Ramifications of Ramanujan's work on η-products

  • David Ford
  • John McKay


We follow, the evolution of ideas arising from Ramanujan's 1916 paper ‘On certain arithmetical functions’ by examining multiplicative η-products and quotients and their relation with the characters of the Mathieu groupM 24 and the automorphism group of the Leech lattice. This leads to the Monster and speculations on its geometric origin and current physics.


Finite simple groups products of η-functions Mathieu groupM24 Leech lattice 


  1. [1]
    Burnside W,The theory of groups 2nd ed. Note N (1911)Google Scholar
  2. [2]
    Conway J H and Norton S P, Monstrous moonshine,Bull. London Math. Soc. (1979) 308–339Google Scholar
  3. [3]
    Conway J H and Sloane N J A,Sphere-packings, lattices and groups (Springer-Verlag) (1988)Google Scholar
  4. [4]
    Dummit D, Kisilevsky H and McKay J, Multiplicative products of η-functions,Contemp. Math. 45 89–98Google Scholar
  5. [5]
    Gorenstein D,Finite groups (Harper, & Row) (1968)Google Scholar
  6. [6]
    Hirzebruch F, Some remarks on elliptic genera of almost parallelizable manifolds,Talk at Schloss Ringberg (March 1987)Google Scholar
  7. [7]
    Kac V G, An elucidation of: “Infinite-dimensional algebras, Dedekind's η-function, classical Möbius function and the very strange function formula.”E 8 (1) and the cube root of the modular invariantj, Adv. Math. 35 (1980) 264–273zbMATHCrossRefGoogle Scholar
  8. [8]
    Kondo T, Examples of multiplicative η-products,Fac. Sci. U. Tokyo (1986) 133–149Google Scholar
  9. [9]
    Mahler K, On a class of non-linear functional equations connected with modular functions,J. Aust. Math. Soc. 22A (1976) 65–120MathSciNetCrossRefGoogle Scholar
  10. [10]
    Mahler K, On a special non-linear functional equation,Proc. R. Soc. London A378 (1981)Google Scholar
  11. [11]
    Mason G, Frame-shapes and rational characters of finite groups,J. Alg. 89 (1984) 237–246zbMATHCrossRefGoogle Scholar
  12. [12]
    Mason G,M 24 and certain automorphic forms.Contemp. Math. 45 (1985) 223–244Google Scholar
  13. [13]
    Mason G, Finite groups and modular functions,Proc. Symp. Pure Math. (Arcata) 47 (1987) 181–210Google Scholar
  14. [14]
    Mathieu E, Mémoire sur l'étude des fonctions de plusieurs quantités,J. de Math. 6 (1861) 242–323Google Scholar
  15. [15]
    Miller G A, On the supposed five-fold transitive function of 24 elements and 19!/48 values,Messenger Math. 27 188–190Google Scholar
  16. [16]
    Ogg A P, Modular functions,Proc. Symp. Pure Math. (Santa Cruz) 37 (1980) 521–532MathSciNetGoogle Scholar
  17. [17]
    Queen L, Modular functions and finite simple groups,Proc. Symp. Pure Math. (Santa Cruz) 37 (1980) 561–566MathSciNetGoogle Scholar
  18. [18]
    Ramanujan S, On certain arithmetical functions,Trans. Camb. Philos. Soc. 22 (1916) 159–184Google Scholar
  19. [19]
    Smith S, On the Head characters of the Monster simple group,Contemp. Math. 45 303–313Google Scholar
  20. [20]
    Thompson J G, Finite groups and modular functions,Bull. London Math. Soc. 11 (1979) 347–351zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Witten E, The index of the Dirac operator in loop space,Proc. Conf. on elliptic curves and modular forms in Alg. Topology Lecture notes in mathematics, 1326 (Springer) (1988).Google Scholar

Copyright information

© Indian Academy of Science 1989

Authors and Affiliations

  • David Ford
    • 1
  • John McKay
    • 1
  1. 1.Computer Science DepartmentConcordia UniversityMontrealCanada

Personalised recommendations