Advertisement

Economic Botany

, Volume 49, Issue 1, pp 56–77 | Cite as

Morphological and phenological comparisons of two Hopi maize varieties conserved in situ and ex situ

  • Daniela Soleri
  • Steven E. Smith
Article

Abstract

Over the last twenty-five years, crop genetic resources (CGR) have been preserved in genebanks around the world for use by formal plant breeders. Recently conservation of folk crop varieties for direct use by the farmer-breeders of traditional agricultural communities has been suggested as another purpose for CGR conservation. While both in and ex situ CGR conservation programs have been proposed to meet the needs of formal plant breeders and farming communities, the needs and goals of the two groups are different. Formal breeders seek maximum allelic diversity while farmer-breeders are interested in both diversity and population structure that provide local adaptation. Based on the morphological and phenological data analyzed for this study of two Hopi maize varieties conserved in and ex situ, it appears that both genetic shift and genetic drift have occurred ex situ, and that populations conserved ex situ are different from those maintained in situ. These findings suggest that CGR conservation strategies must be re-evaluated in light of the specific conservation goals that are sought.

Key words

crop genetic resources in situ and ex situ conservation Zea mays Hopi Native Americans 

Comparaciones morfologicas y fenologicas de dos variedades de mae Hopi conservadas in situ y ex situ

Résumé

Durante los pasados veinticinco años, los recursos geneticos agricolas (RGA) han sido preservados en bancos de germoplasma alrededor del mundo para su uso por fitomejadores formates. Recientamente, la conservacion de variedades crillolaspara su uso directo por agricultores-fitomejsdores de las comunidades agricolas tradicionales se ha sugerido como otro de los propositos para la conservacion de recursos geneticos. Mientras que los programas de conservacion de RGA in situ y ex situ han sido propuestos para satisfacer las necesidades de fitomejoradores formales y cominidades agricolas, las necesidades y objetivos de los dos grupos son diferentes. Los fitomejoradores formales buscan la maxima diversidad genetica, mientras que los agricultores-fitomejoradores estan interesados en diversidad y estructura poblacionalque permita mayor adaptacion local. En bas a datos morfologicos y fenologicos analizados en este estudio de dos variedades de maiz Hopi conservadas in situ y ex situ, al parecer, la conservacion ex situ ha producido seleccion natural (genetic shift) y perdida aleatoria de diversidad (genetic drift), asimismo, parece que la poblaciones conservadas ex situ difieren de las conservadas in situ. Estos resultados sugieren que las estrategias para las conservacion de RGA deben ser reevaluadas conforme a los propositos especificos de conservacion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Altieri, M. A., and L. C. Merrick. 1987. In Situ conservation of crop genetic resources through maintenance of traditional farming systems. Economic Botany 41:86–96.Google Scholar
  2. Bellon, M. R. 1991. The ethnoecology of maize variety management: a case study from Mexico. Human Ecology 19:389–418.CrossRefGoogle Scholar
  3. Benz, B. F., L. R. Sanchez-Velasquez, and F. J. Santana Michel. 1990. Ecology and ethnobotany ofZea diploperennis: preliminary investigations. Maydica 35:85–98.Google Scholar
  4. Bradfield, M. 1971. The Changing Pattern of Hopi Agriculture. Royal Anthropological Institute Occasional Paper No. 30. London: Royal Anthropological Institute of Great Britain and Ireland.Google Scholar
  5. Breese, E. L. 1989. Regeneration and Multiplication of Germplasm Resources in Seed Genebanks: The scientific background. International Board for Plant Genetic Resources, Rome.Google Scholar
  6. Brown, W. L., E. G. Anderson, andR. Tuchawena Jr. 1952. Observations on three varieties of Hopi maize. American Journal of Botany 39:597–609.CrossRefGoogle Scholar
  7. Brummer, E. C., and J. H. Bouton. 1992. Physiological traits associated with grazing-tolerant alfalfa. Agronomy Journal 84:138–143.CrossRefGoogle Scholar
  8. Brush, S. B. 1986. Genetic diversity and conservation in traditional farming systems. Journal of Ethnobiology 6:151–167.Google Scholar
  9. Burton, G. W. 1976. Gene loss in pearl millet germplasm pools. Crop Science 16:251–255.CrossRefGoogle Scholar
  10. Cameron, D. F., and R. L. McCown. 1977. Rapid change in simple mixtures of Townsville stylo (Stylosanthes humilis) lines differing in flowering time and growth habit. Australian Journal of Experimental Agriculture and Animal Husbandry 17:97–104.CrossRefGoogle Scholar
  11. CLADES, COMMUTECH, CPRO-DLO, GRAIN, NORAGRIC, PGRC/E, RAFI, and SEARICE. 1994. Community Biodiversity Development and Conservation Programme. Centre for Genetic Resources, and Centro de Education y Tecnologia, Wageningen, The Netherlands, and Santiago, Chile. (Proposal to DGIS, IDRC and SIDA for Implementation Phase I-1994-1997)Google Scholar
  12. Cleveland, D. A., D. Soleri, and S. E. Smith. 1994. Folk crop varieties: Do they have a role in sustainable agriculture? BioScience 44 (11) in press.Google Scholar
  13. Coe, E. H. J., M. G. Neuffer, and D. A. Hoisington. 1988. The genetics of corn. Pages 81–258in G. F. Sprague and J. W. Dudley, eds. Corn and Corn Improvement, third edition. ASA, CSSA, SSSA, Madison, WI.Google Scholar
  14. Cohen, J. I., J. T. Williams, D. L. Plucknett, and H. Shands. 1991. Ex Situ conservation of plant genetic resources: global development and environmental concerns. Science 253:866–872.PubMedCrossRefGoogle Scholar
  15. Collins, G. N. 1914a. A drought-resisting adaptation in seedlings of Hopi maize. Journal of Agricultural Research 1:293–392.Google Scholar
  16. —. 1914b. Pueblo Indian maize breeding. Journal of Heredity 5:255–268.Google Scholar
  17. Cromwell, E., S. Wiggins, and S. Wentzel. 1993. Sowing Beyond the State. Overseas Development Institute, London, U.K.Google Scholar
  18. Crossa, J., C. M. Hernandez, P. Bretting, S. A. Eberhart, and S. Taba. 1993. Statistical genetic considerations for maintaining germ plasm collections. Theoretical and Applied Genetics 86:673–678.CrossRefGoogle Scholar
  19. Dennis, J. V. J. 1987. Farmer management of rice variety diversity in Northern Thailand. Ph.D. Dissertation. Cornell University, Ithaca, NY.Google Scholar
  20. Diversity. 1993. International efforts to save Somalian Genetic resources. Diversity 9(l&2):20–21.Google Scholar
  21. Ferguson, A. E., and S. Sprecher. 1987. Women and Plant Genetic Diversity: The case of beans in the Central Region of Malawi. Paper presented at the Annual Meeting of the American Anthropological Association, Chicago, IL.Google Scholar
  22. Frankel, O. H. 1970. Genetic Conservation in Perspective. Pages 469–489in O. H. Frankel and E. Bennett, editors. Genetic Resources in Plants—their exploration and conservation. Blackwell Scientific Publications, Oxford, U.K.Google Scholar
  23. —,and A. H. D. Brown. 1984. Plant genetic resources today: a critical appraisal. Pages 249–257in J. H. W. Holden and J. T. Williams, eds. Crop Genetic Resources: Conservation and Evaluation. George Allen and Unwin, London, U.K.Google Scholar
  24. —,and M. E. Soulé. 1981. Conservation and Evolution. Cambridge University Press, Cambridge.Google Scholar
  25. Frigout, A. 1979. Hopi ceremonial organization. Pages 564–576in A. Ortiz, ed. Handbook of North American Indians, Volume 9: Southwest. Smithsonian Institution, Washington, D.C.Google Scholar
  26. Friis-Hansen, E. 1993. Conceptualizing in situ conservation of landraces: The role of IBPGR. Review paper produced by author as consultant to IBPGR March-April 1993.Google Scholar
  27. Hack, J. T. 1942. Papers of the Museum of American Archaeology and Ethnology, Harvard University, Vol. XXXV-No. 1: The changing physical environment of the Hopi Indians of Arizona. Reports of the Awatovi Expedition, Report No. 1. Peabody Museum, Harvard University, Cambridge, Massachusetts. (Reports of the Awatovi Expedition, Report No. 1. Cambridge: Peabody Museum, Harvard University).Google Scholar
  28. Hallauer, A. R., and J. B. Miranda. 1988. Quantitative Genetics in Maize Breeding, second Edition. Iowa State University, Ames, IA.Google Scholar
  29. Hamilton, M. B. 1994. Ex situ conservation of wild plant species: time to reassess the genetic assumptions and implications of seed banks. Conservation Biology 8:39–49.CrossRefGoogle Scholar
  30. Harlan, J. R. 1992. Crops and Man, second Edition. American Society of Agronomy, Inc. and Crop Science Society of America, Inc., Madison, WI.Google Scholar
  31. Hodgkin, T., V. R. Rao, and K. Riley. 1993. Current issues in conserving crop landracesin situ. Paper presented at the On-Farm Conservation Workshop, Dec. 6–8, 1993, Bogor, Indonesia.Google Scholar
  32. Holden, J., J. Peacock, and T. Williams. 1993. Genes, Crops and the Environment. Cambridge University Press, Cambridge, UK.Google Scholar
  33. Ingram, C. B., and J. T. Williams. 1984.In situ conservation of wild relatives of crops. Pages 163–179in J. H. W. Holden and J. T. Williams, eds. Crop Genetic Resources: Conservation and Evaluation. George Allen and Unwin, London, U.K.Google Scholar
  34. Iowa State University. 1989. How a corn plant develops. Cooperative Extension Service, Ames, IA, Special Report No. 48. (N)Google Scholar
  35. Loomis, R. S., andD. J. Connor. 1992. Crop Ecology: Productivity and management in agricultural systems. Cambridge University Press, Cambridge.Google Scholar
  36. Marshall, D. R. 1989. Crop genetic resources: current and emerging issues. Pages 367–388in A. H. D. Brown, M. T. Clegg, A. L. Kahler and B. S. Weir, eds. Plant population genetics, breeding, and genetic resources. Sinauer Associates Inc., Sunderland, MA.Google Scholar
  37. —, andA. H. D. Brown. 1975. Optimum sampling strategies in genetic conservation. Pages 53–80in O. H. Frankel and J. G. Hawkes, eds. Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, U.K.Google Scholar
  38. —. 1983. Theory of forage plant collection. Pages 135–148in J. G. Mclvor and R. A. Bray, eds. Genetic resources of forage plants. CSIRO, Melbourne, Australia.Google Scholar
  39. North Central Regional Plant Introduction Station. 1993. NCRPIS Operations Manual.Google Scholar
  40. NRC. 1989. Alternative Agriculture. National Academy Press, Washington, DC.Google Scholar
  41. —. 1991. Managing Global Genetic Resources: The US National Plant Germplasm System. National Academy Press, Washington, DC.Google Scholar
  42. —. 1993. Managing Global Genetic Resources: Agricultural Crop Issues and Policies. National Academy Press, Washington, DC.Google Scholar
  43. Oldfield, M.L., and J.B. Alcorn. 1987. Conservation of traditional agroecosystems. BioScience 37:199–208.CrossRefGoogle Scholar
  44. Pearse, A. 1980. Seeds of plenty, seeds of want, English Language Book Society 1984 Edition. Oxford University Press, Oxford, UK.Google Scholar
  45. Plucknett, D. L., N. J. H. Smith, J. T. Williams, andN. M. Anisherry. 1987. Gene Banks and the World’s Food. Princeton University Press, Princeton, NJ.Google Scholar
  46. Prevost, D. J., R. J. Ahrens, and D. M. Kirz. 1984. Traditional Hopi agricultural methods. Journal of Soil and Water Conservation 39:170–171.Google Scholar
  47. Quiros, C. F., S. B. Brush, D. S. Douches, K. S. Zimmerer, and G. Huestis. 1990. Biochemical and folk assessment of variability of Andean cultivated potatoes. Economic Botany 44:254–266.Google Scholar
  48. Richards, P. 1986. Coping with Hunger. Allen and Unwin, London, U.K.Google Scholar
  49. Roos, E. E. 1984a. Genetic Shifts in Mixed Bean Populations. I. Storage Effects. Crop Science 24: 240–244.CrossRefGoogle Scholar
  50. —. 1984b. Genetic Shifts in Mixed Bean Populations. II. Effects of regeneration. Crop Science 24:711–715.CrossRefGoogle Scholar
  51. Sanchez G. J. J., M. M. Goodman, andJ. O. Rawlings. 1993. Appropriate characters for racial classification in maize. Economic Botany 47:44–59.Google Scholar
  52. Singh, R. B., and J. T. Williams. 1984. Maintenance and conservation of plant genetic resources. Pages 120–130in J. H. W. Holden and J. T. Williams, eds. Crop Genetic Resources: Conservation and Evaluation. George Allen and Unwin, London, U.K.Google Scholar
  53. Soleri, D., and D. A. Cleveland. 1993. Hopi crop diversity and change. Journal of Ethnobiology 13: 203–231.Google Scholar
  54. Strange, M. 1988. Family Farming: A new economic vision. University of Nebraska Press and Institute for Food and Development Policy, Lincoln, NE and San Francisco, CA.Google Scholar
  55. Whiting, A. F. 1937. Hopi Indian agriculture II: seed source and distribution. Museum Notes (Museum of Northern Arizona) 10(5): 1–4.Google Scholar
  56. —. 1939. Ethnobotany of the Hopi. Northern Arizona Society of Science and Art, Flagstaff, AZ.Google Scholar
  57. Wilkes, G. 1991. In situ conservation of agricultural systems. Pages 86–101in M. L. Oldfield and J. B. Alcorn, eds. Biodiversity: Culture, Conservation, and Ecodevelopment. Westview Press, Boulder, CO.Google Scholar
  58. Wisner, W. M. 1972. Growing degree days for hybrid corn production. University of Missouri-Columbia Extension Division, Science and Technology Guide.Google Scholar
  59. Women of Sangams Pastapur, Medak, Andhra Pra desh, and M. Pimbert. 1991. Farmer participation in on-farm varietal trials: Multilocational testing under resource-poor conditions. Rapid Rural Appraisal (RRA) Notes Number 10:3–8.Google Scholar
  60. Worede, M. 1992. Ethiopia: A genebank working with fanners. Pages 78–94in D. Cooper, R. Vellvé and H. Hobbelink, eds. Growing Diversity. Intermediate Technology Publications, London, U.K.Google Scholar
  61. Zimmerer, K. S., and D. S. Douches. 1991. Geographical approaches to crop conservation: the partitioning of genetic diversity in Andean potatoes. Economic Botany 45:176–189.Google Scholar

Copyright information

© The New York Botanical Garden 1995

Authors and Affiliations

  • Daniela Soleri
    • 1
  • Steven E. Smith
    • 2
  1. 1.Office of Arid Land Studies, College of AgricultureUniversity of ArizonaTucson
  2. 2.Department of Plant Sciences, College of AgricultureUniversity of ArizonaTucson

Personalised recommendations