Economic Botany

, Volume 29, Issue 2, pp 99–108

Weeds and Domesticates: Evolution in the man-made habitat

  • J. M. J. De Wet
  • J. R. Harlan
Article

Summary

Weeds evolved, and are still evolving, within the man-made habitat in three principal ways: from colonizers through selection towards adaptation to continuous habitat disturbance; as derivatives of hybridization between wild and cultivated races of domestic species; and through selection towards re-establishing natural seed dispersal mechanisms in abandoned domesticates. Domesticates differ from weeds primarily in degree of dependency on man for survival. They evolved from wild food plants which were brought into cultivation. The process of domestication was initiated when man started to propagate plants in successive generations by means of seed or vegetative propagules. Phenotypic changes associated with planting and harvesting are species specific, and are brought about by natural selection under conditions of cultivation. Artificial selection by man during the domestication process is primarily responsible for subspecific variation in domestic species.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, E. 1953. Introgressive hybridization. Biol. Rev.28: 280–307.CrossRefGoogle Scholar
  2. -. 1960. The evolution of domestication.In: Sol Tax (Ed.) Evolution after Darwin. Vol. II. Chicago Univ. Press.Google Scholar
  3. Baker, H. G. 1965. Characteristics and modes of origin of weeds.In: Baker, H. G. and Stebbins, G. L. (Eds.), The genetics of Colonizing species. Academic Press, New York.Google Scholar
  4. Beadle, G. W. 1972. The mystery of maize. Field Mus. Nat. Hist. Bull.43: 2–11. Chicago.Google Scholar
  5. Burkill, I. H. 1952. Habitats of man and origins of the cultivated plants of the Old World. Proc. Linn. Soc. London164: 12–42.Google Scholar
  6. Busson, F. 1965. Plantes alimentaires de L’Ouest African. Etude Botanique, Biologique et Chimique. Leconte, Marseille, France.Google Scholar
  7. Callen, E. O. 1965. Food habits of some pre-Columbian Mexican Indians. Econ. Bot.19: 335–343.Google Scholar
  8. —. 1967. The first New World cereal. Amer. Antiquity32: 535–538.CrossRefGoogle Scholar
  9. Celarier, R. P. 1958. Cytotaxonomic notes on the subsectionHalepensia of the genusSorghum. Bull. Torrey Bot. Club85: 49–62.CrossRefGoogle Scholar
  10. Clark, J. D. 1971. A re-examination of the evidence for agricultural origins in the Nile Valley. Proc. Prehist. Soc.37: 34–79.Google Scholar
  11. Collins, G. N. 1919. Structure of the maize ear as indicated inZea-Euchlaena hybrids. J. Agric. Res.17: 127–136.Google Scholar
  12. Darlington, C. D. 1970. The origins of agriculture. Nat. History79: 47–57.Google Scholar
  13. de Wet, J.M.J. 1968. The origin of weediness in plants. Okla. Acad. Sci.47: 14–17.Google Scholar
  14. —, and Harlan, J. R. 1966. Morphology of the compilospeciesBothriochloa intermedia. Amer. J. Bot.53: 94–98.CrossRefGoogle Scholar
  15. —, and —. 1971. The origin and domestication ofSorghum bicolor. Econ. Bot.25: 128–135.Google Scholar
  16. —, and —. 1972. Origin of maize: The tripartite hypothesis. Euphytica21:271–279.CrossRefGoogle Scholar
  17. Doggett, H. and Majisu, B. N. 1968. Disruptive selection in crop development. Heredity23: 1–23.Google Scholar
  18. Galinat, W. C. 1971. The origin of maize. Ann. Rev. Genetics5: 447–478.CrossRefGoogle Scholar
  19. Harlan, J. R. 1965. The possible role of weed races in the evolution of cultivated plants. Euphytica14: 173–176.CrossRefGoogle Scholar
  20. —. 1969. Evolutionary dynamics of plant domestication. Japan J. Genetics44: 337–343.Google Scholar
  21. —. 1971. Agricultural origins: centers and noncenters. Science174: 468–474.PubMedCrossRefGoogle Scholar
  22. —, and de Wet, J. M. J. 1965. Some thoughts about weeds. Econ. Bot.19: 16–24.Google Scholar
  23. —, and —. 1971. Towards a rational classification of cultivated plants. Taxon20: 509–517.CrossRefGoogle Scholar
  24. —, — and Price E. G. 1973. Comparative evolution of cereals. Evolution27:311–325.CrossRefGoogle Scholar
  25. Heer, O. 1866. Pflanzen die Pfahlbaut. Neujahrbl. Naturforsch. Gesellsch., Zurich.Google Scholar
  26. Higgs, E. S. and Jarman, M. R. 1969. The origins of agriculture: a reconsideration. Antiquity43: 31–41.Google Scholar
  27. — and —. 1972. The origins of animal and plant husbandry.In: Higgs, E. S. (Ed.). Papers in Economic prehistory. Cambridge Univ. Press, Cambridge.Google Scholar
  28. Jardin, C. 1967. List of foods used in Africa. F. A. O. Rome and Nat. Inst. Health, Bethesda, Maryland.Google Scholar
  29. Kornicke, F. and Werner, H. 1885. Handbuch der Getreidebaues, 2 vols. Verlag von Paul Parey, Berlin.Google Scholar
  30. Mangelsdorf, P. C. 1965. The evolution of maize.In: Sir Joseph Hutchinson (Ed.). Essays on crop plant evolution. Cambridge Univ. Press, Cambridge.Google Scholar
  31. —, MacNeish, R. S. and Galinat, W. C. 1967a. Prehistoric maize, teosinte andTripsacum from Tamaulipas, Mexico. Bot. Mus, Leafl, Harvard Univ.22: 33–63.Google Scholar
  32. —, —, and —. 1967b. Prehistoric wild and cultivated maize.In: Byers, D. S. (Ed.) The prehistory of Tehuacan Valley, Vol. I. Texas Univ. Press, Austin.Google Scholar
  33. Millicent, E. and Thoday, J. M. 1961. Effect of disruptive selection. IV. Gene flow and divergence. Heredity16: 199–217.Google Scholar
  34. Panetson, C. A. and Baker, H. G. 1968. The origin of variation in ‘wild’Raphanus sativus (Cruciferae) in California. Genetica38: 243–274.CrossRefGoogle Scholar
  35. Reed, C. F. and Hughes, R. O. 1970. Selected weeds of the United States. U. S. D. A. Handbook 366, Government Printing Office, Washington, D. C.Google Scholar
  36. Renvoize, B. S. 1972. The area of origin ofManihot esculenta as a crop — a review of the evidence. Econ. Bot.26: 352–360.Google Scholar
  37. Rogers, D. J. 1965. Some botanical and ethnological considerations ofManihot esculenta. Econ. Bot.19:369–377.Google Scholar
  38. —, and Fleming, H. S. 1973. A monograph ofManihot esculenta — with an explanation of the taximetric methods used. Econ. Bot.27: 1–113.Google Scholar
  39. Sauer, C. O. 1952. Agricultural origins and dispersals. Amer. Georgr. Soc. Publ.Google Scholar
  40. Scudder, T. 1971. Gathering among African woodland savannah cultivators. Zambian Papers 5, Inst. for Afr. Studies, Univ. Zambia, Printed by Manchester Univ. Press.Google Scholar
  41. Sinskaia, E. N. and Beztuzheva, A. A. 1931. The forms ofCamelina sativa in connection with climate, flax, and man. Bull. Appl. Bot., Genet., Plant Breed.25: 98–200.Google Scholar
  42. Snowden, J. D. 1936. The cultivated races of Sorghum. Adlard and Son, Ltd., London.Google Scholar
  43. —. 1955. The wild fodder sorghums of sectionEu-Sorghum. Jour. Linn. Soc. London55:191–260.Google Scholar
  44. Stebbins, G. L. 1950. Variation and evolution in plants. Columbia Univ. Press, New York.Google Scholar
  45. Steward, J. H. 1941. Ethnography of the Owens Valley Paiute. Univ. Calif. Publ. Amer. Arch. Ethnol. 33. Berkeley.Google Scholar
  46. Story, R. 1958. Some plants used by the Bushmen in obtaining food and water. Bot. Survey So. Afr. Mem. 30. Pretoria.Google Scholar
  47. Vavilov, N. I. 1926. Studies on the origin of cultivated plants. Inst. Appl. Bot. Plant Breed., Leningrad.Google Scholar
  48. Wilke, P. J., Bettinger, R., King, T. R., and O’Connell, J. F. 1972. Harvest selection and domestication in seed plants. Antiquity46: 203–209.Google Scholar
  49. Wilkes, H. G. 1967. Teosinte: The closest relative of maize. Ph.D. thesis, Bussey Inst. Harvard Univ. Publ., Cambridge.Google Scholar
  50. —. 1970. Teosinte introgression in the maize of the Nobogame Valley. Bot. Mus. Leafl. Harvard Univ.22: 297–311.Google Scholar

Copyright information

© The New York Botanical Garden 1975

Authors and Affiliations

  • J. M. J. De Wet
  • J. R. Harlan
    • 1
  1. 1.Crop Evolution LaboratoryDepartment of Agronomy University of IllinoisUrbana

Personalised recommendations