The Botanical Review

, Volume 15, Issue 2, pp 106–151 | Cite as

Cytology of bacteria. II

  • Georges Knaysi


Botanical Review Cytoplasmic Membrane Bacillus Cereus Ribonucleic Acid Spore Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson, H. A., Moyer, L. S., andGorin, M. H. 1942. Electrophoresis of proteins.Google Scholar
  2. Adolph, E. F., andBayne-Jones, S. 1932. Growth in size of micro-organisms measured from motion pictures. II.Bacillus megatherium. Jour. Cell. Comp. Physiol. 1: 409–427.CrossRefGoogle Scholar
  3. Allen, L. A., Appleby, J. C., andWolf, J. 1939. Cytological appearances in a spore-forming bacillus. Evidence of meiosis. Zentr. Bakt. Parasitenk. II. 100: 3–16.Google Scholar
  4. Allyn, W. P. andBaldwin, I. L. 1930. The effect of the oxidation-reduction character of the medium on the growth of an aerobic form of bacteria. Jour. Bact.20: 417–437.Google Scholar
  5. ——. 1932. Oxidation-reduction potentials in relation to the growth of an aerobic form of bacteria. Jour. Bact.23: 369–398.Google Scholar
  6. Alture-Werber, E., Lipschitz, R., Kashdan, F., andRosenblatt, P. 1945. The effect of incompletely inhibitory concentrations of penicillin onEscherichia coli. Jour. Bact.50: 291–295Google Scholar
  7. Angerer, R. von 1938. Untersuchungen über die Ursachen den Resistenz von Bazillensporen. Arch. Hyg. Bakt121: 12–55.Google Scholar
  8. Badian, J. 1933. Eine cytologische Untersuchung über das Chromatin und den Entwicklungszyklus der Bakterien. Arch. Mikrobiol.4: 409–418.CrossRefGoogle Scholar
  9. —. 1935. Sur la cytologie duBacillus megatherium. Acta Soc. Bot. Poloniae12: 69–74.Google Scholar
  10. Bartholomew, J. W. 1946. Gram-positive characteristics ofNeisseria. Jour. Bact.51: 584–585.Google Scholar
  11. — andUmbreit, W. W. 1944. Ribonucleic acid and the Gram stain. Jour. Bact.48: 567–578.Google Scholar
  12. Baylor, M. B., Appleman, M. D., Sears, O. H., andClark, G. L. 1945. Some morphological characteristics of nodule bacteria as shown by the electron microscope. II. Jour. Bact.50: 249–256.Google Scholar
  13. Bayne-Jones, S., andAdolph, E. F. 1932a. Growth in size of microorganisms measured from motion pictures. I. Yeast,Saccharomyces cerevisiae. Jour. Cell. Comp. Physiol.1: 387–407.CrossRefGoogle Scholar
  14. ——. 1932b. Growth in size of micro-organisms measured from motion pictures. III.Bacterium coli. Jour. Cell. Comp. Physiol.2: 329–348.CrossRefGoogle Scholar
  15. — andSandholzer, L. A. 1933. Changes in the shape and size ofBacterium coli andBacillus megatherium under the influence of bacteriophage-A motion photo-micrographic analysis of the mechanism of lysis. Jour. Expt. Med.57: 279–304.CrossRefGoogle Scholar
  16. Bekker, J. H. 1944–45. The antigenic properties of bacterial spores. Antonio von Leeuwenhoek’s Jour. Microbiol. Serol.10: 67–70.CrossRefGoogle Scholar
  17. Boivin, A., andMesrobeanu, L. 1938a. Les antigènes somatiques et flagellaires des bactéries. Ann. Inst Pasteur61: 426–478.Google Scholar
  18. ——. 1938b. Sur la résistance à l’acide trichloracétique de l’antigène flagellaire (antigène H) du bacille typhique et sur la nature chimique possible de cet antigène. Compt. Rend. Soc. Biol. (Paris)129: 136–138.Google Scholar
  19. Bovarnick, M. 1942. The formation of extracellular d(-) glutamic acid polypeptide byBacillus subtilis. Jour. Biol. Chem.145: 415–424.Google Scholar
  20. Bradbury, F. R., andJordan, D. O. 1942. The surface behavior of antibacterial substances. I. Sulfanilamide and related substances. Biochem. Jour.36: 287–293.Google Scholar
  21. Braun, W. 1947. Bacterial dissociation. A critical review of a phenomenon of bacterial variation. Bact. Rev.11: 75–114.PubMedGoogle Scholar
  22. Brown, H. P. 1945. On the structure and mechanics of the protozoan flagellum. Ohio Jour. Sci.45: 247–278.Google Scholar
  23. Buck, T. C. 1947. Further studies onLactobacillus enzymo-thermophilus. Jour. Bact.54: 12.Google Scholar
  24. Burdon, K. L. 1946. Fatty material in bacteria and fungi revealed by staining dried, fixed slide preparations. Jour. Bact.52: 665–678.Google Scholar
  25. Cavalli, L. L. 1945. Contributo al problema del nucleo batterico. Osservazione supermicroscopica e analisi biofisica con raggi × inB. coli. Atti Ist. Bot. Univ. V.6: 3–25.Google Scholar
  26. Chain, E., andDuthie, E. S. 1945. Bactericidal and bacteriolytic action of penicillin on the staphylococcus. Lancet248: 652–657.CrossRefGoogle Scholar
  27. Chance, H. L. 1938. Mitosis-like activity inBacillus sp. A preliminary report. Jour. Bact.35: 347–350.Google Scholar
  28. Christian, M. I. 1931. A contribution to the bacteriology of commercial sterilized milk. Part II. The coconut or carbolic taint. A study of the causal organism and the factors governing its spore-formation. Jour. Dairy Res.3: 113–132.Google Scholar
  29. Clark, P. F., andRuehl, W. H. 1919. Morphologic changes during the growth of bacteria. Jour. Bact.4: 615–629.Google Scholar
  30. Cohen, S. S. 1945. The chemical alteration of a bacterial surface with special reference to the agglutination ofB. proteus OX-19. Jour. Exp. Med.82: 133–142.CrossRefGoogle Scholar
  31. Cook, R. P. 1931. Some factors influencing spore formation inB. subtilis and the metabolism of its spores. Zentr. Bakt, Parasitenk. I. Orig.122: 329–335.Google Scholar
  32. Curran, H. R. 1931. Influence of osmotic pressure upon spore germination. Jour. Bact.21: 197–209.Google Scholar
  33. Brunsetter, B. C., andMyers, A. T. 1943. Spectrochemical analysis of vegetative cells and spores of bacteria. Jour. Bact.45: 485–494.Google Scholar
  34. — andEvans, F. R. 1937. The importance of enrichments in the cultivation of bacterial spores previously exposed to lethal agencies. Jour. Bact.34: 179–189.Google Scholar
  35. —— andEvans, F. R.. 1945. Heat activation inducing germination in the spores of thermotolerant and thermophilic aerobic bacteria. Jour. Bact.49: 335–346.Google Scholar
  36. Delaporte, B. 1934. Sur la structure et le processus de sporulation del’Oscillospira Guilliermondi. Compt. Rend. Acad. Sci. (Paris) 198: 1187–1189.Google Scholar
  37. Delaporte, B.. 1935. Recherches sur la cytologie des bacilles de l’intestin des têtards. Compt. Rend. Acad. Sci. (Paris) 201: 1409–1411.Google Scholar
  38. Delaporte, B.. 1936a. Nouvelles recherches sur la cytologie des bactéries. Compt. Rend. Acad. Sci. (Paris) 202: 1382–1384.Google Scholar
  39. Delaporte, B.. 1936b. Recherches cytologiques sur le groupe des coccacées. Compt. Rend. Acad. Sci. (Paris) 203: 199–201.Google Scholar
  40. Delaporte, B.. 1939. Sur les acides nucléiques des levures et leur localisation. Rev. Gén. Bot. 51: 449–482.Google Scholar
  41. Delaporte, B.. 1939–40. Recherches cytologiques sur les bactéries et les cyanophycées. Rev. Gén. Bot.51: 615–643, 689–708, 748–768; 52: 112–160.Google Scholar
  42. Dienes, L. 1939. “L” Organisms of Kleineberger andStreptobacillus moniliformis. Jour. Inf. Dis.65: 24–42.Google Scholar
  43. — 1940. L type of growth inGonococcus cultures. Proc. Soc. Exp. Biol. Med.44: 470–471.Google Scholar
  44. — 1942. The significance of the large bodies and the development of L type of colonies in bacterial cultures. Jour. Bact.44: 37–73.Google Scholar
  45. — 1943. Reproduction of bacteria from the large bodies ofStreptobacillus moniliformis. Proc. Soc. Exp. Biol. Med.53: 84–86.Google Scholar
  46. —. 1944. L type of growth in cultures of a hemolytic Parainfluenza bacillus. Proc. Soc. Exp. Biol. Med.55: 142–144.Google Scholar
  47. —. 1945. Morphology and nature of the pleuropneumonia group of organisms. Jour. Bact.50: 441–458.Google Scholar
  48. —. 1946. Complex reproductive processes in bacteria. Cold Spring Harbor Symp. Quant. Biol.11: 51–59.Google Scholar
  49. —. 1947. The morphology of the L1 of Klieneberger and its relationship toStreptobacillus moniliformis. Jour. Bact.54: 231–237.Google Scholar
  50. — andSmith, W. E. 1944. The significance of pleomorphism inBacteroides strains. Jour. Bact.48: 125–153.Google Scholar
  51. Dobell, C. C. 1911. Contributions to the cytology of bacteria. Quart. Jour. Micr. Sci.56: 395–506.Google Scholar
  52. Dubin, I. N. andSharp, D. G. 1944. Comparison of the morphology ofBacillus megatherium with light and electron microscopy. Jour. Bact.48: 313–330.Google Scholar
  53. Dubos, R. J. 1929a. Observations on the oxidation-reduction properties of sterile bacteriological media. Jour. Exp. Med.49: 507–523.CrossRefGoogle Scholar
  54. —. 1929b. The initiation of growth of certain facultative anaerobes as related to oxidation-reduction processes in the medium. Jour. Exp. Med.49: 559–573.CrossRefGoogle Scholar
  55. -Dubos, R. J. 1939. Enzymatic analysis of the antigenic structure of pneumococci. Ergeb. Enzymforsch., Leipzig, Akad. Verlagsgesel. M.B.H. 135–148.Google Scholar
  56. -. 1945. The bacterial cell.Google Scholar
  57. — andAvery, O. T. 1931. Decomposition of the capsular polysaccharide of pneumococcus type III by a bacterial enzyme. Jour. Exp. Med.54: 51–71.CrossRefGoogle Scholar
  58. — andMacleod, C. M. 1938. The effect of a tissue enzyme upon pneumococci. Jour. Exp. Med.67: 791–797.CrossRefGoogle Scholar
  59. Dufrenoy, J. andPratt, R. 1947. Cytochemical mechanism of penicillin action. III. Effect on reaction to the Gram stain. Jour. Bact.54: 283–289.Google Scholar
  60. Dutky, S. R. 1933. Reported by Knaysi, 1938.Google Scholar
  61. —. 1947. Preliminary observations on the growth requirements ofBacillus popilliae Dutky andBacillus lentimorbus Dutky. Jour. Bact.54: 267.Google Scholar
  62. Dyar, M. T. 1947a. A cell wall stain employing a cationic surface-active agent as a mordant. Jour. Bact.53: 498.Google Scholar
  63. —. 1947b. Studies on the surface lipids ofMicrococcus aureus. Jour. Bact.54: 17.Google Scholar
  64. -. 1947c. Electrophoretic studies on the chemical nature of bacterial surfaces. Doctor’s thesis, Cornell Univ.Google Scholar
  65. - andKnaysi, G. 1947. Reported in Dyar, 1947c.Google Scholar
  66. Dyar, M. T. andOrdal, E. J. 1946. Electrokinetic studies on bacterial surfaces. I. The effects of surface-active agents on the electrophoretic mobilities of bacteria. Jour. Bact.51: 149–167.Google Scholar
  67. Effront, J. 1914. Les catalyseurs biochimiques dans la vie et dans l’industrie.Google Scholar
  68. Ellis, D. 1932. Sulphur bacteria.Google Scholar
  69. Enderlein, G. 1925. Bakterien-Cyclogenie.Google Scholar
  70. Esty, J. R. andWilliams, C. C. 1920. Resistant bacteria causing spoilage in canned foods. Abst. Bact.4: 11.Google Scholar
  71. Etinger-Tulczynska, R. 1933. Bakterienkapseln und Quellungsreaktion. Zeits. Hyg., Infektionskrankheit114: 769–789.CrossRefGoogle Scholar
  72. Evans, F. R. andCurran, H. R. 1943. The accelerating effect of sublethal heat on spore germination in mesophilic aerobic bacteria. Jour. Bact.46: 513–523.Google Scholar
  73. Feulgen, R. andRossenbeck, H. 1924. Mikroskopischchemischer Nachweis einer Nucleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. Zeits. Physik. Chem.135: 203–248.Google Scholar
  74. Fischer, A. 1891. Die Plasmolyse der Bakterien. Ber. Verh. Kgl. Sächs. Ges. Wiss. Leipzig, Math.-Phys. Cl.43: 52–74.Google Scholar
  75. Fisher, A. M. 1946. A study on the mechanism of action of penicillin as shown by its effect on bacterial morphology. Jour. Bact.52: 539–554.Google Scholar
  76. Fleming, A. 1941. Mode of action of chemotherapeutic agents. Lancet241: 761.Google Scholar
  77. Friedman, C. A. andHenry, B. S. 1930. Bound water content of vegetative and spore forms of bacteria. Jour. Bact.36: 99–105.Google Scholar
  78. Gardner, A. D. 1940. Morphological effects of penicillin on bacteria. Nature146: 837.CrossRefGoogle Scholar
  79. Garrod, L. P. 1945. The action of penicillin on bacteria. Brit. Med. Jour.1: 107–110.Google Scholar
  80. Gay, F. P. andClark, A. R. 1937. On the mode of action of sulfanilamide in experimentalStreptococcus empyema. Jour. Exp. Med.66: 535–548.CrossRefGoogle Scholar
  81. Gibson, T. andAbdel-Malek, Y. 1945. The formation of carbon dioxide by lactic acid bacteria andBacillus licheniformis and a cultural method of detecting the process. Jour. Dairy Res.14: 35–44.CrossRefGoogle Scholar
  82. Gowen, J. W. andLincoln, R. E. 1942. A test for sexual fusion in bacteria. Jour. Bact.44: 551–554.Google Scholar
  83. Greene, H. C. 1938. Colony organization of certain bacteria with reference to sporulation. Jour. Bact.35: 261–270.Google Scholar
  84. Gutstein, M. 1924. Das Ektoplasma der Bakterien. I. Ueber eine allgemeine Methode zur Darstellung des Ektoplasmas der Grampositiven Bakterien. Zentr. Bakt. Parasitenk. I. Orig. 93: 393–402.Google Scholar
  85. Hadley, P. 1928. The Twort-d’Herelle phenomenon. A critical review and presentation of a new conception (homogamic theory) of bacteriophage action. Jour. Inf. Dis.42: 263–434.Google Scholar
  86. Hanby, W. E. andRydon, H. N. 1946. The capsular substance ofBacillus anthracis. Biochem. Jour.40: 297–307.Google Scholar
  87. Hayward, A. E. 1943. Some physiological factors in spore production. Jour. Bact.45: 200.Google Scholar
  88. —,Marchetta, J. A. andHutton, R. S. 1946. Strain variation as a factor in the sporulating properties of the so-calledBacillus globigii. Jour. Bact.52: 51–54.Google Scholar
  89. Heidelberger, M., Kendall, F. E. andScherp, H. W. 1936. Specific polysaccharides of type I, II, andIII pneumococcus; revision of methods and data. Jour. Exp. Med.64: 559–572.CrossRefGoogle Scholar
  90. Henrici, A. T. 1928. Morphologic variation and the rate of growth of bacteria.Google Scholar
  91. Henry, B. S. andFriedman, C. A. 1937. The water content of bacterial spores. Jour. Bact.33: 323–329.Google Scholar
  92. Henry, H. andStacey, M. 1943. Histochemistry of the Gram-staining reaction. Nature151: 671.CrossRefGoogle Scholar
  93. ——. 1946. Histochemistry of the Gram-staining reaction for microorganisms. Proc. Royal Soc., London, B,133: 391–406.Google Scholar
  94. Hillier, J. andKnaysi, G. 1947a. A study with the electron microscope of the origin of flagella inBacillus tnycoides. To be published.Google Scholar
  95. - and -. 1947b. Unpublished.Google Scholar
  96. Hobby, G. L., andDawson, M. H. 1944. Effect of rate of growth of bacteria on action of penicillin. Proc. Soc. Exp. Biol. Med.56: 181–184.Google Scholar
  97. —,Meyer, K. andChaffee, E. 1942. Observation on the mechanism of action of penicillin. Proc. Soc. Exp. Biol. Med.50: 281–285.Google Scholar
  98. Hodge, H. M. andKnaysi, G. 1937.In Knaysi, 1944.Google Scholar
  99. Hofer, A. W. 1944. Electron microscope studies onAzotobacter flagellation andRhisobium bacteriophage. Jour. Bact.47: 415–416.Google Scholar
  100. Hoogerheide, J. C. 1939. Studies on capsule formation. I. The condition under whichKlebsiella pneumoniae forms capsules. Jour. Bact.38: 367–388.Google Scholar
  101. —. 1940. Studies on capsule formation. II. The influence of electrolytes on capsule formation byKlebsiella pneumoniae. Jour. Bact39: 649–658.Google Scholar
  102. Howie, J. W. andCruickshank, J. 1940. Bacterial spores as antigens. Jour. Path. Bact.50: 235–242.CrossRefGoogle Scholar
  103. Hoyt, A. 1935. Studies upon growth phases ofClostridium septicum. Jour. Bact.30: 243–251.Google Scholar
  104. Hutchinson, W. G., andMcKracken, M. R. 1943. Study of flagella of a fresh water bacterium by motion microphotography and electron micrography. Jour. Bact.45: 305.Google Scholar
  105. Imšenecki, A. 1940. [Structure of bacteria]. [Soviet Academy of Science]. [In Russian].Google Scholar
  106. —. 1945. On the structure of anaerobic bacteria. Jour. Bact.49: 1–5.Google Scholar
  107. Ivanovics, G. 1937. Unter welchen Bedingungen werden bei der Nährbodenzüchtung der Milzbrandbazillen Kapseln gebildet. Zentr. Bakt. Parasitenk. I. Orig.138: 449–455.Google Scholar
  108. —. 1938. Das kulturelle Verhalten desBacillus mesentericus vulgatus mucosus, insbesondere in Bezug auf die Produktion der P-Substanz. Zentr. Bakt. Parasitenk. I. Orig.142: 52–64.Google Scholar
  109. —. 1939. Das Schicksal der Kapselsubstanz (P-Substanz) der Milzbrandbazillen im Organismus. Zeits. Immunitätsforsch.96: 408–412.Google Scholar
  110. Johnson, F. H. 1944. Observations on the electron microscopy ofB. cereus, and tyrothricin action. Jour. Bact.47: 551–557.Google Scholar
  111. — andDennison, W. L. 1944. The volume change accompanying the Quellung reaction of pneumococci. Jour. Immunol.48: 317–323.Google Scholar
  112. —,Zworykin, N. andWarren, G. 1943. A study of luminous bacterial cells and cytolysates with the electron microscope. Jour. Bact.46: 167–185.Google Scholar
  113. Kaplan, I. andWilliams, J. W. 1941. Spore formation among the anaerobic bacteria. I. The formation of spores byClostridium sporogenes in nutrient agar media. Jour. Bact.42: 265–282.Google Scholar
  114. King, R. L. andBeams, H. W. 1942. Ultracentrifugation and cytology ofSpirillum volutans. Jour. Bact.44: 597–603.Google Scholar
  115. Klieneberger-Nobel, E. 1945. Changes in the nuclear structure of bacteria,tuberculosis. Jour. Inf. Dis.45: 13–33.Google Scholar
  116. Knaysi, G. 1929. The cytology and microchemistry ofMycobacterium tuberculosis. Jour. Inf. Dis.45: 13–33.Google Scholar
  117. —. 1930. The cell structure and cell division ofBacillus subtilis. Jour. Bact19: 113–115.Google Scholar
  118. —. 1933. Morphological and cultural studies ofBacillus megatherium with special reference to dissociation. Jour. Bact.26: 623–644.Google Scholar
  119. —. 1935a. Further observations on certain variants ofBacillus megatherium. Jour. Bact.29: 389–390.Google Scholar
  120. -Knaysi, G. 1935fr. The effect of temperature, pH, and salts on the oxidation-reduction potential of sterile meat infusion broth. Unpublished.Google Scholar
  121. —. 1938. Cytology of bacteria. Bot. Rev.4: 83–112.Google Scholar
  122. —. 1940. A photomicrographic study of the rate of growth of some yeasts and bacteria. Jour. Bact.40: 247–253.Google Scholar
  123. —. 1941a. Observations on the cell division of some yeasts and bacteria. Jour. Bact.41: 141–150.Google Scholar
  124. —. 1941b. A morphological study ofStreptococcus fecalis. Jour. Bact.42: 575–586.Google Scholar
  125. —. 1941c. A nucleus-like structure in aStaphylococcus. Science94: 234.PubMedCrossRefGoogle Scholar
  126. —. 1942. The demonstration of a nucleus in the cell of aStaphylococcus. Jour. Bact.43: 365–385.Google Scholar
  127. —. 1943a. A cytological and microchemical study ofThiobacillus thiooxidans. Jour. Bact.46: 451–461.Google Scholar
  128. -Knaysi, G. 19436. Unpublished.Google Scholar
  129. -. 1944. Elements of bacterial cytology.Google Scholar
  130. —. 1945a. On the origin and fate of the fatty inclusions in a strain ofBacillus cereus. Science102: 424.PubMedCrossRefGoogle Scholar
  131. —. 1945b. On the microscopic methods of measuring the dimensions of the bacterial cell. Jour. Bact.49: 375–381.Google Scholar
  132. —. 1945c. A study of some environmental factors which control endospore formation by a strain ofBacillus mycoides. Jour. Bact.49: 473–493.Google Scholar
  133. —. 1945d. Investigation of the existence and nature of reserve material in the endospore of a strain ofBacillus mycoides by an indirect method. Jour. Bact.49: 617–622.Google Scholar
  134. —. 1946a. On the existence, morphology, nature, and functions of the cytoplasmfc membrane in the bacterial cell. Jour. Bact.51: 113–121.Google Scholar
  135. —. 1946b. Further observations on the nuclear material of the bacterial cell. Jour. Bact.51: 177–180.Google Scholar
  136. —. 1946c. On the process of sporulation in a strain ofBacillus cereus. Jour. Bact.51: 187–197.Google Scholar
  137. —. 1946d. On the inclusions ofHansenula anomala. Jour. Bact.52: 487–488.Google Scholar
  138. -Knaysi, G. 1947a. Germination of the endospores ofBacillus mycoides in a nitrogen-free medium and some properties of the developed cells. To be published.Google Scholar
  139. -. 19476. Unpublished.Google Scholar
  140. — andBaker, R. F. 1947a. Demonstration, with the electron microscope, of nucleus-like bodies in cells ofBacillus mycoides grown in nitrogen-free media. Jour. Appl. Physics18: 271–272.Google Scholar
  141. —— andBaker, R. F.. 1947b. Demonstration, with the electron microscope, of a nucleus inBacillus mycoides grown in a nitrogen-free medium. Jour. Bact.53: 539–553.Google Scholar
  142. —,— andHillier, J. 1947. A study, with the high-voltage electron microscope, of the life cycle and structure of the endospore inBacillus mycoides. Jour. Bact.53: 525–537.Google Scholar
  143. — andGunsalus, I. C. 1944. A study of the so-called Marburg and the Lawrence and Ford strains ofBacillus subtilis. Jour. Bact.47: 381–389.Google Scholar
  144. - andHillier, J. 1947. Germination of the endospore ofBacillus megatherium and the structure of the spore coat as seen with the electron microscope. To be published.Google Scholar
  145. — andMudd, S. 1943. The internal structure of certain bacteria as revealed by the electron microscope-a contribution to the study of the bacterial nucleus. Jour. Bact.45: 349–359.Google Scholar
  146. Kramár, E. 1921. Untersuchungen über die chemische Beschaffenheit der Kapselsubstanz einiger Kapselbakterien. Zentr. Bakt. Parasitenk. I. Orig.87: 401–406.Google Scholar
  147. Krauskopf, E. J. andMcCoy, E. 1937. The serology of spores ofBacillus niger with special reference to the H antigen. Jour. Inf. Dis.61: 251–256.Google Scholar
  148. Lamanna, C. 1937. The role of the coat in the resistance to moist heat of bacterial endospores as indicated by modes of germination. Master’s Thesis, Cornell Univ.Google Scholar
  149. —. 1940a. The taxonomy of the genusBacillus. Modes of spore germination. Jour. Bact.40: 347–360.Google Scholar
  150. —. 1940b. The taxonomy of the genusBacillus. II. Differentiation of small celled species by means of spore antigens. Jour. Inf. Dis.67: 193–204.Google Scholar
  151. —. 1940c. The taxonomy of the genusBacillus. III. Differentiation of the large celled species by means of spore antigens. Jour. Inf. Dis.67: 205–212.Google Scholar
  152. —. 1942a. Relation of maximum growth temperature to resistance to heat. Jour. Bact.44: 29–35.Google Scholar
  153. —. 1942b. The status ofBacillus subtilis, including a note on the separation of precipitinogens from bacterial spores. Jour. Bact.44: 611–617.Google Scholar
  154. —. 1946. The nature of the acid-fast stain. Jour. Bact.52: 99–103.Google Scholar
  155. -. 1947. Personal Communication.Google Scholar
  156. Lasseur, P., Dupaix, A. andGeorges, L. 1932. Influence des électrolytes sur les variations de volume des corps microbiens déterminées par le sulfocyanure de potassium. Trav. Labor. Microbiol. Faculté Pharm. Nancy. Fasc.5, 99–104.Google Scholar
  157. Lederberg, J., andTatum, E. L. 1946. Gene recombination inEscherichia coli. Nature158: 558.CrossRefGoogle Scholar
  158. Lee, S. W., Foley, E. J. andEpstein, J. A. 1944. Mode of action of penicillin. I. Bacterial growth and penicillinactivity-Staphylococcus aureus F.D.A. Jour. Bact.48: 393–399.Google Scholar
  159. Lewis, I. M. 1941. The cytology of bacteria. Bact. Rev.5: 181–230.PubMedGoogle Scholar
  160. —. 1942. The cytology of bacteria. Chron. Bot.7: 249–250.Google Scholar
  161. Lockwood, J. S. 1938. Studies on the mechanism of action of sulfanilamide. The effect of sulfanilamide in serum and blood on hemolytic streptococciin vitro. Jour. Immunol.35: 155–193.Google Scholar
  162. Lofgren, R. andSoule, M. H. 1945. The structure ofSpirochaeta novyi as revealed by the electron microscope. Jour. Bact.50: 679–690.Google Scholar
  163. Löhnis, F. 1921. Studies upon the life cycles of the bacteria. Nat. Acad. Sci., Mem.16 (2d Mem.) 252 pp.Google Scholar
  164. Lominsky, I. andLendrum, A. C. 1942. The effect of surface-active agents onB. proteus. Jour. Pathol. Bact.54: 421–433.CrossRefGoogle Scholar
  165. Lowndes, A. G. 1941. On flagellar movement in unicellular organisms. Proc. Zool. Soc. London 111A: 111–134.Google Scholar
  166. Luria, S. E. 1947. Recent advances in bacterial genetics. Bact. Rev.11: 1–40.PubMedGoogle Scholar
  167. Macierewicz-Straczyńska. 1937. Dziatania Temperatury i pH na Kielkowanie Spor Bakterii. (Wirkung von Temperatur und pH auf die Keimung von Bakteriensporen). Acta Soc. Bot., Poloniae14: 371–408.Google Scholar
  168. Malek, I. 1938. Sur la présence de l’antigène Vi dans les différentes souchesd’Eberthella typhi. II. Influence de l’antigène Hd’Eberthella typhi sur la flocculation par les ions H. III. Influence de l’antigène Vi sur la flocculationd’Eberthella typhi par les ions H. IV. Influence de l’antigène O sur la flocculationd’Eberthella typhi par les ions H. V. Les propriétés antigéniques de la souch ≪ R O ≫ et ses relations avec les souches O et Hd’Eberthella typhi. Compt. Rend. Soc. Biol.129: 785–788, 795–804.Google Scholar
  169. McClean, D. 1941. The capsulation of streptococci and its relation to diffusion factor (hyaluronidase). Jour. Pathol. Bact.53: 13–27, 156–158.CrossRefGoogle Scholar
  170. —. 1942. Thein-vivo decapsulation of streptococci by hyaluronidase. Jour. Pathol. Bact.54: 284–286.Google Scholar
  171. Mellon, R. R. 1925. Studies in microbic heredity. I. Observations on a primitive form of sexuality (zygospore formation) in the colontyphoid group Jour. Bact.10: 481–511.Google Scholar
  172. Metzner, P. 1920. Zur Mechanik der Geisseibewegung. Biol. Zentr.40: 49–87.Google Scholar
  173. Miller, C. P. andFoster, A. Z. 1944. Studies on the action of penicillin. III. Bactericidal action of penicillin on meningococcusin vitro. Proc. Soc. Exp. Biol. Med.56: 205–208.Google Scholar
  174. —,Scott, W. W. andMoeller, V. 1944. Studies on the action of penicillin. The rapidity of its therapeutic effect on gonococcic urethritis. Jour. Am. Med. Assoc.125: 607–610.Google Scholar
  175. Morgan, H. R. andBeckwith, T. D. 1939. Mucoid dissociation in the colon-typhoid-salmonella group. Jour. Inf. Dis.65: 113–124.Google Scholar
  176. Morrison, E. W. andRettger, L. F. 1930. Bacterial spores. II. A study of bacterial spore germination in relation to environment. Jour. Bact.20: 313–342.Google Scholar
  177. Morton, H. E. andAnderson, T. F. 1942. Observations on the morphology ofLeptospira and the Nichols’ strain ofTreponema pallidum with the aid of the RCA electron microscope. Jour. Bact.43: 64–65.Google Scholar
  178. Moyer, L. S. 1936. Changes in electrokinetic potential of bacteria at various phases of the culture cycle. Jour. Bact.32: 433–464.Google Scholar
  179. Mudd, S. 1944. Pathogenic bacteria, rikettsias and viruses as shown by the electron microscope. II. Relationships to immunity. Jour. Am. Méd. Assoc.126: 632–639.Google Scholar
  180. — andAnderson, T. F. 1941. Demonstration by the electron microscope of the combination of antibodies with flagellar and somatic antigens. Jour. Immunol.42: 251–266.Google Scholar
  181. ——. 1944. Pathogenic bacteria, rickettsias, and viruses as shown by the electron microscope. I. Morphology. Jour. Am. Med. Assoc.126: 561–571.Google Scholar
  182. —,Heinmets, F. andAnderson, T. F. 1943a. Bacterial morphology as shown by the electron microscope. VI. Capsule, cell-wall and inner protoplasm of pneumococcus type III. Jour. Bact.46: 205–211.Google Scholar
  183. ———,Heinmets, F. andAnderson, T. F.. 1943b. The pneumococcal swelling reaction, studied with the aid of the electron microscope. Jour. Exp. Med.,78: 327–332.CrossRefGoogle Scholar
  184. —,Polevitzky, K. andAnderson, T. F. 1943. Bacterial morphology as shown by the electron microscope. V.Treponema pallidum, T.macrodentium and T.microdentium. Jour. Bact.46: 15–24.Google Scholar
  185. ———,Polevitzky, K. Anderson, T. F. andChambers, L. A. 1941. Bacterial morphology as shown by the electron microscope. II. The bacterial cell-wall in the genusBacillus. Jour. Bact.42: 251–264.Google Scholar
  186. Nelson, F. E. 1944. Factors which influence the growth of heat-treated bacteria. II. Further studies on media. Jour. Bact.48: 473–477.Google Scholar
  187. Neri, F. 1940. Beobachtungen über den Geisseiapparat der Bakterien (mit einer neuen Färbungsmethode der Bakteriengeisseln). Zentr. Bakt. Parasitenk. I. Orig.146: 166–176.Google Scholar
  188. Ógiuti, K. 1936. Untersuchungen über die Geschwindigkeit der Eigenbewegung ven Bakterien. Jap. Jour. Exp. Med.14: 19–28.Google Scholar
  189. Oconuki, H. andMiyata, T. 1940. The relationship between the acid agglutination inSalmonella group. Kitasato Arch. Exp. Med.17: 80–87.Google Scholar
  190. Peshkov, M. A. 1945. The cytology and karyology of the colon-typhoid group. Am. Rev. Soviet Med.2: 342–348.Google Scholar
  191. Piekarski, G. 1938. Zytologische Untersuchungen an Bakterien in ultravioletten Licht. Zentr. Bakt., Parasitenk. I. Orig.142: 69–79.Google Scholar
  192. —. 1939a. Lichtoptische und übermikroskopische Untersuchungen zum Problem des Bakterienzellkerns. Bericht über die I. Grossdeutsche Tagung der “Deutschen Vereinigung für Mikrobiologie”.In Zentr. Bakt. Parasitenk. I. Orig.144: 140–147.Google Scholar
  193. -. 1939b. Zum Problem des Bakterienzellkerns. 3d Int. Congr. Microbiol., N. Y. Abstracts of Communications, 46–47.Google Scholar
  194. —. 1940. Ueber kernähnliche Strukturen beiBacillus mycoides Flügge. Arch. Mikrobiol.11: 406–431.CrossRefGoogle Scholar
  195. — andRuska, H. 1939. Übermikroskopische Untersuchungen an Bakterien unter besonderer Berücksichtigung der sogenannten Nucleoide. Arch. Mikrobiol.10: 302–321.CrossRefGoogle Scholar
  196. Pijper, A. 1938. Dark-ground studies of flagellar and somatic agglutination ofB. typhosus. Jour. Pathol. Bact.47: 1–17.CrossRefGoogle Scholar
  197. —. 1941a. Dark-ground studies of Vi agglutination ofB. typhosus. Jour. Pathol. Bact.53: 431–436.CrossRefGoogle Scholar
  198. —. 1941b. Microcinematography of the agglutination of typhoid bacilli. Jour. Bact.42: 395–409.Google Scholar
  199. —. 1946. Shape and motility of bacteria. Jour. Pathol. Bact.58: 325–342.CrossRefGoogle Scholar
  200. —. 1947a. Methylcellulose and bacterial motility. Jour. Bact.53: 257–269.Google Scholar
  201. —. 1947b. Filming as a method of research in microbiology.In Antonie van Leeuwenhoek12: 26–32.CrossRefGoogle Scholar
  202. Porter, K. R. andYegian, D. 1945. Some artifacts encountered in stained preparations of tubercle bacilli. II. Much granules and beads. Jour. Bact.50: 563–575.Google Scholar
  203. Pratt, R. andDufenoy, J. 1947. Cytochemical mechanisms of penicillin action. II. Changes in reactions ofStaphylococcus aureus to vital dyes. Jour. Bact. 54: 127–133.Google Scholar
  204. Rantz, L. A. andKirby, W. M. M. 1944. The action of penicillin on the staphylococcusin vitro. Jour. Immunol.48: 335–343.Google Scholar
  205. Reeves, R. E. andAnderson, R. J. 1937. The chemistry of the lipides of tubercle bacilli. XLVII. The composition of the avian tubercle bacillus wax. Jour. Am. Chem. Soc.59: 858–861.CrossRefGoogle Scholar
  206. Roberts, J. L. 1942. Cytological changes occurring inClostridium pasteurianum during spore formation Jour. Bact.43: 777.Google Scholar
  207. — andBaldwin, I. L. 1942. Spore formation byBacillus subtilis in peptone solutions altered by treatment with activated charcoal. Jour. Bact.44: 653–659.Google Scholar
  208. Robinow, C. F. 1942. A study of the nuclear apparatus of bacteria. Proc. Royal Soc. London, B,130: 299–324.Google Scholar
  209. —. 1944. Cytological observations onBact. coli, Proteus vulgaris and various aerobic sporeforming bacteria with special reference to the nuclear structures. Jour. Hyg. Cambridge43: 413–423.Google Scholar
  210. -Robinow, C. F.. 1945. Nuclear apparatus and cell structure of rod-shaped bacteria.In The Bacterial Cell, by R. J. Dubos, 353–377.Google Scholar
  211. Ruehle, G. L. A. 1923. The enzyme content of bacterial spores. Jour. Bact.8: 487–491.Google Scholar
  212. Schaudinn, F. 1902. Beiträge zur Kenntnis der Bakterien und verwandter Organismen. I.Bacillus bütschlii n. sp. Arch. Parasitenk.1: 306–343.Google Scholar
  213. —. 1903. Beiträge zur Kenntnis der Bakterien und verwandter Organismen. II.Bacillus sporonema n. sp. Arch. Protistenk.2: 416–444.Google Scholar
  214. Sevag, M. G., Smolens, J. andLackman, D. B. 1940. The nucleic acid content and distribution inStreptococcus pyogenes. Jour. Biol. Chem.134: 523–529.Google Scholar
  215. Shanahan, A. J., Eisenstark, A. andTanner, F. W. 1947. Morphology ofEscherichia coli exposed to penicillin as observed with the electron microscope. Jour. Bact.54: 183–189.Google Scholar
  216. Shaw, M. 1937. Decomposition of pneumococcus carbohydrate by the combined activity of strains of two bacterial species. Jour. Bact.33: 644–645.Google Scholar
  217. Sherman, J. M. andWing, H. U. 1937. Attempts to reveal sex in bacteria; with some light on fermentative variability in the coli-aerogenes group. Jour. Bact.33: 315–321.Google Scholar
  218. Sickles, G. M. andShaw, M. 1933. Microorganisms which decompose the specific carbohydrate of pneumococcus types II and III. Jour. Inf. Dis.53: 38–43.Google Scholar
  219. Smith, L. D. andHay, T. 1942. Effect of penicillin on the growth and morphology ofStaphylococcus aureus. Jour. Franklin Inst.233: 598–602.CrossRefGoogle Scholar
  220. Smith, W. E., Hillier, J. andMudd, S. 1946. Electron microscope studies of organisms of the pleuropneumonia group. Jour. Bact.51: 583–584.Google Scholar
  221. Stanier, R. Y. 1942. A note on elasticotaxis in myxobacteria. Jour. Bact.44: 405–412.Google Scholar
  222. Stapp, C. andZycha, H. 1931. Morphologische Untersuchugen anBacillus mycoides; ein Beitrag zur Frage des Pleomorphismus der Bakterien. Arch. Mikrobiol.2: 493–536.CrossRefGoogle Scholar
  223. Starkey, R. L. 1946. Lipid production by a soil yeast. Jour. Bact.51: 33–50.Google Scholar
  224. Stearns, T. W. andRoepke, M. H. 1941a. Electrophoresis studies onBrucella. Jour. Bact.42: 411–430.Google Scholar
  225. —— andRoepke, M. H.. 1941b. The effect of dissociation on the electrophoretic mobility ofBruceila. Jour. Bact.42: 745–755.Google Scholar
  226. Stille, B. 1937. Zytologische Untersuchungen an Bakterien mit Hilfe der Feulgenschen Nuclealreaktion. Arch. Mikrobiol.8: 125–148.CrossRefGoogle Scholar
  227. Stodola, F. H., Lesuk, A. andAnderson, R. J. 1938. The chemistry of the lipids of tubercle bacilli. LIV. The isolation and properties of mycolic acid. Jour. Biol. Chem.126: 505–513.Google Scholar
  228. Tarr, H. L. A. 1933. Some observations on the respiratory catalysts present in the spores and vegetative cells of certain aerobic bacilli. Biochem. Jour.27: 136–145.Google Scholar
  229. Tatum, E. L. andLederberg, J. 1947. Gene recombination in the bacteriumEscherichia coli. Jour. Bact.53: 673–684.Google Scholar
  230. Theophilus, D. R. 1937. Influence of growth temperature on the thermal resistance of some aerobic spore forming bacteria from evaporated milk. Panegyric B. W. Hammer. College Press, Inc., Ames, Iowa.Google Scholar
  231. Thomas, A. R., Jr. andLevine, M. 1945. Some effects of penicillin on intestinal bacteria. Jour. Bact.49: 623–627.Google Scholar
  232. Todd, E. W. 1945. Bacteriolytic action of penicillin. Lancet248: 74–78.CrossRefGoogle Scholar
  233. Tunnicliff, R. 1939. The action of prontosil-soluble and sulfanilamide on the phagocytic activity of leukocytes and on the dissociation of streptococci. Jour. Inf. Dis.64: 59–65.Google Scholar
  234. Ullrich, H. 1926. Über die Bewegungen vonBeggiatoa mirabilis undOscillatoria Jenensis. I. Planta2: 295–324.CrossRefGoogle Scholar
  235. Vendrely, R. andLipardy, J. 1946. Acides nucléiques et noyaux bacteriens. Compt. Rend. Acad. Sci. (Paris)223: 342–344.Google Scholar
  236. Virtanen, A. I. andPulkki, L. 1933. Biochemische Untersuchungen über Bakteriensporen. Arch. Mikrobiol.4: 99–122.CrossRefGoogle Scholar
  237. Wámoscher, L. 1930. Versuche über die Struktur der Bakterienzelle. Zeits. Hyg. Infektionsk.111: 422–460.CrossRefGoogle Scholar
  238. Weiss, L. J. 1943. Electron micrographs of bacteria medicated with penicillin. Proc. Indiana Acad. Sci.52: 27–29.Google Scholar
  239. Wile, U. J. andKearney, E. B. 1943. The morphology ofTreponema pallidum in the electron microscope: Demonstration of flagella. Jour. Am. Med. Assoc.122: 167–168.Google Scholar
  240. —,Picard, R. G. andKearney, E. B. 1942. The morphology ofSpirochaeta pallida in the electron microscope. Jour. Am. Med. Assoc.119: 880–881.Google Scholar
  241. Wood, W. B., Wood, M. L. andBaldwin, I. L. 1935. The relation of oxidation-reduction potential to the growth of an aerobic microorganism. Jour. Bact.30: 593–602.Google Scholar
  242. Wurmser, R. 1930. Oxydations et réductions.Google Scholar
  243. Yegian, D. andBaisden, L. 1942. Factors affecting the beading of the tubercle bacillus stained by the Ziehl-Neelsen technique. Jour. Bact.44: 667–672.Google Scholar
  244. — andPorter, K. R. 1944. Some artifacts encountered in stained preparations of tubercle bacilli. I. Non-acid-fast forms arising from mechanical treatment. Jour. Bact.48: 83–91.Google Scholar

Copyright information

© The New York Botanical Garden 1949

Authors and Affiliations

  • Georges Knaysi
    • 1
  1. 1.Laboratory of Bacteriology, State College of AgricultureCornell UniversityIthaca

Personalised recommendations