Advertisement

The Botanical Review

, Volume 50, Issue 3, pp 225–266 | Cite as

Lignotubers and burls— their structure, function and ecological significance in Mediterranean ecosystems

  • Susanne James
Article

Abstract

Vegetative regeneration provides for immediate tissue replacement and reestablishment of the “parent” genotype, after the aerial canopy of a perennial plant is partially or wholly destroyed. If the frequency of destruction of above-ground biomass (e.g., by fire) is such that tissue replacement (production) is the predominant mode of growth, this regenerative capacity may preadapt the plant for reproduction via vegetative growth.

In the perennial shrubs of the California chaparral, and in other similar Mediterranean-type ecosystems, one of the most significant modes of reproduction is characterized by sprouting after injury of new stem or root tissue from an ontogenetically produced swollen stem base/root crown known as a lignotuber (or “burl”). Lignotubers have been well described inEucalyptus (Myrtaceae) and observed in other families in the Mediterranean-type climate regions. “Burls” of shrubs in the family Ericaceae are morphologically similar to lignotubers. The term “burl” is vague in meaning, since it has been used to describe any anomalous or unusual woody structure with a swirled grain. The term lignotuber, which has a more restricted usage referring only to ontogenetically produced structures, should henceforth be used to describe these swollen “root crowns.” Investigations of lignotuber (burl) anatomy have revealed that the wood contains dormant buds, carbohydrates, and nutrients necessary for bud development.

Reproductive strategies and tactics have evolved partially in response to the frequency and severity of disturbance (e.g., fire in shrublands of Mediterranean-type ecosystems). Reproductive strategies are defined by the timing and mode of production and reproduction. Reproductive tactics are the options of “reproductive effort” and energy allocation within each strategy. In the chaparral, fynbos, macchia, etc., one prevalent tactic in the sprouting strategy is the allocation of energy to the woody structure which has sprouting as its prime function—the lignotuber.

Keywords

Botanical Review Reproductive Strategy Energy Allocation Vegetative Regeneration Mediterranean Ecosystem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Resúmen

La regeneratión vegetativa asegura la repositión inmediata de tejido y el re-establecimiento del genotipo “paterno” después que el dosel de una planta perenne ha sido total o parcialmente destruído. Si la frequencia de destructión de la biomasa por encima del nivel del suelo (por ejemplo, por fuego) es tal que el re-emplazamiento o productión de tejido es la forma de crecimiento predominante, esta capacidad regenerativa puede preadaptar a la planta para la reproducción via crecimiento vegetativo.

En los arbustos perennes del chaparral Californiano y en otros ecosistemas similares de tipo Mediterráneo, uno de los modos de reproducción más significativos está caracterizado por el retoño, después de una herida, de un tallo nuevo o del tejido de la raíz a partir de la base hinchada de un tallo o de la corona de la raíz, producidos ontogenéticamente conocido como lignotubo. Lignotubos han sido descritos en detalle enEucalyptus (Myrtáceae) y observados en otras familias en regiones con clima de tipo Mediterráneo. Los “nudos” en los arbustos de la familia Ericáceae son similares morfológicamente a los lignotubos. El término “nudo” tiene un significado un tanto vago puesto que ha sido usado para describir cualquier estructura anómala con un grano en espiral presente en la madera. El término lignotubo tiene un uso más restringido refiriéndose solamente a estructuras producidas ontogenéticamente y debería ser usado para describir estas hinchadas “coronas de la raíz.” Investigaciones de la anatomía del lignotubo (nudo) han revelado que la madera contiene brotes durmientes, carbohidratos, y los nutrientes necesarios para el desarrollo del brote.

Tácticas y estrategias reproductivas han evolucionado parcialmente en respuesta a la frecuencia y severidad del trastorno (por ejemplo, fuego en las áreas arbustivas de los ecosistemas de tipo Mediterráneo.) Las estrategias reproductivas están definidas en base a la coordination temporal y el modo de producción y reproducción. Las tácticas reproductivas son las opciones de “esfuerzo reproductivo” y distributión de energía para cada estrategia. En el chaparral, fynbos, macchia, etc., una táctica en la estrategia del brote es la distributión de energía a favor de la estructura vegetativa que tiene como función primordial el retoñar: el lignotubo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Acocks, J. P. H. 1953. Veld types of South Africa. Mem. Bot. Surv. S. Afr. 28.Google Scholar
  2. Axelrod, D. I. 1958. Evolution of the Madro-Tertiary geoflora. Bot. Rev.24: 433–509.Google Scholar
  3. — 1973. History of the Mediterranean ecosystem in California. Pages 225–277in F. di Castri and H. Mooney (eds.), Mediterranean type ecosystems, origin and structure. Springer-Verlag, New York.Google Scholar
  4. — 1975. Evolution and biogeography of Madrean-Tethyan sclerophyll vegetation. Ann. Missouri Bot. Garden62: 289–334.CrossRefGoogle Scholar
  5. Baker, G. A., P. W. Rundel andD. J. Parsons. 1982. Comparative phenology and growth in three chaparral shrubs. Bot. Gaz.143: 94–100.CrossRefGoogle Scholar
  6. Bamber, R. K. andK. J. Mullette. 1978. Studies of the lignotubers ofEucalyptus gummifera (Gaertn. and Hochr.) II. Anatomy. Austral. J. Bot.26: 15–22.CrossRefGoogle Scholar
  7. Barrett, L. I. 1941. War revives an old industry. Amer. Forests47: 503–506, 543.Google Scholar
  8. Bazzaz, F. A., R. W. Carlson andJ. L. Harper. 1979. Contribution to reproductive effort by photosynthesis of flowers and fruits. Nature279: 554–555.CrossRefGoogle Scholar
  9. Beadle, N. C. W. 1968. Some aspects of the ecology and physiology of Australian xeromorphic plants. Austral. J. Sci.30: 348–355.Google Scholar
  10. Bell, A. D. andP. B. Tomlinson. 1980. Adaptive architecture in rhizomatous plants. J. Linn. Soc., Bot.80: 125–160.Google Scholar
  11. Blake, T. J. 1972. Studies on the lignotubers ofEucalyptus obliqua (L’Hérit.) III. The effects of seasonal and nutritional factors on dormant bud development. New Phytol.71(2): 327–334.CrossRefGoogle Scholar
  12. — andB. B. Carrodus. 1970. Studies on the lignotubers ofEucalyptus obliqua (L’Hérit.) II. Endogenous inhibitor levels correlated with apical dominance. New Phytol.69: 1073–1079.CrossRefGoogle Scholar
  13. Boe, K. N. 1965. Natural regeneration in old-growth redwood cuttings. U.S.D.A. For. Serv. Res. Note PSW-94. Pacific Southwest For. and Range Expt. Sta., Berkeley, Calif.Google Scholar
  14. Burbidge, N. T. 1960. The phytogeography of the Australian region. Austral. J. Bot.8: 75–211.CrossRefGoogle Scholar
  15. Cable, D. R. 1973. Fire effects in southwestern semidesert grass-shrub communities. Proc. Ann. Tall Timbers Fire Ecol. Conf.12: 109–127.Google Scholar
  16. Calow, P. 1979. The cost of reproduction—A physiological approach. Biol. Rev.54: 23–40.PubMedCrossRefGoogle Scholar
  17. Cant, C. M. 1937. Stem structure in the Maddenii series of rhododendrons. Trans. Bot. Soc. Edinburgh32: 287–291.Google Scholar
  18. Carlquist, S. J. 1975. Wood anatomy and relationships of the Geissolomataceae. Bull. Torrey Bot. Club102: 128–134.CrossRefGoogle Scholar
  19. — 1977. Wood anatomy of Grubbiaceae. J. S. Afr. Bot.43: 129–144.Google Scholar
  20. — 1978. Wood anatomy of Bruniaceae: Correlations with ecology, phylogeny, and organography. Aliso9(2): 323–364.Google Scholar
  21. — andL. DeBuhr. 1977. Wood anatomy of Peneaceae (Myrtales): Comparative, phylogenetic, and ecological implications. J. Linn. Soc., Bot.75: 211–227.Google Scholar
  22. Carpenter, F. L. andH. F. Recher. 1979. Pollination, reproduction and fire. Amer. Naturalist1(6): 871–879.Google Scholar
  23. Carter, C. E. 1929. Lignotubers. Austral. Forest. J.12: 119–121.Google Scholar
  24. Chattaway, M. M. 1958. Bud development and lignotuber formation in eucalypts. Austral. J. Bot.6: 103–115.CrossRefGoogle Scholar
  25. Christensen, N. L. 1973. Fire and the nitrogen cycle in California chaparral. Science181: 66–68.PubMedCrossRefGoogle Scholar
  26. — andC. H. Muller. 1975. Effects of fire on factors controlling plant growth inAdenostoma chaparral. Ecol. Monogr.45: 29–55.CrossRefGoogle Scholar
  27. Cody, M. L. 1966. A general theory of clutch size. Evolution20: 174–184.CrossRefGoogle Scholar
  28. — andH. A. Mooney. 1978. Convergence versus nonconvergence in Mediterranean-climate ecosystems. Ann. Rev. Ecol. Syst.9: 265–321.CrossRefGoogle Scholar
  29. Cohen, D. 1976. The optimal timing of reproduction. Amer. Naturalist110: 801–807.CrossRefGoogle Scholar
  30. Cole, L. C. 1954. The population consequences of life history phenomena. Quart. Rev. Biol.29: 103–137.PubMedCrossRefGoogle Scholar
  31. Cooper, W. S. 1922. The broad sclerophyll vegetation of California. Publ. Carnegie Inst. Wash. 319.Google Scholar
  32. Countryman, C. M. andC. W. Philpot. 1970. Physical characteristics of chamise as a wildland fuel. U.S.D.A. Forest Service Res. Paper PSW-66. Pacific Southwest Forest and Range Experiment Station, Berkeley, California.Google Scholar
  33. Craddock, G. W. 1929. The successional influence of fire on the chaparral type. M.S. Thesis. Univ. Calif. Library, Berkeley (unpublished).Google Scholar
  34. Cronemiller, F. P. 1942. Chaparral. Madroño6: 199.Google Scholar
  35. Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia Univ. Press, New York.Google Scholar
  36. Denslow, J. S. 1980. Patterns of plant species diversity during succession under different disturbance regimes. Oecologia46: 18–21.CrossRefGoogle Scholar
  37. di Castri, F., D. Goodall andR. L. Specht (eds.). 1981. Mediterranean shrublands. Elsevier Publishing Co., Amsterdam.Google Scholar
  38. Donald, C. M. 1962. In search of yield. J. Austral. Inst. Agr. Sci.28: 171–178.Google Scholar
  39. Donart, G. B. andC. W. Cook. 1970. Carbohydrate reserve content of mountain range plants following defoliation and regrowth. J. Range Managern.23: 15–19.Google Scholar
  40. Doust, J. L. 1980. A comparative study of life history and resource allocation in selected Umbelliferae. Biol. J. Linn. Soc.13: 139–154.CrossRefGoogle Scholar
  41. Eiten, S. 1972. The cerrado vegetation of Brazil. Bot. Rev.38: 201–341.CrossRefGoogle Scholar
  42. Flinn, M. A. andB. W. Wein. 1977. Depth of underground plant organs and theoretical survival during fire. Canad. J. Bot.55: 2550–2554.CrossRefGoogle Scholar
  43. Fulton, R. E. andF. L. Carpenter. 1979. Pollination, reproduction, and fire in CaliforniaArctostaphylos. Oecologia38: 147–157.CrossRefGoogle Scholar
  44. Gadgil, M. andW. H. Bossert. 1970. Life historical consequences of natural selection. Amer. Naturalist104: 1–24.CrossRefGoogle Scholar
  45. — andO. T. Solbrig. 1972. The concept of “r-” and “K-” selection: Evidence from wild flowers and some theoretical considerations. Amer. Naturalist106: 14–31.CrossRefGoogle Scholar
  46. Gardner, C. A. 1957. The fire factor in relation to the vegetation of western Australia. West. Austral. Naturalist5: 166–173.Google Scholar
  47. Garland, H. andL. Marion. 1960. California manzanita for smoking pipes. U.S.D.A. For. Serv. PSW Misc. Paper 53. Pacific Southwest For. and Range Expt. Sta., Berkeley, Calif.Google Scholar
  48. Gill, A. M. 1981. Adaptive responses of Australian vascular plant species to fires. Pages 243–272in A. M. Gill, R. H. Groves and I. R. Noble (eds.), Fire and the Australian biota. Austral. Acad. Sci. Canberra.Google Scholar
  49. Grant, V. 1971. Plant speciation. Columbia University Press, New York.Google Scholar
  50. Grime, J. P. 1979. Plant strategies and vegetation processes. J. Wiley and Sons, New York.Google Scholar
  51. Grubb, P. J. 1977. The maintenance of species-richness in plant communities: The importance of the regeneration niche. Biol. Rev.52: 107–145.CrossRefGoogle Scholar
  52. Hairston, N. G., D. W. Tinkle andH. M. Wilbur. 1970. Natural selection and the parameters of population growth. J. Wildl. Managern.34(4): 681–690.CrossRefGoogle Scholar
  53. Hanes, T. L. 1965. Ecological studies on two closely related chaparral shrubs in southern California. Ecol. Monogr.35: 213–235.CrossRefGoogle Scholar
  54. — 1971. Succession after fire in the chaparral of southern California. Ecol. Monogr.41: 27–52.CrossRefGoogle Scholar
  55. — andH. W. Jones. 1967. Postfire chaparral succession in southern California. Ecology48(2): 259–264.CrossRefGoogle Scholar
  56. Harper, J. L. 1967. A Darwinian approach to plant ecology. J. Ecol.55(2): 247–270.CrossRefGoogle Scholar
  57. — 1977. Population biology of plants. Academic Press, San Francisco.Google Scholar
  58. — andJ. Ogden. 1970. The reproductive strategy of higher plants I. The concept of strategy with special reference toSenecio vulgaris L. J. Ecol.58: 681–698.CrossRefGoogle Scholar
  59. Hellmers, H., J. S. Horton, G. Juhren andJ. O’Keefe. 1955. Root systems of some chaparral plants in southern California. Ecology36(4): 667–678.CrossRefGoogle Scholar
  60. Horton, J. S. andC. J. Kraebel. 1955. Development of vegetation after fire in the chamise chaparral of southern California. Ecology36: 244–262.CrossRefGoogle Scholar
  61. Howard, T.M. 1973. Studies in the ecology ofNothofagus cunninghamii Oerst. II. Phenology. Austral. J. Bot.21: 79–92.CrossRefGoogle Scholar
  62. Jepson, W. L. 1916. Regeneration in manzanita. Madroño1: 3–11.Google Scholar
  63. — 1939. A flora of California, Vol. 3. Univ. of Calif. Press, Berkeley, California.Google Scholar
  64. Johnson, A. W., J. G. Packer andG. Reese. 1965. Polyploidy, distribution, and environment. Pages 497–507in H. E. Wright and D. G. Frey (eds.), The quaternary of the United States. Princeton Univ. Press, Princeton, New Jersey.Google Scholar
  65. Jones, M. B. andH. M. Laude. 1960. Relationships between sprouting in chamise and the physiological condition of the plant. J. Range. Managern.13(4): 210–214.Google Scholar
  66. Karschon, R. 1971. Lignotuber occurrence inEucalyptus camaldulensis Dehn, and its phylogenetic significance. Flora160(5): 495–510.Google Scholar
  67. Kayll, A. J. andC. H. Gimingham. 1965. Vegetative regeneration ofCalluna vulgaris after fire. J. Ecol.53: 729–734.CrossRefGoogle Scholar
  68. Keeley, J. E. 1973. The adaptive significance of obligate seeding shrubs in the chaparral. M.S. Thesis. San Diego State Univ., San Diego, Calif.Google Scholar
  69. — 1977. Seed production, seed populations in soil, and seedling production after fire for two congeneric pairs of sprouting and non-sprouting chaparral shrubs. Ecology58: 820–829.CrossRefGoogle Scholar
  70. -. 1981. Reproductive cycles and fire regimes. Pages 231–277in H. A. Mooney et al. (eds.), Fire regimes and ecosystem properties. U.S.D.A. For. Serv. Gen. Tech. Rep. WO-26. Washington, D.C.Google Scholar
  71. — andS. C. Keeley. 1977. Energy allocation patterns of a sprouting and nonsprouting species ofArctostaphylos in the California chaparral. Amer. Midl. Naturalist98(1): 1–10.CrossRefGoogle Scholar
  72. — andP. H. Zedler 1978. Reproduction of chaparral shrubs after fire: A comparison of the sprouting and seed strategies. Amer. Midl. Naturalist99(1): 142–161.CrossRefGoogle Scholar
  73. Keeley, S. C. andA. W. Johnson. 1977. A comparison of the pattern of herb and shrub growth in comparable sites in Chile and California. Amer. Midl. Naturalist97(1): 120–132.CrossRefGoogle Scholar
  74. Ken, L. R. 1925. The lignotubers of eucalypt seedlings. Proc. Royal Soc. Victoria37: 79–97.Google Scholar
  75. Korovin, V. V. 1971. On the biological significance of birch burls. Moskovskoe Obshchestvo Ispytatelei Prirody Bulleten, Otdel Biologicheskii76(2): 113–118.Google Scholar
  76. Kruger, F. J. 1979a. South African heathlands. Pages 19–80in R. L. Specht (ed.), Heathlands and related shrublands 9A. Elsevier Scientific Publishing Co., New York.Google Scholar
  77. — 1979b. Plant ecology. Pages 88–126in J. Day, G. N. Loaw, W. R. Siegfried and M. L. Jatman (eds.), Fynbos ecology: A preliminary synthesis. South African Natl. Sci. Programmes Rep. No. 40, CSIR, Pretoria.Google Scholar
  78. Kummerow, J., D. Krause andW. Jow. 1977. Root systems of chaparral shrubs. Oecologia29: 163–177.Google Scholar
  79. Lacey, C. J. 1974. Rhizomes in tropical eucalypts and their role in recovery from fire damage. Austral. J. Bot.22: 29–38.CrossRefGoogle Scholar
  80. A. N. Gillison andM. I. Whitecross. 1982. Root formation by stemsof Eucalyptus botryoides Sm. in natural stands. Austral. J. Bot.30: 147–159.CrossRefGoogle Scholar
  81. Ladiges, P. Y. 1974. Differentiation in some populationsof Eucalyptus viminalis in relation to factors affecting seedling establishment. Austral. J. Bot.22: 471–487.CrossRefGoogle Scholar
  82. — andD. H. Ashton. 1974. Variation in some central Victorian populations ofEucalyptus viminalis Labill. Austral. J. Bot.22: 81–102.CrossRefGoogle Scholar
  83. MacArthur, R. H. andE. O. Wilson. 1967. The theory of island biogeography. Princeton Univ. Press, Princeton, New Jersey.Google Scholar
  84. McMinn, H. E. 1939. An illustrated manual of California shrubs. Univ. of Calif. Press, Berkeley.Google Scholar
  85. Miller, E. H., Jr. 1947. Growth and environmental conditions in southern California chaparral. Amer. Midl. Naturalist37: 379–420.CrossRefGoogle Scholar
  86. Moll, E. J., R. L. Specht and P. T. Manders. In press. The role of woody underground parts in survival and growth.In F. J. Kruger et al. (eds.), Proc. third international conf. Mediterranean-type ecosystems.Google Scholar
  87. Mooney, H. A. andE. L. Dunn. 1970. Convergent evolution of Mediterranean-climate evergreen sclerophyll shrubs. Evolution24: 292–303.CrossRefGoogle Scholar
  88. —,J. Kummerow, A. Johnson, S. Keeley, A. Hoffman, R. Hays, J. Gilberte, andC. Chu. 1977. The producers—Their resources and adaptive responses. Pages 85–143in H. A. Mooney (ed.), Convergent evolution in California and Chile. Dowden, Hutchinson, and Ross, Inc. Stroudsberg, Pennsylvania.Google Scholar
  89. — andP. W. Rundel. 1979. Nutrient relations of the evergreen shrub,Adenostoma fasciculatum, in the California chaparral. Bot. Gaz.140: 109–113.CrossRefGoogle Scholar
  90. Mullette, K. J. 1978. Studies of the lignotubers ofEucalyptus gummifera Gaertn. and Hochr. I. The nature of the lignotuber. Austral. J. Bot.26: 9–13.CrossRefGoogle Scholar
  91. — andR. K. Bamber. 1978. Studies of the lignotubers ofEucalyptus gummifera Gaertn. and Hochr. III. Inheritance and chemical composition. Austral. J. Bot.26: 23–28.CrossRefGoogle Scholar
  92. Munz, P. andD. D. Keck. 1968. A California flora with supplement. Univ. of Calif. Press, Berkeley.Google Scholar
  93. Mutch, R. W. 1970. Wildland fires and ecosystems-A hypothesis. Ecology51(6): 1046–1051.CrossRefGoogle Scholar
  94. Naveh, Z. 1967. Mediterranean ecosystems and vegetation types in California and Israel. Ecology48(3): 445–459.CrossRefGoogle Scholar
  95. — 1974. Effects of fire in the Mediterranean region. Pages 401–434in T. T. Kozlowski and C. E. Ahlgren (eds.), Fire and ecosystems. Academic Press, New York.Google Scholar
  96. — 1975. The evolutionary significance of fire in the Mediterranean region. Vegetatio29(3): 199–208.CrossRefGoogle Scholar
  97. Noble, I. R. and R. O. Slatyer. 1977. Post-fire succession of plants in Mediterranean ecosystems. Pages 27–36in H. A. Mooney and C. E. Conrad (eds.), Proc. symp. environ. conseq. fire and fuel manage. in the Mediterranean ecosystems. U.S.D.A. For. Serv. Gen. Tech. Rep. WO-3. Washington, D.C.Google Scholar
  98. Ogden, J. 1968. Studies on reproductive strategy with particular reference to selected composites. Ph.D. Thesis. University of Wales.Google Scholar
  99. — 1974. The reproductive strategy of higher plants. II. The reproductive strategy ofTussilago farfara L. J. Ecol.62: 291–324.CrossRefGoogle Scholar
  100. Patric, J. H. andT. L. Hanes. 1964. Chaparral succession in a San Gabriel Mountain area in California. Ecology45: 353–360.CrossRefGoogle Scholar
  101. Phillips, I. D. J. 1975. Apical dominance. Ann. Rev. Pl. Physiol.26: 341–367.CrossRefGoogle Scholar
  102. Philpot, C. W. 1977. Vegetative features as determinants of fire frequency and intensity. Pages 12–16in H. A. Mooney and C. E. Conrad (eds.), Proc. symp. environ, conseq. fire and fuel manage, in the Mediterranean ecosystems. U.S.D.A. For. Serv. Gen. Tech. Rep. WO-3. Washington, D.C.Google Scholar
  103. Pianka, E. R. 1970. On r- and K-selection. Amer. Naturalist104: 592–597.CrossRefGoogle Scholar
  104. Pitelka, L. F. 1977. Energy allocation in annual and perennial lupines (Lupinus: Leguminosae). Ecology58: 1055–1065.CrossRefGoogle Scholar
  105. Plumb, T. R. 1961. Sprouting of chaparral by December after a wildfire in July. U.S.D.A. For. Serv. Tech. Paper PSW-57. Pacific Southwest For. and Range Expt. Sta., Berkeley, Calif.Google Scholar
  106. — 1963. Delayed sprouting of scrub oak after a fire. U.S.D.A. For. Serv. Res. Note PSW-1. Pacific Southwest For. and Range Expt. Sta., Berkeley, California.Google Scholar
  107. Radosevich, S. R., S. G. Conard and D. R. Adams. 1977. Regrowth responses of chamise following fire. Pages 378–382in H. A. Mooney and C. E. Conrad (eds.), Proc. symp. environ, conseq. fire and fuel manage in the Mediterranean ecosystems. U.S.D.A. For. Serv. Gen. Tech. Rep. WO-3. Washington, D.C.Google Scholar
  108. Roughgarden, J. 1971. Density-dependent natural selection. Ecology52(3): 453–468.CrossRefGoogle Scholar
  109. Rourke, J. P. 1972. Taxonomic studies onLeucospermum. J. South Afr. Bot. Suppl. Vol. 8.Google Scholar
  110. Rubinstein, B. andM. A. Nagao. 1976. Lateral bud outgrowth and its control by the apex. Bot. Rev.42: 83–113.Google Scholar
  111. Rundel, P. W. andD. J. Parsons. 1980. Nutrient changes in two chaparral shrubs along a fire-induced age gradient. Amer. J. Bot.67(1): 51–58.CrossRefGoogle Scholar
  112. Sampson, A. W. 1944. Plant succession on burned chaparral lands in northern California. Univ. Calif. Coll. Agric. Exp. Sta. Bull.685: 1–144.Google Scholar
  113. — andB. S. Jespersen. 1963. California range brushlands and browse plants. Calif. Agric. Exp. Sta. Manual 33. University of California, Berkeley.Google Scholar
  114. Schier, G. A. 1976. Physiological and environmental factors controlling vegetative regeneration of aspen. Pages 20–23in Proc. symp. utilization and marketing as tools for aspen management in the Rocky Mountains. U.S.D.A. Forest Service Gen. Tech. Report RM-29. Rocky Mtn. For. and Range Expt. Sta., Fort Collins, Colorado.Google Scholar
  115. Schlesinger, W. H., J. T. Gray, D. S. Gill andB. E. Mahall. 1982.Ceanothus megacarpus chaparral: A synthesis of ecosystem processes during development and annual growth. Bot. Rev.48: 71–117.CrossRefGoogle Scholar
  116. Shafi, M. I. andG. A. Yarranton. 1973. Vegetational heterogeneity during a secondary (posture) succession. Canad. J. Bot.51: 73–90.CrossRefGoogle Scholar
  117. Specht, R. L. (ed.). 1979. Heathlands and related shrublands. Elsevier Publishing Co., Amsterdam.Google Scholar
  118. — 1981. Responses to fires in heathlands and related shrublands. Pages 394–415in A. M. Gill, R. H. Groves and I. R. Noble (eds., Canberra. Fire and the Australian biota. Australian Academy of Sciences, Canberra.Google Scholar
  119. —,E. J. Moll, F. Pressinger andJ. Sommerville. 1983. Moisture regime and nutrient control of seasonal growth in Mediterranean ecosystems. Pages 120–132in F. J. Kruger, D. T. Mitchell and J. U. M. Jarvis (eds.), Mediterranean-type ecosystems: The role of nutrients. Springer-Verlag, Berlin.Google Scholar
  120. — andP. Rayson. 1957. Dark Island Heath (Ninety-Mile Plain, South Australia). I. Definition of the ecosystem. Austral. J. Bot.5: 52–85.CrossRefGoogle Scholar
  121. St. John, T. V. 1976. The dependence of certain conifers on fire as a mineralizing agent. Ph.D. Thesis. University of California, Irvine.Google Scholar
  122. Stebbins, G. L. 1974. Flowering plants: Evolution above the species level. Belknap Press, Cambridge, Massachusetts.Google Scholar
  123. Stone, E. C. andG. Juhren. 1953. Fire-stimulated germination. Calif. Agric.7: 13–14.Google Scholar
  124. Stone, E. L. andS. Cornwall. 1968. Basal bud burls inBetula populifolia. Forest Sci.14: 64–65.Google Scholar
  125. Sturges, D. L. andM. J. Trlica. 1978. Root weights and carbohydrate reserves of big sagebrush. Ecology59(6): 1282–1285.CrossRefGoogle Scholar
  126. Sweeney, J. R. 1956. Responses of vegetation to fire. Univ. Calif. Publ. Bot.28(4): 143–250.Google Scholar
  127. Van der Merwe, P. 1966. Die flora van Swartboskloof, Stellenbosch, en die herstel van die soorte na’n brand. Ann. Uniw. Stellenbosch, Reeks A, Wis-Natuurk.41: 690–737.Google Scholar
  128. Vogl, R. J. andP. K. Schorr. 1972. Fire and manzanita chaparral in the San Jacinto Mountains, Calif. Ecology53: 1179–1188.Google Scholar
  129. Walker, B. H. (ed.). 1979. Management of semi-arid ecosystems. Elsevier Publishing Co., Amsterdam.Google Scholar
  130. Wareing, P. F. andI. D. J. Phillips. 1978. The control of growth and differentiation in plants, 2nd ed. Pergamon Press Inc., New York.Google Scholar
  131. Weaver, S. E. andP. B. Cavers. 1980. Reproductive effort of two perennial weed species in different habitats. J. Appl. Ecol.17: 505–513.CrossRefGoogle Scholar
  132. Webb, J. H. 1972. A new transplant method of eucalyptus. Austral. Pl.6: 270–271.Google Scholar
  133. Weislander, A. E. andB. O. Schreiber. 1939. Notes on the genusArctostaphylos. Madrono5(1): 38–47.Google Scholar
  134. Wellington, A. B., H. A. Polack andI. R. Noble. 1979. Radiocarbon dating of lignotubers from mallee forms ofEucalyptus. Search10: 282–283.Google Scholar
  135. Wells, P. V. 1962. Vegetation in relation to geological substratum and fire in the San Luis Obispo Quadrangle, California. Ecol. Monogr.32: 79–103.CrossRefGoogle Scholar
  136. — 1969. The relation between mode of reproduction and extent of speciation in woody genera of the California chaparral. Evolution23(2): 264–267.CrossRefGoogle Scholar
  137. Wenger, K. F. 1953. The sprouting of sweetgum in relation to season of cutting and carbohydrate content. Pl. Physiol.28: 35–49.Google Scholar
  138. Westman, W. E. 1979. Californian coastal forest heathlands. Pages 465–470in Specht, R. L. (ed.), Heathlands and related shrublands. Elsevier Publishing Co., Amsterdam.Google Scholar
  139. White, P. S. 1979. Pattern, process, and natural disturbance in vegetation. Bot. Rev. 45: 229–299.CrossRefGoogle Scholar
  140. Williams, G. C. 1975. Sex and evolution. Princeton Univ. Press, Princeton, New Jersey.Google Scholar
  141. Williams, I. J. M. 1972. A revision of the genusLeucadendron (Proteaceae) Contr. Bolus Herbarium No. 3. Rondebosch C. P. Republic of South Africa.Google Scholar
  142. Zalasky, H. 1975a. Chimeras, hyperplasia, and hypoplasia in frost burls induced by low temperature. Canad. J. Bot.53: 1888–1898.Google Scholar
  143. — 1975b. Low temperature induced cankers and burls in test conifers and hardwoods. Canad. J. Bot.53(21): 2526–2535.Google Scholar

Copyright information

© The New York Botanical Garden 1984

Authors and Affiliations

  • Susanne James
    • 1
  1. 1.University of CaliforniaRiversideUSA

Personalised recommendations