: Overpopulation and the Origins of Agriculture. Yale University Press, New Haven, New Jersey.Google Scholar
  25. Collins, G. N. 1912. The origin of maize. Journal of the Washington Academy of Science 2:520–530.Google Scholar
  26. —. 1919. Structure of the maize ear as indicated inZea-Euchlaena hybrids. Journal of Agricultural Research 17:127–135.Google Scholar
  27. —. 1925. The “metamorphosis” ofEuchlaena into maize. Journal of Heredity 16:378–380.Google Scholar
  28. Cowan, C. W., and P. J. Watson, eds. 1992. The Origins of Agriculture, an International Perspective. Smithsonian Press, Washington.Google Scholar
  29. Crosswhite, F. S. 1982a. [as unsigned Editorial Summary] Corn (Zea mays) in relation to its wild relatives. Desert Plants 3(4):193–201.Google Scholar
  30. Crosswhite, F. S.. 1982b. [as unsigned picture caption] Preservation of genetic diversity. Desert Plants 3(4):back cover.Google Scholar
  31. Cutler, H. C., and M. C. Cutler. 1948. Studies in the structure of the maize plant. Annals of the Missouri Botanical Garden 35:301–316.CrossRefGoogle Scholar
  32. —,and E. Anderson. 1941. A preliminary survey of the genusTripsacum. Annals of the Missouri Botanical Garden 28:249–269.CrossRefGoogle Scholar
  33. Darlington, C. D. 1956. Chromosome Botany. Allen and Unwin. London.Google Scholar
  34. Davis, W. 1994. Towards a new synthesis in ethnobotany. Pages 339–357in M. Rios & H. Borgtoft Pedersen, eds., Las Plantas y El Hombre. ABYAYALA. Quito, Ecuador.Google Scholar
  35. Doebley, J. F. 1983. The maize and teosinte male inflorescence: a numerical taxonomic study. Annals of the Missouri Botanical Garden 70:32–70.CrossRefGoogle Scholar
  36. — 1990a. Molecular systematics ofZea (Gramineae). Maydica 35:143–150.Google Scholar
  37. — 1990b. Molecular evidence and the evolution of maize. Economic Botany 44(3 Suppl.):6–28.Google Scholar
  38. — 1990c. Molecular evidence for gene flow amongZea species. BioScience 40:443–448.CrossRefGoogle Scholar
  39. —,M. M. Goodman, and C. W. Stuber. 1984. Isoenzymatic variation inZea (Gramineae). Systematic Botany 9:203–218.CrossRefGoogle Scholar
  40. —,and M. M. Goodman. 1987. Patterns of isozyme variation between maize and Mexican annual teosinte. Economic Botany 41:234–246.Google Scholar
  41. —,and M. M. Goodman, H. H. Iltis. 1980. Taxonomy ofZea (Gramineae) I. Subgeneric classification with key to taxa. American Journal of Botany 7:982–993.CrossRefGoogle Scholar
  42. —,and A. Stec. 1991. Genetic analysis of the morphological differences between maize and teosinte. Genetics 129:285–295.PubMedGoogle Scholar
  43. —,A. Stec, and L. Hubbard. 1997. The evolution of apical dominance. Nature 386:485–488.PubMedCrossRefGoogle Scholar
  44. —,and R. L. Wang. 1997. Genetics and the evolution of plant form: an example from maize. Cold Spring Harbor Symposium in Quantitative Biology 62:361–367.Google Scholar
  45. Dorweiler, J., A. Stec, J. Kermicle, and J. Doebley. 1993. Teosinte glume architecture 1: a genetic locus controlling a key step in maize evolution. Science 262:23–235.CrossRefGoogle Scholar
  46. —,and J. Doebley. 1997. Developmental analysis ofTeosinte Glume Architecture 1: A key locus in the evolution of maize (Poaceae). American Journal of Botany 84(10):1313–1322.CrossRefGoogle Scholar
  47. Finan, J. J. 1938. Maize in the great herbals. Annals of the Missouri Botanical Garden 35:149–191.CrossRefGoogle Scholar
  48. Flannery, K. V. 1973. The origins of agriculture. Annual Review of Anthropology 2:271–310.CrossRefGoogle Scholar
  49. Flannery, K. V, ed. 1986. Guilá Naquitz. Archaic Foraging and Early Agriculture in Oaxaca, Mexico. Academic Press. Orlando, Florida.Google Scholar
  50. Fuchs, L. 1542. De Historia Stirpium Commentarii Insignes … Isingrin, Basel [Switzerland] (See Meyer, F. G. et al. 1999 Vol. II).Google Scholar
  51. -. 1543. New Kreüterbuch. Isingrin, Basel [Switzerland].Google Scholar
  52. Galinat, W. C. 1956. Evolution leading to the formation of the cupulate fruitcase in the AmericanMaydeae. Botanical Museum Leaflets Harvard University 17:217–239.Google Scholar
  53. —. 1959. The phytomer in relation to floral ho mologies in the AmericanMaydeae. Botanical Museum Leaflets Harvard University 19:1–32.Google Scholar
  54. -. 1974. Corn … a study of ancient gene pools. FINDINGS, a progress report, Massachusetts Agricultural Experiment Station, College of Food and Natural Resources, Univerity of Massachusetts at Amherst [Mass.] Sept.–Oct. 1974:1–4.Google Scholar
  55. —. 1975. The evolutionary emergence of maize. Bulletin of the Torrey Botanical Club. 102:313–324.CrossRefGoogle Scholar
  56. —. 1985a. Domestication and diffusion of maize. Pages 245–282in R. I. Ford, ed., Prehistoric Food Production in North America. Anthropology Papers No. 75. Ann Arbor: Museum of Anthropology, University of Michigan.Google Scholar
  57. —. 1985b. The missing links between teosinte and maize: a review. Maydica 30:137–160.Google Scholar
  58. —. 1988. The origin of corn. Agronomy 18:1–31.Google Scholar
  59. —. 1992. Evolution of corn. Advances in Agronomy 47:203–231.CrossRefGoogle Scholar
  60. —. 1995. El origen del maize: El grano de la humanidad/The origin of maize: grain of humanity. Economic Botany 49:3–12.Google Scholar
  61. Gay, J. P. 1994. Fabuleux Mais: Histoire et Avenir d’une Plante. Association General des Producteurs de Maïs. Pau, France.Google Scholar
  62. Gentry, H. S. 1968. Origin of the common bean,Phaseolus vulgaris. Economic Botany 23:55–69.Google Scholar
  63. Goodman, M. M. 1988. The history and evolution of maize. CRC Critical Reviews in Plant Sciences 7(3): 197–220 (excellent bibliography!).Google Scholar
  64. Gould, S. J. 1984. A short way to corn. Natural History 93:12–20.Google Scholar
  65. —. 1985. The Flamingo’s Smile. Norton, New York.Google Scholar
  66. Guzmán-M, R., and H. H. Iltis. 1991. Biosphere reserve established in Mexico to protect rare maize relative. Diverstiy 7:82–84.Google Scholar
  67. Hanson, M. A., B. S. Gaut, A. D. Stec, S. L. Fuerstenberg, M. M. Goodman, E. H. Coe, and J. F. Doebley. 1996. Evolution of anthocyanin biosynthesis in maize kernels: the role of regulatory and enzyme loci. Genetics 143:1395–1407.PubMedGoogle Scholar
  68. Harshberger, J. W. 1893. Maize, a botanical and economic study. Contributions of the Botanical Laboratory, University of Pennsylvania 1:75–202. Philadelphia.Google Scholar
  69. —. 1896. Fertile crosses of teosinte and maize. Garden and Forest 9:522–523.Google Scholar
  70. -. 1907. Maize or Indian corn. Pages 398-402in Encyclopedia of American Agricultural Education, ed. 4. vol 2.Google Scholar
  71. Hitchcock, A. S. 1950. Manual of the Grasses of the United States. U.S. Department of Agriculture Miscellaneous Publications, No. 200. 2nd ed. Revised by A. Chase. Washington, D.C.Google Scholar
  72. Hooker, J. D. 1879.Euchlaena [luxurians]. No. 6414, Curtis Botanical Magazine. XXXV.Google Scholar
  73. Iltis, H. 1911. Über einige beiZea mays L. beobachtete Atavismen, ihre Verursachung durch den MaisbrandUstilago maydis D.C. (Corda), und über die Stellung der GattungZea im System. Zeitschrift für Induktive Abstammungs- und Vererbungslehre 5(l):38–57.CrossRefGoogle Scholar
  74. Iltis, H. H. 1971. The Maize Mystique—A Reappraisal of the Origin of Corn, (photo-offset). Botany Dept. Univ. of Wisconsin, Madison [Contributions of the University of Wisconsin Herbarium 5:1-4. 1985].Google Scholar
  75. —. 1972. The taxonomy ofZea mays (Gramineae). Phytologia 23:248–249.Google Scholar
  76. —. 1974. Freezing the genetic landscape: the preservation of diversity in cultivated plants as an urgent social responsibility of plant geneticist and plant taxonomist. Maize Genetics Cooperation Newsletter 48:199–200.Google Scholar
  77. —. 1983a. The catastrophic sexual transmutation theory (CSTT): from the teosinte tassel to the ear of corn. Maize Genetics Cooperation Newsletter 57:81–92.Google Scholar
  78. —. 1983b. From teosinte to maize: the catastrophic sexual transmutation. Science 222:886–894.PubMedCrossRefGoogle Scholar
  79. —. 1987. Maize evolution and agricultural origins. Pages 195–213in T. R. Soderstrom, K. W. Hilu, C. S. Campbell, and M. E. Barkworth, eds., Grass Systematics and Evolutin. Smithsonian Institution Press, Washington, D.C.Google Scholar
  80. — 1989. Dogs, rodents, and agriculture, (letter) Natural History 98(2):4.Google Scholar
  81. — 1993. La taxonomia delZea desde una perspectiva historica. Pages 17–39in B. Benz, ed., Biología, Ecología y Conservación del GéneroZea. Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.Google Scholar
  82. — 1998.Cleome chapalaensis, n.sp., a South American element on the Mexican Plateau. Boletín, Institute Botanica de Universidad de Guadalajara 5:413–443.Google Scholar
  83. —,and J. F. Doebley. 1980. Taxonomy ofZea (Gramineae). II. Sub-specific categories in theZea mays complex and a generic synopsis. American Journal of Botany 67:994–1004.CrossRefGoogle Scholar
  84. —,and J. F. Doebley. 1984. Zea—A biosystematical Odyssey. Pages 587–616in W. F. Grant, ed., Plant Biosystematics. Academic Press, Montreal, Canada.Google Scholar
  85. —,J. F. Doebley, R. Guzman, and B. Pazy 1979.Zea diploperennis (Gramineae): a new teosinte from Mexico. Science 203:186–188.PubMedCrossRefGoogle Scholar
  86. —,D. Kolterman, and B. F. Benz. 1986. Accurate documentation of germplasm: the case of the lost Guatemalan teosintes (Zea, Gramineae). Economic Botany 40:69–77.Google Scholar
  87. Kaplan, L., and T. Lynch. 1999.Phaseolus (Fabaceae) in Archeology: AMS radiocarbon dates and their significance for pre-Columbian agriculture. Economic Botany 53:261–272.Google Scholar
  88. Katz, S. H., M. L. Heddiger, and L. A. Valleroy. 1974. Traditional maize processing techniques in the New World. Science 184:765–773.PubMedCrossRefGoogle Scholar
  89. Kellerman, W. A. 1895. Primitive corn. Meehan’s Monthly 5:44, 53.Google Scholar
  90. Kempton, J. H. 1937. Maize—our heritage from the Indian. Smithsonian Report for 1937:385-408, 30 plates. Smithsonian Institution, Washington, D.C.Google Scholar
  91. Kiesselbach, T. A. 1980 [1949]. The Structure and Reproduction of Corn. University of Nebraska Press. Lincoln.Google Scholar
  92. Langman, I. K. 1964. A Selected Guide to the Literature on the Flowering Plants of Mexico. University of Pennsylvania Press, Philadelphia.Google Scholar
  93. Lieberman, M., and D. Lieberman. 1980. The origin of gardening as an extension of infra-human dispersal. Biotropica 12(4):316.CrossRefGoogle Scholar
  94. Long, A., B. F. Benz, D. J. Donahue, A. J. T. Jull, and H. J. Toolin. 1989. First direct AMS dates on early maize from Tehuacán, Mexico. Radiocarbon 31:1035–1040.Google Scholar
  95. Mangelsdorf, P. C. 1974. Corn: its Origin, Evolution and Improvement. Belknap Press of Harvard University Press, Cambridge, Massachusetts.Google Scholar
  96. —. 1986. The origin of corn. Scientific American 255(2):80–86.CrossRefGoogle Scholar
  97. —,R. S. MacNeish, and W. C. Galinat. 1967. Prehistoric wild and cultivated maize. Pages 178–200in D. S. Byers, ed., The Prehistory of the Tehuacán Valley, vol. I: Environment and Subsistence. University of Texas Press, Austin, Texas.Google Scholar
  98. —,and R. G. Reeves. 1939. The origin of Indian corn and its relatives. Texas Agricultural Experiment Station Bulletin 574:1–315.Google Scholar
  99. McClintock, B., A. Kato, and A. Blumenschein. 1981. Chromosome Constitution of Races of Maize. Its Significance in the Interpretation of Relationships between Races and Varieties in the Americas. Colégio de Postgraduados, Chapingo, Mexico.Google Scholar
  100. McVaugh, R. 1998. Botanical results of the Sessé and Mociño expedition (1787–1803). VI. Reports and records from western Mexico, 1790–1792. Boletin, Institute Botanica, Universidad de Guadalajara 6(1):1–178.Google Scholar
  101. Meyer, F. G., E. E. Trueblood, and J. L. Heller. 1999. Pages 565-566, 623-626, and plate facing page 650in Vol. I, Commentary, The Great Herbal of Leonhart Fuchs … 1542. [Vol. II, Facsimile of L. Fuchs, De Historia Stirpium …] Stanford University Press, Stanford, California.Google Scholar
  102. Miranda, C. S. 1966. Discusion sobre el origen y la evolucion del maize. Pages 233–251in Memorias del Segundo Congreso National de Fitogenetica, Monterrey, N. L. Escuela Nacional de Agriculture, Colegio de Postgraduados, Chapingo, Mexico.Google Scholar
  103. Montgomery, E. G. 1906. What is an ear of corn? Popular Scientific Monthly 68:55–62.Google Scholar
  104. Orr, A. R., and M. D. Sundberg. 1994. Inflorescence development in a perennial teosinte:Zea perennis. American Journal of Botany 81:598–608.CrossRefGoogle Scholar
  105. Peterson, P. A., and A. Bianchi. 1999, eds. Maize Genetics and Breeding in the 20th Century: World Scientific Publishing, Singapore.Google Scholar
  106. Peterson, J., and D. Peterson. 1998. Eat Smart in Mexico. Ginkgo Press, Madison, Wisconsin.Google Scholar
  107. Reed, C. A., ed. 1977. The Origins of Agriculture. Mouton, The Hague.Google Scholar
  108. Reeves, R. G., and P. C. Mangelsdorf. 1942. A proposed taxonomic change in the tribe Maydeae (Family Gramineae). American Journal of Botany 29:815–817.CrossRefGoogle Scholar
  109. Richey, F. D., and G. F. Sprague. 1932. Some factors affecting the reversal of sex expression in the tassels of maize. American Naturalist 66:433–443.CrossRefGoogle Scholar
  110. Ritchie, S. W., J. J. Hanway, and G. O. Benson. 1986. How a corn plant develops. Special Report No. 48:1-21. Iowa State Univ. of Science and Technology. Cooperative Extension Service, Ames, Iowa.Google Scholar
  111. Robson, J. R., R. I. Ford, K. V. Flannery, and J. E. Konlande. 1976. The nutritional significance of maize and teosinte. Ecological Food Nutrition 4: 243–249.CrossRefGoogle Scholar
  112. Roush, W. 1996. Corn: a lot of change from a little DNA. Science 272:1993.Google Scholar
  113. Sanchez G., J. J., and L. Ordaz S. 1987.El Teocintle en Mexico. Systematic and Ecogeographic Studies on Crop Genepools No. 2. Teosinte in Mexico. IBPGR, Rome.Google Scholar
  114. Sattler, R. 1988. Homeosis in plants. American Journal of Botany 75:1606–1617.CrossRefGoogle Scholar
  115. Sauer, C. O. 1965. American agricultural origins: a consideration of nature and culture. Pages 121–144in J. Leighly, ed., Land and life. A Selection of the Writing of Carl Ortwin Sauer. University of California Press, Berkeley and Los Angeles.Google Scholar
  116. Sauer, J. D. 1993. Historical Geography of Crop Plants, a Select Roster. CRC Press, Boca Raton, Florida [Maize: 228–236].Google Scholar
  117. Schaffner, J. H. 1930. Sex reversal and the experimental production of neutral tassels inZea mays. Botanical Gazette 90:279–298.CrossRefGoogle Scholar
  118. —. 1935. Observations and experiments on sex in plants. Bulletin of the Torrey Botanical Club 62: 387–401.CrossRefGoogle Scholar
  119. Scheiner, S. M. 1999. Towards a more synthetic view of evolution. (Book review of Schlichting and Pigliucci, 1998. Phenotypic Evolution: a Reaction Norm Perspective.) American Journal of Botany 86:145–148.CrossRefGoogle Scholar
  120. Schumann, K. 1904. Mais und Teosinte. Pages 137–157in Urban, I. & P. Graebner, Festschrift für Paul Ascherson. Leipzig, Germany.Google Scholar
  121. Smith, B. D. 1997. The initial domestication ofCucurbita pepo in the Americas 10,000 years ago. Science 276:932–934.CrossRefGoogle Scholar
  122. —. 1998. Emergence of Agriculture. Rev. ed., Scientific American Library. W.H. Freeman, New York.Google Scholar
  123. Smith, J. S. C., M. M. Goodman, and C. W. Stuber. 1984. Variation within teosinte III. Numerical analysis of allozyme data. Economic Botany 38:97–114.Google Scholar
  124. Solomon, J. C. 1998. Specimen deaccessions from the Missouri Botanical Garden Herbarium during the tenure of Robert E. Woodson (1948-1963). Taxon 47:663–680.CrossRefGoogle Scholar
  125. Sundberg, M. D. 1990. Inflorescence development inZea diploperennis and related species. Maydica 35: 99–112.Google Scholar
  126. —,and J. F. N. Doebley. 1990. Developmental basis for the origin of polystichy in maize. Maize Genetics Cooperation Newsletter 64:21–22.Google Scholar
  127. —,C. La. Fargue, and D. A. Orr. 1995. Inflorescence development in the “standard exotic” maize, Argentine Popcorn (Poaceae). American Journal of Botany 82:64–74.CrossRefGoogle Scholar
  128. —,and A. R. Orr. 1986. Early inflorescence and floral development inZea diploperennis, diploperennial teosinte. American Journal of Botany 73: 1699–1712.CrossRefGoogle Scholar
  129. —,and A. R. Orr. 1990. Inflorescence development in two annual teosintes:Zea mays ssp.mexicana andZ. mays ssp.parviglumis. American Journal of Botany 77:141–152.CrossRefGoogle Scholar
  130. —,and A. R. Orr. 1996. Early inflorescence and floral development inZea mays land race Chapalote (Poaceae). American Journal of Botany 83: 1255–1265.CrossRefGoogle Scholar
  131. Vázquez-G., J. A., R. Cuevas G., T. S. Cochrane, H. H. Iltis, F. Santana M., and L. Guzman H. 1995. Flora de Manantlán: Plantas Vasculares de la Reserva de la Sierra de Manantlán, Jalisco-Colima, Mexico. Sida Botanical Miscellany 13: i-xxxvL, 1–315.Google Scholar
  132. Weatherwax, P. 1918. The evolution of maize. Bulletin of the Torrey Botanical Club 45:309–342.CrossRefGoogle Scholar
  133. —. 1923. The Story of the Maize Plant. University of Chicago Press, Chicago.Google Scholar
  134. —. 1935. The phylogeny ofZea mays. American Midland Naturalist 16:1–71.CrossRefGoogle Scholar
  135. Wilkes, H. G. 1967. Teosinte: The Closest Relative of Maize. The Bussey Institution, Harvard University, Cambridge, Massachusetts.Google Scholar
  136. —. 1970. Teosinte introgression in the maize of the Nobogame Valley. Botanical Museum Leaflets, Harvard University 22:297–311.Google Scholar
  137. —. 1977. Hybridization of maize and teosinte in Mexico and Guatemala and the improvement of maize. Economic Botany 31:254–293Google Scholar
  138. —. 1979. Mexico and Central America as a centre for the origin of agriculture and the evolution of maize. Crop Improvement 6(1):1–18.Google Scholar
  139. —. 1985. Teosinte, the closest relative of maize revisited. Maydica 30:209–223.Google Scholar
  140. —. 1986. Teosinte in Oaxaca, Mexico. Maize Genetics Cooperation Newsletter 60:29–30.Google Scholar
  141. —. 1989. Maize: domestication, racial evolution, and spread. Pages 440–455in D. R. Harris and G. C. Hillman, eds., Foraging and Farming. The Evolution of Plant Exploitation. Unwin Hyman, London.Google Scholar
  142. Wilson, E. O. 1996.In Search of Nature. Island Press, Washington, D.C.Google Scholar

Copyright information

© The New York Botanical Garden Press, Bronx, NY 10458-5126 U.S.A 2000

Authors and Affiliations

  • Hugh H. Iltis
    • 1
  1. 1.Botany DepartmentUniversity of Wisconsin-MadisonMadison

Personalised recommendations