Advertisement

Economic Botany

, Volume 49, Issue 3, pp 260–268 | Cite as

Chemical, nutritional and functional characterization of proteins extracted from wild mustard (Brassica campestris, Brassicaceae) seeds from Nuevo Leon, Mexico

  • MA. Guadalupe ALanís-Guzmán
  • Pedro Wesche-Ebeling
  • Ratikanta Maiti
Article

Abstract

Cultivated oilseeds are very important sources of protein-rich pastes that are widely used for their nutritional and functional properties in human foods and animal feed. The purpose of this research was to determine the potential of wild Brassica campestris seeds as a source of protein isolates and their characterization. Wild mustard meal contained 33.5% lipids, 26% protein, 13.4% crude fiber, 4.4% ash, 22.6% nitrogen free extract and 4.8% moisture. It contained low levels of phytates (32 mg/100 g) and glucosinolates (0.92%), and the thioglucosidase could be inactivated through heat (90°C/ 18 min) or after extracting the oil with hexane at 80°C: for 2 hr. Dehulled and defatted meal contained 3.8% crude fiber, 7% ash, and 48% protein, with a digestibility of 92.8% and a nutritive value of 98% (relative to casein). Phytate levels increased to 67 mg/100 g and glucosinolates to 2.3%. Protein was extracted from this meal at pH’s between 6 and 11. Maximum yields (>74%) were obtained at pH 7, 7.5 and 8, coinciding with a minimum extraction of phytate (70%). SDS-PAGE electrophoresis identified 12 protein bands with MW between 10 and 74 kDa in these extracts. Protein extracted at pH 7 was precipitated at pH’s between 3.5 and 5.5, with maximum yield at pH 3.5 (53%), but the pH 4 isolate was chosen (yield 36%) since it contained negligible amounts of phytates and no glucosinolates. It contained 93% protein and a nutritive value of 91%, and higher levels of sulphur amino acids and lysine than cereals and legumes. The best functional characteristics were its foaming capacity, foam stability and oil binding capacity (better than soybean isolate).

Key Words

Wild mustard Brassica chemical composition protein functional properties protein isolate 

Caracterizacion quimica, nutritional y funcional de proteinas extraidas de semillas de mostaza silvestre (Brassica campestris, Brassicaceae) de Nuevo León, Mexico

Résumé

Las oleaginosas cultivadas son fuente importante de pastas ricas en proteína que son ampliamente utilizadas por sus propiedades nutricionales y funcionales en alimentos para humanos y balanceados. El objetivo de esta investigación fue el de determinar el potencial de las semillas de la Brassica campestris silvestre como fuente de aislados proteicos y la caracterización de éstos. La compositión de la harina de mostaza silvestre fue: lípidos 33.5%, proteína 26%, fibra crude 13.4%, ceniza 4.4%, extracto libre de nitrógeno 22.6% y humedad 4.8%. Tuvo un contenido bajo de fitatos (32 mg/ 100 g) y glucosinolatos (0.92%), y la tioglucosidasa pudo inactivarse con color (90°C/18 min) o con la extractión del aceite con hexano a 80C por 2 hr. La composición de la harina descascarada y desgrasada fue: fibra cruda 3.8%, ceniza 7% y proteína 48%, con una digestibilidad de 92.8% y un valor nutritivo de 98% (relativo a la caseína). El nivel defitatos se incrementó a 67 mgl l00g y el de glucosinolatos a 2.3%. Se extrajo la proteína de esta harina a pH’s entre 6 y 11. Los rendimientos máximos (>74%) se obtuvieron a pH 7, 7.5 and 8, coincidiendo con la extractión mínima defitato (70%). Por medio de una electroforesis SDS-PAGE se identificaron 12 bands de proteína con PM entre 10 y 74 kDa en estos extractos. La proteína extaica a pH 7 se precipitó a pH’s entre 3.5 y 5.5, con un máximo rendimiento a pH 3.5 (53%), pero se escogió el aislado a pH 4 (rendimento de36%) ya que contenía cantidades traza defitatos y glucosinolatos. El aislado contenía 93% de proteína y un valor nutritivo de 91%, y niveles más altos de aminoácidos azufrados y lisina que cereales and leguminosas. La mejores características funcionales fueron la capacidad espumante, estabilidad de la espuma y capacidad de atado de aceite (mejor que los aislados de soya).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. AACC. 1974. Cereal laboratory methods, rev. 7th ed. American Association of Cereal Chemists, St. Paul, MN.Google Scholar
  2. Aman, P., and L. Gillberg. 1977. Preparation of rapeseed protein isolates: a study of the distribution of carbohydrates in the preparation of rapeseed protein isolates. Journal of Food Science 42:1114.CrossRefGoogle Scholar
  3. AOAC. 1990. Official methods of analysis, 11th ed. Association of Official Analytical Chemists, Washington, D.C.Google Scholar
  4. Appelqvist, L. A., and R. Ohlson. 1972. Rapeseed cultivation, composition, processing and utilization, 1st ed. Elsevier Publishing Company, New York.Google Scholar
  5. Badui, S. 1990. Química de Alimentos. 2a.Ed. Edit. Alhambra Mexicana. México, D.F.Google Scholar
  6. Baker, H., O. Frank, I. Rnsoff, R. Morck, and S. Hunter. 1978. Protein quality of foodstuffs determined withTetrahymena thermophila and rat. Nutrition Reports International 17:525.Google Scholar
  7. Bates, R. P. 1983. Appropriate food technology.In.D. Knorr, ed., Sustainable food systems. Avi Publishing Company, Inc., Westport, CT.Google Scholar
  8. C.C.C. 1983. Research summary No. 2. Canola Council of Canada, Winnipeg, Manitoba, R33-1B3, Canada.Google Scholar
  9. Champagne, E. T., and B. Q. Phillippy. 1989. Effects of pH on calcium, zinc, and phytate solubilities and complexes following in vitro digestions of soy protein isolate. Journal of Food Science 54:1989.Google Scholar
  10. Cheftel, J. C, and H. Cheftel. 1976. Introductión a la bioquímica y tecnología de los Alimentos. Vol. I. Acribia, Zaragoza, España.Google Scholar
  11. Cooper, T.G. 1977. The tools of biochemistry. University of Pittsburgh. John Wiley & Sons, New York.Google Scholar
  12. Daun, J. K., and D. R. DeClercq. 1988. Quality of yellow and dark seeds inBrassica campestris ’Canola’ varieties candle and tobin. Journal of the American Oil Chemists Society 65:122.CrossRefGoogle Scholar
  13. Dietz, H. M., and R. D. King. 1987. Characterization of rapeseed (B. campestris) from Nepal and evaluation of the processing methods. Tropical Science 27:147.Google Scholar
  14. —,S. Panigrahi, and R. V. Harris. 1991. Toxicity of hydrolysis products from 3-butenyl glucosinolate in rats. Journal of Agricultural Food Chemistry 39:311.CrossRefGoogle Scholar
  15. Diosday, L. L., T. M. Tzeng, and L. J. Robin. 1984. Preparation of rapeseed protein concentrates and isolates using ultrafiltration. Journal of Food Science 49:768.CrossRefGoogle Scholar
  16. Flores, J. 1989. Estudio morfoanatómico, fenológico y bromatológico deBrassica campestris ySisymbrium irio L. (Cruciferae) de la zona urbana de Monterrcy, N.L. México. Tesis professional. F.C.B. U.A.N.L.Google Scholar
  17. Gillberg, L., and B. Törnell. 1976. Preparation of rapeseed protein isolates. Journal of Food Science 41:1063–1069.CrossRefGoogle Scholar
  18. Harland, B., and D. Oberleas. 1977. A modified method for phytate analysis using an ion-exchange procedure: application to textured vegetable proteins. Cereal Chemistry 54:827.Google Scholar
  19. Jones, J. D. 1979. Rapeseed protein concentrate preparation and evaluation. Journal of the American Oil Chemists Society 56:716.CrossRefGoogle Scholar
  20. Josefsson, E., and L. Appelqvist. 1972. Nutritional value and use of rapeseed meal.In Rapeseed cultivation, composition, processing and utilization, 1st ed. Elsevier Publishing Company, New York.Google Scholar
  21. Lacroix, M., J. Amiot, and G. C. Brisson. 1983. Hydrolysis and ultrafiltration treatment to improve the nutritive value of rapeseed proteins. Journal of Food Science 48:1644.CrossRefGoogle Scholar
  22. Lawhorn, J. T., and C. M. Cater. 1971. Effects of processing methods and pH of precipitation on the yields and functional properties of protein isolates from glandless cottonseed. Journal of Food Science 36:372.CrossRefGoogle Scholar
  23. Lin, M. J. Y., E. S. Humbert, and F. W. Sosulski. 1974. Certain functional properties of sunflower meal products. Journal of Food Science 39:368.CrossRefGoogle Scholar
  24. Lönnerdal, B., and J. C. Janson. 1972. Studies onBrassica seed proteins. I. The low molecular weight proteins in rapeseed. Isolation and characterization. Biochimica Biophysica Acta 278:175.Google Scholar
  25. —,L. Gillberg, and B. Tornell. 1977. Preparation of rapeseed protein isolate: a study of rapeseed protein isolates by molecular sieve chromatography. Journal of Food Science 42:75.CrossRefGoogle Scholar
  26. Marshall, W. H., T. R. Dutson, Z. L. Carpenter, and G. S. Smith. 1975. A simple method of emulsion end point determination. Journal of Food Science 40:896.CrossRefGoogle Scholar
  27. McGregor, D. I., and R. K. Downey. 1975. A rapid and simple assay for identifying low glucosinolates rapeseed. Canadian Journal of Plant Science 55: 191.CrossRefGoogle Scholar
  28. Moreno, S. 1993. Estudio Morfoanatómico, Ecofisiológico y Bioquímico de especies silvestres del géneroPhaseoius en Nuevo León. Tesis de Maestría. F.C.B. UANL. México.Google Scholar
  29. Nakai, S., L. Ho, N. Helbig, A. Kato, and M. A. Tung. 1980. Relationship between hydrophobicity and emulsifying properties of some plant proteins. Canadian Institute of Food Science and Technology Journal 13:23.Google Scholar
  30. Oberleas, D. 1973. Phytates.In Toxicants occurring naturally in foods, 2nd ed. National Academy of Sciences, Washington, D.C.Google Scholar
  31. Ohlson, R. 1985. Rapeseed.In A. M. Altschul and H. L. Wileke, eds., New protein foods, vol. 5. Seed storage proteins. Academic Press, New York.Google Scholar
  32. —,and K. Anjou. 1979. Rapeseed protein products. Journal of the American Oil Chemists Society 56:431.PubMedCrossRefGoogle Scholar
  33. Patterson, H. B. W. 1989. Handling and storage of oil seeds, oils, fats and meal. Elsevier Applied Science, New York.Google Scholar
  34. Paredes-López, O., C. Ordorica-Falomir, and M. R. Olivares-Vázquez. 1991. Chickpea protein isolates: physicochemical, functional and nutritional characterization. Journal of Food Science 56:726.CrossRefGoogle Scholar
  35. Paulson, A. T., M. A. Tung, M. R. Garland, and S. Nakai. 1984. Functionality of modified plant proteins in model food systems. Canadian Institute of Food Science Technology Journal 17:202.Google Scholar
  36. Pellet, P. L., and V. R. Young, eds. 1980. Evaluatión nutritional de alimentos proteínicos. Publicatión Técnica U.N.U.Google Scholar
  37. Saini, H. S., and N. Wratten. 1987. Quantitative determination of total glucosinolates in rapeseed and meal digests. Journal of the Association of Official Analytical Chemistry 70:141.Google Scholar
  38. Salazar, T. E. 1984. Datos autoecológicos deBrassica campestris L. (Cruciferae) en General Escobedo, N.L. México. Tesis Profesional. F.C.B. U.A.N.L., México.Google Scholar
  39. Schleif, R. F., and P. C. Wensink. 1981. Practical methods in molecular biology. Springer-Verlag, New York.Google Scholar
  40. Sonntag, N. O. V. 1979. Composition and characteristics of individual fats and oil.In D. Swern, ed., Bailey’s Industrial oil and fat Products, vol. 1, fourth ed. John Wiley & Sons, New York.Google Scholar
  41. Sosulski, F. W. 1962. The centifuge method for determining flour absorption in hard red spring wheats. Cereal Chemistry 39:344.Google Scholar
  42. —,F. S. Soliman, and R. S. Bhatty. 1972. Diffusion extraction of glucosinolates from rapeseed. Can. Inst. Food Science Technology Journal 5:101.Google Scholar
  43. —,E. S. Humbert, and K. Bui. 1976. Functional properties of rapeseed flours, concentrates and isolate. Journal of Food Science 41:1349.CrossRefGoogle Scholar
  44. Tani, N., M. Ohtsuru, and T. Hate. 1974. Isolation of myrosinase-producing microorganism. Agricultural and Biological Chemistry 38:1617.Google Scholar
  45. Thompson, L. U., R. F. K. Liu, and J. D. Jones. 1982. Functional properties and food applications of rapeseed protein concentrate. Journal of Food Science 47:1175–1180.CrossRefGoogle Scholar
  46. VanEtten, C. H., and I.A. Wolff. 1973. Natural sulfur compounds.In Toxicants occurring naturally in Foods, 2nd ed. National Academy of Sciences, Washington, D.C.Google Scholar
  47. Wheeler, E. L., and R. N. Ferrel. 1971. A method for phytic acid determination in wheat and wheat fractions. Cereal Chemistry 48:312.Google Scholar

Copyright information

© The New York Botanical Garden 1995

Authors and Affiliations

  • MA. Guadalupe ALanís-Guzmán
    • 1
  • Pedro Wesche-Ebeling
    • 2
  • Ratikanta Maiti
    • 3
  1. 1.Facultad de Ciencias Biológicas, División de Estudios de PostgradoUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMéxico
  2. 2.Dept. Ingeniería Química y AlimentosUniversidad de las Américas-PueblaSanta Catarina MártirMéxico
  3. 3.Facultad de Ciencias Biológicas, División de Estudios de PostgradoUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMéxico

Personalised recommendations