Economic Botany

, Volume 42, Issue 4, pp 478–494 | Cite as

Quinua biosystematics II: Free-living populations

  • Hugh D. Wilson
Article

Abstract

South AmericanChenopodium assignable to sect.Chenopodium subsect.Cellulata (Chenopodiaceae) have been classified on the basis of fruit and leaf blade morphology. Samples representing 99 free-living and domesticated populations were included in a comparative study based on electrophoretic and morphometric data. The resulting patterns of variation indicate that past reliance on the fruit for diagnostic characters has obscured biological relationships. Domesticated and free-living populations of the high Andes, distributed from northwestern Argentina to Colombia, are closely allied and clearly separate from domesticated populations of coastal Chile and free-living populations of Argentina. Circumscription of the ArgentineC. hircinum to include Andean populations is rejected. Specific differentiation among Andean populations, polyphyletic origins forC. quinoa, and the presence of different ploidy levels are not indicated. Free-living Andean types sympatric withC. quinoa are provisionally placed within that species as subsp. milleanum. While the coastal quingua domesticate is clearly distinct from the Andean weed/crop complex, it is provisionally placed within subsp.quinoa to conserve established nomenclature. The overall pattern of morphogenetic variation among South American populations suggests a co-evolutionary relationship between domesticated and free-living populations of the high Andes, with a center of diversity at the southern extreme of the Andean range. Populations ofC. hircinum represent a logical link to the progenitor of the quinua complex, although firm phyletic and systematic alignments will require more information concerning populations of south-central Chile, and further definition of relative affinities among North and South American elements of subsectionCellulata.

Résumé

La biosistemática de la quinua II: Poblaciones indomesticadas. Las especies deChenopodium sudamericanas asignadas a la secciónChenopodium subsecciónCellulata se han clasificado en base a la morfolgía del fruto y de la hoja. Se hizo un estudio comparativo que incluyó 99 poblaciones de indomesticadas y domesticadas utilizando datos morfométricos y electroforéticos. Los patrones de variación resultantes indican que el uso de las características del fruto como diagnóstico ha oscurecido las relaciones biológicas existentes. Las poblaciones provenientes de los altos Andes entre el noroeste Argentino y Colombia son muy relacionados y claramente separados de las poblaciones domesticadas de Chile y las indomesticadas de Argentina. Se descarta la inclusión de las poblaciones andinas dentro de la especie argentinaC. hircinum. No se encuentra la evidencia para diferenciación específica dentro de las poblaciones andinas; para el origen polifilético deC. quinoa, y para la presencia de diferentes niveles deploidia. Los tipos andinos indomesticados simpatricos conC. quinoa se ubican provisionalmente en la subespeciemilleanum. Aunque la quingua costeña domesticada es claramente diferente del complejo andino maleza/cultivo se ubica provisionalmente en la subespecie quinoa para conservar la nomenclatura establecida. El patrón general de distribución morfogenética entre las poblaciones sudamericanas sugiere una relación coevolutiva entre poblaciones domesticadas y las indomesticadas de los Andes altos con un centro de diversidad en el extremo sur de la distribución en los Andes. Las poblaciones deC. hircinum representan una unión lógica al progenitos del complejo quinua aunque se necesitan mayor información sobre las poblaciones del centro-sur de Chile para tener evidencia filogenética y sistemática más firme. También es necesaria una definición de las afinidades relativas entre los elementos de Norte y Suramérica en la subsecciónCellulata.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aellen, P. 1929. Beitrag zur Systematik derChenopodium-Arten Amerikas, vorweigend auf Grund der Sammlung des United States National Museum in Washington, D.C. Repert. Spec. Nov. Regni Veg. 26:31–64, 119–160.Google Scholar
  2. —. 1960. Chenopodium. Pages 533–657in G. Hegi, ed., Illustrierte Flora von Mitteleuropa. 2nd ed. Vol. 3. C. Hanser, Munich.Google Scholar
  3. —, and T. Just. 1943. Key and synopsis of the American species of the genusChenopodium L. Amer. Midl. Naturalist 30:47–67.CrossRefGoogle Scholar
  4. Brücher, H. 1987. The Isthmus of Panama as a crossroad for prehistoric migration of domesticated plants. Geojournal 14:121–122.CrossRefGoogle Scholar
  5. Cusack, D. F. 1984. Quinua: grain of the Incas. The Ecologist 14:21–31.Google Scholar
  6. Gandarillas, H. 1984. Obtención experimental deChenopodium quinoa Willd. Instituto Boliviano de Tecnología Agropecuaria, La Paz.Google Scholar
  7. Harlan, J. R. 1965. The possible role of weed races in the evolution of cultivated plants. Euphytica 14:177–188.CrossRefGoogle Scholar
  8. Herron, J. W. 1953. Study of seed production, seed identification, and seed germination ofChenopodium spp. Mem. New York Agric. Exp. Sta. 321:3–24.Google Scholar
  9. Hunziker, A. T. 1952. Los pseudocereales de 1a agricultura indígena de América. ACME Agency, Buenos Aires.Google Scholar
  10. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590.PubMedGoogle Scholar
  11. Pimentel, R. A., and J. D. Smith. 1986. BIOSTAT II—a multivariate statistical toolbox. Sigma Soft, Placentia, CA.Google Scholar
  12. Risi, J. C., and N. W. Galwey. 1984. TheChenopodium grains of the Andes: Inca crops for modern agriculture. Adv. Appl. Biol. 10:145–216.Google Scholar
  13. Rogers, J. S. 1972. Measures of genetic similarity and genetic distance. Studies in Genetics. Univ. Texas Publ. 7213:145–153.Google Scholar
  14. Sauer, C. O. 1969. Agricultural origins and dispersals. MIT Press, Cambridge, MA.Google Scholar
  15. Simmonds, N. W. 1965. The grain chenopods of the tropical American highlands. Econ. Bot. 19: 223–235.Google Scholar
  16. —. 1976. Quinoa and relatives. Pages 29–30in N. W. Simmonds, ed., Evolution of crop plants. Longman, New York.Google Scholar
  17. Smith, B. D. 1984.Chenopodium as a prehistoric domesticate in eastern North America: evidence from Russell Cave, Alabama. Science 226:165–167.PubMedCrossRefGoogle Scholar
  18. —. 1985.Chenopodium berlandieri ssp.jonesianum: evidence for a Hopewellian domesticate from Ash Cave, Ohio. Southe. Archaeol. 4:107–133.Google Scholar
  19. —, and V. A. Funk. 1985. A newly described subfossil cultivar of Chenopodium (Chenopodiaceae). Phytologia 57:445–448.Google Scholar
  20. Swofford, D. L., and R. B. Selander. 1981. BIOSYS-1, a computer program for the analysis of allelic variation in genetics. User’s manual. Univ. Illinois, Urbana.Google Scholar
  21. Tapia, M. 1979. Historia y distribución geográfica. Pages 11–19in M. Tapia, ed., Quinua y kañiwa: cultivos andinos. CIID, Bogota.Google Scholar
  22. Walters, T. W. 1985. Analysis of systematic and phyletic relationships among alveolate-fruitedChenopodium of western North America. Ph.D. dissertation, Texas A&M University, College Station.Google Scholar
  23. West, G. C. 1967. Nutrition of tree sparrows during winter in central Illinois. Ecology 48:58–67.CrossRefGoogle Scholar
  24. Williams, J. T., and J. L. Harper. 1965. Seed polymorphism and germination I. The influence of nitrates and low temperatures on the germination ofChenopodium album. Weed Res. 5:141–150.CrossRefGoogle Scholar
  25. Wilson, H. D. 1976. Genetic control and distribution of leucine aminopeptidase in the cultivated chenopods and related weed taxa. Biochem. Genet. 14:913–919.PubMedCrossRefGoogle Scholar
  26. —. 1980. Artificial hybridization among species ofChenopodium sectionChenopodium. Syst. Bot. 5:253–263.CrossRefGoogle Scholar
  27. —. 1981a. Genetic variation among tetraploidChenopodium populations of southern South America (sect.Chenopodium subsect.Cellulata). Syst. Bot. 6:380–398.CrossRefGoogle Scholar
  28. —. 1981b. DomesticatedChenopodium of the Ozark Bluff Dwellers. Econ. Bot. 35:233–239.Google Scholar
  29. —. 1988a. Allozyme variation and morphological relationships ofChenopodium hircinum (s.l.). Syst. Bot. 13:215–228.CrossRefGoogle Scholar
  30. —. 1988b. Quinua biosystematics I: domesticated populations. Econ. Bot. 42:461–477.Google Scholar
  31. —, and C. B. Heiser, Jr. 1979. The origin and evolutionary relationships of ‘Huauzontle’ (Chenopodium nuttalliae Safford), domesticated chenopod of Mexico. Amer. J. Bot. 66:198–206.CrossRefGoogle Scholar
  32. —, S. C. Barber, and T. W. Walters. 1983. Loss of duplicate gene expression in tetraploidChenopodium. Biochem. Syst. & Ecol. 11:7–13.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1988

Authors and Affiliations

  • Hugh D. Wilson
    • 1
  1. 1.Department of BiologyTexas A&M University

Personalised recommendations