The Botanical Review

, Volume 19, Issue 1, pp 46–97 | Cite as

Physiological studies on the actinomycetes

  • D. Perlman


Studies on the physiology of the actinomycetes have not been too extensive to date. The literature indicates that members of this group of microorganisms are able to oxidize carbohydrates and lipids to carbon dioxide, but the intermediates in this chain of reactions are unknown. Most of the actinomycetes are quite proteolytic and attack proteins and polypeptides, and are also able to utilize nitrates and ammonia as sources of nitrogen. Nearly all synthesize vitamin B12 when grown on media containing cobalt salts, and many are able to synthesize rather complex organic molecules which have antibiotic properties. The mechanism of synthesis of these substances is not understood, and their role in the organism’s metabolism has not been investigated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  1. 1.
    Ainsworth, G. C., Brown, A. M., Marsden, P. S. S. F., Smith, P. A. andSpilsbury, J. F. A method for the large-scale production of streptomycin by surface culture. Jour. Gen. Microbiol.1: 335–343. 1947.Google Scholar
  2. 2.
    Aiso, K., Arai, T., Yanagisawa, F. andNakajima, M. Studies on the distribution of actinomycetes and their antagonistic strains in Japanese soils. Jour. Antibiotics [Japan]2: 240–248. 1949.Google Scholar
  3. 3.
    —,Miyaki, K., Yanagizawa, F., Arai, T. andHayashi, M. Flavomycin, an antibiotic produced byStreptomyces no. 320. Jour. Antibiotics [Japan]3: 87–92. 1950.Google Scholar
  4. 4.
    —,Yanagizawa, F., Arai, T. andHayashi, M. Studies on streptomycin produced byActinomyces griseus 8049. Jour. Antibiotics [Japan]3: 333–334. 1950.Google Scholar
  5. 5.
    —,Fujiwara, K. andArai, T. Purification of actinophage and its electronmicrograph. Jour. Antibiotics [Japan]3(Supp. B): 22–24. 1950.Google Scholar
  6. 6.
    Appleby, J. C. An asporogenous variant ofStreptomyces griseus. Jour. Gen. Microbiol.2: 80–82. 1948.Google Scholar
  7. 7.
    Alexopoulos, C. J., Arnott, R. andMcIntosh, A. U. Studies in antibiosis between bacteria and fungi. Ohio State Jour. Sci.38: 221–235. 1938.Google Scholar
  8. 8.
    —. Studies in antibiosis between bacteria and fungi. II. Species ofActinomyces inhibiting the growth ofColletotrichum glucosporoides. Ohio State Jour. Sci.41: 425–430. 1941.Google Scholar
  9. 9.
    — andHerrick, J. A. Studies in antibiosis between bacteria and fungi. III. Inhibitory action of some actinomycetes on various species of fungi in culture. Bull. Torrey Bot. Club69: 257–261. 1942.Google Scholar
  10. 10.
    Anslow, W. K., Ball, S., Emery, W. B., Fantes, K. H., Lester-Smith, E. andWalker, A. D. The nomenclature of the vitamins B12. Chem. & Ind.29: 574. 1950.Google Scholar
  11. 10a.
    Arai, T. Studies on flavomycin. Taxonomic investigations on the strain, production of the antibiotic, and application of cup method to the assay. Jour. Antibiotics [Japan]4: 215–220. 1951.Google Scholar
  12. 11.
    Arnstein, H. R. V., Cook, A. H. andLacey, M. S. The inhibition ofFusarium oxysporum yar.cubense by musarin, an antibiotic produced by Meredith’s actinomycete. Jour. Gen. Microbiol.2: 111–122. 1948.Google Scholar
  13. 12.
    Arquie, E., Sureau, B., Boyer, F. andSavard, M. [First data on the production of a streptomycinase by certain microbial strains]. Compt. Rend. Acad. Sci. [Paris]227: 26–27. 1948. [French]Google Scholar
  14. 13.
    —,Deshayes, H., Oger, C., Peyre, M. andGrehier-Charpentier, J. [The isolation and extraction of a substance active against Gram-positive cocci from the mycelium ofActinomyces griseus]. Compt. Rend. Acad. Sci. [Paris]229: 635–636. 1949. [French]Google Scholar
  15. 14.
    Asai, T., Takahashi, T., Iwamoto, H. andShimbara, K. On the inhibitory action of iron for streptomycin production. I. The forms of iron and their inhibitory actions. Jour. Antibiotics [Japan]3(Supp. B): 25–30. 1950.Google Scholar
  16. 15.
    —,Iwamoto, H. andTakahashi, T. On the inhibitory action of iron for streptomycin production. II. On the inhibitory action of Fe-colloid to the growth. Jour. Antibiotics [Japan]3(Supp. B): 31–37. 1950.Google Scholar
  17. 15a.
    —,Takahashi, T., Iwamoto, H. andShimabara, K. The studies on the inhibitory action of iron for streptomycin production. III. Some counter measures. Jour. Antibiotics [Japan]4 (Supp. A): 7–11. 1951.Google Scholar
  18. 16.
    Ayerst, McKenna andHarrison, Ltd. Preparation of antibiotic substances. Brit. Pat. 616,331. 1949.Google Scholar
  19. 17.
    Backus, E. J. The occurrence and induction of mutations in the fungi. Trans. N. Y. Acad. Sci. II.12: 270–274. 1950.Google Scholar
  20. 18.
    Ballentine, R. andStephens, D. G. The biosynthesis of stable cobalto-proteins by plants. Jour. Cell. & Somp. Physiol.37: 369–387. 1951.Google Scholar
  21. 19.
    Baron, A. L. Synthetic medium for streptomycin production. Brit. Pat. 639,863. 1950.Google Scholar
  22. 20.
    Bartholomew, W. H., Karow, E. C., Sfat, M. R. andWilhelm, R. H. Oxygen transfer and agitation in submerged fermentations. I. Mass transfer of oxygen in submerged fermentation ofStreptomyces griseus. Ind. & Eng. Chem.42: 1801–1809. 1950.Google Scholar
  23. 21.
    ————. Oxygen transfer and agitation in submerged fermentations. II. Effect of air flow and agitation rates upon fermentation ofPencillium chrysogenum andStreptomyces griseus. Ind. & Eng. Chem.42: 1810–1815. 1950.Google Scholar
  24. 22.
    ———. Design and operation of a laboratory fermentor. Ind. & Eng. Chem.42: 1827–1830. 1950.Google Scholar
  25. 23.
    Bartz, Q. R. Isolation and characterization of chloromycetin. Jour. Biol. Chem.172: 445–450. 1948.Google Scholar
  26. 24.
    -. Process for obtaining chloramphenicol. U. S. Patent 2,483,871. 1949.Google Scholar
  27. 25.
    —,Ehrlich, J., Mold, J. D., Penner, M. A. andSmith, R. M. Viomycin, a new tuberculostatic antibiotic. Am. Rev. Tuberculosis63: 4–6. 1951.Google Scholar
  28. 26.
    Benedict, R. G., Stodola, F. H., Shotwell, O. L., Borud, A. M. andLindenfelser, L. A. A new streptomycin. Science112: 77–78. 1950.PubMedGoogle Scholar
  29. 27.
    -,Lindenfelser, L. A., Stodola, F. H. andShotwell, O. Studies on a hydroxystreptomycin-producing strain ofStreptomyces griseocarneus. Bact. Proc.: 30–31. 1951.Google Scholar
  30. 28.
    Bennett, R. E. Nutrition ofStreptomyces griseus in relation to streptomycin titer. Jour. Bact.53: 254. 1947.Google Scholar
  31. 28a.
    -. Treatment of cornsteep liquor for streptomycin production. U. S. Patent 2,576,513. 1951.Google Scholar
  32. 29.
    Berger, J. andAjello, G. W. Studies on the nutrition of some species ofActinomyces. Abst. Proc. 4th Int. Cong. Microbiol.1947: 142. 1949.Google Scholar
  33. 30.
    —,Jampolsky, L. M. andGoldberg, M. W. Borrelidin, a new antibiotic with anti-borrelia activity and penicillin enhancement properties. Arch. Biochem.22: 476–478. 1949.PubMedGoogle Scholar
  34. 31.
    -,Rachlin, A. I., Scott, W. E., Sternbach, L. H. andGoldberg, M. W. The isolation of three new crystalline antibiotics fromStreptomyces. Abst. 119th meeting, Am. Chem. Soc.: 23A–24A. 1951; Jour. Am. Chem. Soc.73: 5295–5298. 1951.Google Scholar
  35. 32.
    Bissett, R. A. andMoore, F. W. Jensenia, a new genus of the actinomycetales. Jour. Gen. Microbiol.4: 280–281. 1950.Google Scholar
  36. 33.
    Bittenbender, W. A. andBabson, R. A. Purification and recovery of streptomycin. U. S. Patent 2,540,238. 1951.Google Scholar
  37. 34.
    Bohonos, N., Emerson, R. L., Whiffen, A. J., Nash, M. P. andDeBoer, C. A new antibiotic produced by a strain ofStreptomyces lavendulae. Arch. Biochem.15: 215–225. 1947.Google Scholar
  38. 35.
    Brink, N. G., Kuehl, F. A. andFolkers, K. Vitamin B12: the identification of vitamin Bu12 as a cyano-cobalt coordination complex. Science112: 354. 1950.PubMedGoogle Scholar
  39. 36.
    Brockmann, H. andGrubhofer, N. Actinomycin C. Naturwiss.36: 376–377. 1949. [German]Google Scholar
  40. 37.
    — andHunkel, W. [Picromycin, a new antibiotic from actinomycetes]. Naturwiss.37: 138–139. 1950. [German]Google Scholar
  41. 38.
    — andBauer, K. [Rhodomycin, a red antibiotic from actinomycetes]. Naturwiss.37: 492–493. 1950. [German]Google Scholar
  42. 39.
    — andGrubhofer, N. [Observations on actinomycin C]. Naturwiss.37: 494–496. 1950. [German]Google Scholar
  43. 40.
    —,Pini, H. andv. Plotho, O. [Actinomycete pigments. I. Actinorhodin, a red antibiotically active pigment from actinomycetes]. Chem. Ber.83: 161–167. 1950. [German]Google Scholar
  44. 41.
    —,Grubhofer, N., Kass, W. andKalbe, H. [Antibiotics from actinomycetes. V. Actinomycin C]. Chem. Ber.84: 260–264. 1951. [German]Google Scholar
  45. 42.
    — andHunkel, W. [Antibiotics from actinomycetes. VI. Picromycin, a bitter tasting antibiotic from actinomycetes]. Chem. Ber.84: 284–288. 1951. [German]Google Scholar
  46. 42a.
    — andSchmidt-Kastner, G. [Resistomycin, a new antibiotic from actinomycetes]. Naturwiss.38: 479–480. 1951. [German]Google Scholar
  47. 42b.
    —,Bauer, K. andBorchers, I. [Antibiotics from actinomycetes. VII. Rhodomycin, a red antibiotic]. Chem. Ber.84: 700–710. 1951. [German]Google Scholar
  48. 43.
    Broschard, R. W., Dornbush, A. C., Gordon, S., Hutchings, B. L., Kohler, A. R., Krupka, G., Kushner, S., Lefemine, D. V. andPidacks, C. Aureomycin, a new antibiotic. Science109: 199–200. 1949.PubMedGoogle Scholar
  49. 44.
    Brown, A. M. andYoung, P. A. A dilution method for the assay of streptomycin. Jour. Gen. Microbiol.1: 353–360. 1947.Google Scholar
  50. 45.
    Brown, R. andHazen, E. L. Activation of antifungal extracts of actinomycetes by ultrafiltration through gradicol membranes. Proc. Soc. Exp. Biol. & Med.71: 454–457. 1949.Google Scholar
  51. 46.
    Brown, W. E. andPeterson, W. H. Penicillin fermentations in a Waldhof-type fermentor. Ind. & Eng. Chem.42: 1823–1826. 1950.Google Scholar
  52. 47.
    Brownlee, K. A., Delves, C. S., Dorman, M., Green, C. A. andGrenfell, E. The biological assy of streptomycin by a modified cydinder plate method. Jour. Gen. Microbiol.2: 40–53. 1948.Google Scholar
  53. 48.
    Burkholder, P. R. Studies on the antibiotic activity of actinomycetes. Jour. Bact.52: 503–504. 1946.Google Scholar
  54. 49.
    Buthala, D. A. andGilmour, C. M. Studies on the taxonomy of selectedStreptomyces species. Bact. Proc.:59. 1951.Google Scholar
  55. 50.
    Carter, H. E., Clark, R. K., Dickman, S. R., Loo, Y. H., Skell, P. S. andStrong, W. A. Isolation and purification of streptomycin. Jour. Biol. Chem.160: 337–342. 1945.Google Scholar
  56. 51.
    —,Gottlieb, D. andAnderson, H. W. Chloromycetin and streptothricin. Science107: 113. 1948.PubMedGoogle Scholar
  57. 52.
    -,Taylor, W. R., Clark, R. L., Hearn, W. R., Kohn, P. andRothrock, J. R. Chemistry of streptothricin. Abst. 118th meeting Am. Chem. Soc.: 16A–17A. 1950.Google Scholar
  58. 53.
    -,Hearn, W. R. andTaylor, W. R. Chemistry of streptothricin. Abst. 119th meeting, Am. Chem. Soc.: 25A. 1951.Google Scholar
  59. 54.
    Carvajal, F. Studies on the structure ofStreptomyces griseus. Mycologia36: 587–595. 1946.Google Scholar
  60. 55.
    —. Biologic strains ofStreptomyces griseus. Mycologia38: 596–607. 1946.Google Scholar
  61. 56.
    —. The production of spores in submerged cultures by some streptomyces, Mycologia38: 426–440. 1947.Google Scholar
  62. 57.
    Chaiet, L., Rosenblum, C. andWoodbury, D. T. Biosynthesis of radioactive vitamin B12 containing Co60. Science111: 601–602. 1950.PubMedGoogle Scholar
  63. 57a.
    Challinor, S. W. andKing, H. K. Production of streptomycin. Edinb. Med. Jour.54: 465–475. 1947.Google Scholar
  64. 58.
    Chesters, C. G. C. andRolinson, G. N. Aspects of the trace-element nutrition ofStreptomyces griseus. Jour. Gen. Microbiol.4: 1. 1950.Google Scholar
  65. 59.
    ——. Trace elements and streptomycin production. Jour. Gen. Microbiol.5: 559–565. 1951.Google Scholar
  66. 60.
    Christenson, G. L., Rudert, F. J. andFoter, M. J. Effect of addition of streptomycin to submerged cultures ofStreptomyces griseus. Abst. 111th meeting, Am. Chem. Soc.: 13B. 1947.Google Scholar
  67. 61.
    ———. Effect of addition of streptomycin to submerged cultures ofStreptomyces griseus. Jour. Bact.53: 502. 1947.Google Scholar
  68. 62.
    CIBA, Ltd. Antibiotic. Brit. Patent 651,269. 1951.Google Scholar
  69. 63.
    Cochrane, V. W. andDimmick, I. The metabolism of species ofStreptomyces. I. The formation of succinic and other acids. Jour. Bact.58: 723–730. 1949.Google Scholar
  70. 64.
    — andConn, J. E. The metabolism of species ofStreptomyces. II. The nitrate metabolism ofS. coelicolor. Bull. Torrey Bot. Club77: 10–18. 1950.Google Scholar
  71. 65.
    —. The metabolism of species ofStreptomyces. III. The nitrate metabolism ofStreptomyces griseus. Bull. Torrey Bot. Club77: 176–180. 1950.Google Scholar
  72. 65a.
    — andPeck, H. D. The respiratory metabolism ofStreptomyces scabies. Phytopath.42: 5. 1952.Google Scholar
  73. 66.
    Coffey, G. L., Oyaas, J. E. andEhrlich, J. Viomycin productivity of undefined media. Jour. Antibiotics & Chemotherapy1: 203–207. 1951.Google Scholar
  74. 67.
    Collingsworth, D. R. Process for production of streptomycin using fermentation solubles. U. S. Patent 2,504,067. 1950.Google Scholar
  75. 68.
    Conn, H. J. andConn, J. E. Value of pigmentation in classifying actinomycetes. Jour. Bact.42: 795–796. 1941.Google Scholar
  76. 61.
    Controulis, J., Rebstock, M. C. andCrooks, H. M. Chloramphenicol (Chloromycetin). V. Synthesis. Jour. Am. Chem. Soc.71: 2463–2468. 1949.Google Scholar
  77. 70.
    Cooperman, J. M., Rubin, S. H. andTabenkin, B. Effect of niacin and tryptophane in counteracting toxicity of crystalline borrelidin for rat. Proc. Soc. Exp. Biol. & Med.76: 18–20. 1951.Google Scholar
  78. 71.
    Coppock, P. D. Process for the preparation of streptomycin. U. S. Patent 2,523,235. 1950.Google Scholar
  79. 72.
    Cortese, F. [The purification and identification of a porphyrin extracted from a culture ofActinomyces albus]. Boll. Soc. Ital. Sper.6: 572–573. 1931. [Italian]Google Scholar
  80. 73.
    —. [Biology of some actinomycetes studied by fluoroscopic examination. Extraction of a porphyrin from a culture ofActinomyces albus]. Boll. Ist. Sier. Milan10: 77–86. 1931. [Italian]Google Scholar
  81. 74.
    —. [Synthesis of coproporphyyrin inActinomyces albus]. Boll. Soc. Med. Chir. Pavia48: 411–418. 1934. [Italian]Google Scholar
  82. 75.
    Couch, J. N. A new group of organisms related toActinomyces. Jour. Elisha Mitchell Sci. Soc.65: 315–318. 1949.Google Scholar
  83. 76.
    —.Actinoplanes, a new genus of the Actinomycetales. Jour. Elisha Mitchell Sci. Soc.66: 87–92. 1950.Google Scholar
  84. 76a.
    —. Further observations on the motile cells ofActinoplanes. Jour. Elisha Mitchell Sci. Soc.67: 176–177. 1951.Google Scholar
  85. 77.
    Dalgliesch, C. E. andTodd, A. R. Actinomycin. Nature164: 830. 1949.Google Scholar
  86. 78.
    -,Johnson, A. W., Todd, A. R. andVining, L. C. Actinomycin. I. Amino acid content. Jour. Chem. Soc.: 2946–2952. 1950.Google Scholar
  87. 79.
    Davis, W. W., Parke, T. V. andDaily, W. A. A linear diffusion method suitable for large-scale microbiological antibiotic assay. Science109: 545–546. 1949.PubMedGoogle Scholar
  88. 80.
    —,McGuire, J. M. andParke, T. V. Some new procedures and instruments useful for microbiological antibiotic testing by diffusion methods. I. A new zone reader. Jour. Am. Pharm. Assoc.38: 459–462. 1949.Google Scholar
  89. 81.
    ——. Some new procedures and instruments useful for microbiological antibiotic testing by diffusion methods. III. The use of prepared tables for converting zone diameters into potencies. Jour. Am. Pharm. Assoc.38: 462–464. 1949.Google Scholar
  90. 81a.
    Davisson, J. W., Tanner, F. W., Finlay, A. C. andSolomons, I. A. Rimocidin, a new antibiotic. Jour. Antibiotics & Chemotherapy1: 289–290. 1951.Google Scholar
  91. 82.
    Demerec, M. Genetic mechanism controlling bacterial resistance to streptomycin. Trans. N. Y. Acad. Sci. II.12: 186–187. 1950.Google Scholar
  92. 83.
    Dietzel, E. [A prodigiosin-like pigment of actinomycetes]. Zeits. Physiol. Chemie.284: 262–271. 1949. [German].Google Scholar
  93. 84.
    Dion, W. M. The proteolytic enzymes of microorganisms. I. Survey of fungi and actinomycetes for protease production in submerged culture. Canad. Jour. Res. C.28: 577–585. 1950.Google Scholar
  94. 85.
    —. The proteolytic enzymes of microorganisms. II. Factors affecting the production of proteases in submerged culture. Canad. Jour. Res. C.28: 586–599. 1950.Google Scholar
  95. 86.
    Distillers Company, Ltd., Jackson, C. J. and Milner, J. Improvements in the production of streptomycin. Brit. Pat. 644,078. 1950.Google Scholar
  96. 87.
    Dmitrieff, S. andSouteeff, G. [On the dissociation and lysis observed in cultures ofActinomyces bovis. Studies on the use of lytic culture filtrates in treatment of actinomycoses]. Ann. Inst. Pasteur56: 470–476. 1936. [French]Google Scholar
  97. 88.
    Doery, H. M., Mason, E. C. andWeiss, D. E. Estimation of streptomycin in fermentation broths. Anal. Chem.22: 1038–1039. 1950.Google Scholar
  98. 89.
    Donovick, R., Hamre, D., Kavanagh, F. andRake, G. A broth dilution method of assaying streptothricin and streptomycin. Jour. Bact.50: 623–628. 1945.Google Scholar
  99. 90.
    — andRake, G. Influence of certain substances on activity of streptomycinin vitro. I. Modifications in test medium. Proc. Soc. Exp. Biol. & Med.61: 224–227. 1946.Google Scholar
  100. 91.
    -,Koerber, W. L. andRake, G. W. Method of producing streptomycin. U. S. Patent 2,516,682. 1950.Google Scholar
  101. 92.
    Duggar, B. M. Aureomycin, a product of the continuing search for new antibiotics. Ann. N. Y. Acad. Sci.51: 177–181. 1948.PubMedGoogle Scholar
  102. 93.
    -. The mycological background of aureomycin. [Presented at meeting of Torrey Botanical Club, Dec. 7, 1948].Google Scholar
  103. 94.
    -. Aureomycin, and preparations of same. U. S. Patent 2,482,055. 1949.Google Scholar
  104. 95.
    —. Isolation of cultureable fungi from diverse habitats. Trans. N. Y. Acad. Sci. II.12: 168–171. 1950.Google Scholar
  105. 96.
    Dulaney, E. L., Hodges, A. B. andPerlman, D. Physiological studies onActinomyces griseus Jour. Bact.54: 1–2. 1947.Google Scholar
  106. 97.
    — andPerlman, D. Observations onStreptomyces griseus. I. Chemical changes occurring during submerged streptomycin fermentations. Bull. Torrey Bot. Club74: 504–511. 1947.Google Scholar
  107. 98.
    —. Observations onStreptomyces griseus. II. Nitrogen sources for growth and streptomycin production. Jour. Bact.56: 305–314. 1948.Google Scholar
  108. 99.
    —. Observations onStreptomyces griseus. III. Carbon sources for growth and streptomycin production. Mycologia4: 1–10. 1949.Google Scholar
  109. 100.
    —,Ruger, M. andHlavac, C. Observations onStreptomyces griseus. IV. Induced mutation and strain selection. Mycologia41: 388–397. 1949.Google Scholar
  110. 101.
    -. Production of streptomycin with a newActinomyces griseus mutant. U. S. Patent 2,545,572. 1951.Google Scholar
  111. 101a.
    -. Process for production of streptomycin. U. S. Patent 2,571,693. 1951.Google Scholar
  112. 101b.
    Dunitz, J. D. andRobertson, J. H. Relationship between aureomycin and terramycin. Jour. Am. Chem. Soc.74: 1108. 1952.Google Scholar
  113. 102.
    Dunshee, B. R., Leben, C., Keitt, G. W. andStrong, F. M. The isolation and properties of antimycin A. Jour. Am. Chem. Soc.71: 2436–2437. 1949.Google Scholar
  114. 103.
    Dutcher, J. D., Hosansky, N., Donin, M. N. andWintersteiner, O. Neomycins B and Neomycins C., and some of their degradation products. Jour. Am. Chem. Soc.73: 1384–1385. 1951.Google Scholar
  115. 104.
    Egamie, F., Ebata, M. andSato, R. Reduction of chloromycetin by a cell-free bacterial extract and its relation to nitrite production. Nature167: 118–119. 1951.Google Scholar
  116. 105.
    Ehrlich, J., Bartz, O. R., Smith, R. M., Joslyn, D. A. andBurkholder, P. R. Chloromycetin: a new antibiotic from a soil actinomycete. Science106: 417. 1947.PubMedGoogle Scholar
  117. 106.
    —,Gottlieb, D., Burkholder, P. R., Anderson, H. W. andPridham, T. G. Streptomyces venezuelae n.sp. the source of chloromycetin. Jour. Bact.56: 467–478. 1948.Google Scholar
  118. 107.
    -,Smith, R. M. andPenner, M. A. Process for the manufacture of chloramphenicol. U. S. Patent 2,483,892. 1949.Google Scholar
  119. 108.
    ———Anderson, L. E. andBratton, A. C. Antimicrobial activity ofStreptomyces floridae and of viomycin. Am. Rev. Tuberculosis63: 7–16. 1951.Google Scholar
  120. 109.
    —,Iverson, W. P. andKohberger, A. Agar diffusion methods for the assay of viomycin. Jour. Antibiotics & Chemotherapy1: 211–216. 1951.Google Scholar
  121. 110.
    Eisenman, W. andBricker, C. E. Spectrophotometric method for determining streptomycin. Anal. Chem.21: 1507–1508. 1949.Google Scholar
  122. 111.
    Eiser, H. M. andMcFarlane, W. D. Metabolism ofStreptomyces griseus in relation to the production of streptomycin. Canad. Jour. Res. C.26: 164–173. 1948.Google Scholar
  123. 112.
    Eisman, P. C., Mayer, R. L., Aronson, K. andMarsh, W. S. Resistant microorganisms and their use for the classification of antibacterial substances. Jour. Bact.52: 501–502. 1946.Google Scholar
  124. 113.
    Emerson, R. L., Whiffen, A. J., Bohonos, N. andDeBoer, C. Studies on the production of antibiotics by actinomycetes and molds. Jour. Bact.52: 357–366. 1946.Google Scholar
  125. 114.
    Emery, W. B. andWalker, A. D. Colorimetric determination of streptomycin B (mannosidostreptomycin). Analyst74: 455–457. 1949.Google Scholar
  126. 115.
    —,Lees, K. A. andWalker, A. D. Observations on a growth factorLeuconostoc citrovorum. Biochem. Jour.46: 572–574. 1950.Google Scholar
  127. 116.
    —. Properties, production and uses of streptomycin. Chem. & Ind.30: 289–290. 1951.Google Scholar
  128. 117.
    Fainschmidt, O. andKoreniako, A. [Preparation of antibacterial substances fromActinomyces violaceus]. Biochemiya9: 147–152. 1944. [Russian]Google Scholar
  129. 118.
    Ferguson, W. W., Jennings, J. C. andGottshall, R. Y. In vitro sensitivity test with eight antibiotics againstEscherichia coli 111, B4, a special type of coliform bacillus associated with infant diarrhea. Am. Jour. Hyg.53: 237–243. 1951.Google Scholar
  130. 119.
    Finlay, A. C., Hobby, G. L., P’an, S. Y., Régna, P. P., Routien, J. B., Seeley, D. B., Shull, G. M., Sobin, B. A., Solomons, I. A., Vinson, J. W. andKane, J. H. Terramycin, a new antibiotic. Science111: 85. 1950.PubMedGoogle Scholar
  131. 120.
    -,Hochstein, F. A., Sobin, B. A. andMurphy, F. X. Netropsin, a new antibiotic produced by a streptomyces. Abst. 118th meeting, Am. Chem. Soc.: 35C. 1950.Google Scholar
  132. 121.
    ————. Netropsin, a new antibiotic produced by a streptomyces. Jour. Am. Chem. Soc.73: 341–343. 1951; U. S. Patent 2,586,762. 1952.Google Scholar
  133. 122.
    —,Hobby, G. L., Hochstein, F., Lees, T. M., Lenert, T. F., Means, J. A., P’an, S. Y., Regna, P. P., Routien, J. B., Sobin, B. A., Tate, K. B. andKane, J. H. Viomycin, a new antibiotic active againstMycobacterium. Am. Rev. Tuberculosis63: 1–3. 1951.Google Scholar
  134. 123.
    Florey, H. W., Chain, E., Heatley, N. G., Jennings, M. A., Sanders, A. G., Abraham, E. P. andFlorey, M. E. Antibiotics: a survey of penicillin, streptomycin and other antimicrobial substances from fungi, actinomycetes, bacteria and plants. 1949.Google Scholar
  135. 124.
    Ford, J. H. andLeach, B. E. Actidione, an antibiotic fromStreptomyces griseus. Jour. Am. Chem. Soc.70: 1223–1225. 1946.Google Scholar
  136. 125.
    Fortune, W. B., McCormick, S. L. Rodehamel, H. W. andStefaniak, J. J. Antibiotics development. Ind. & Eng. Chem.42: 191–196. 1950.Google Scholar
  137. 126.
    Foster, J. W. andWoodruff, H. B. Microbiological aspects of streptothricin. II. Antibiotic activity of streptothricin. Arch. Biochem.3: 241–256. 1943.Google Scholar
  138. 126a.
    Fricke, H. H. Vitamin B12 purification process. U. S. Patent 2,582,589. 1952.Google Scholar
  139. 127.
    Fried, J. andWintersteiner, O. Crystalline reinickates of streptothricin and streptomycin. Science101: 613–615. 1945.PubMedGoogle Scholar
  140. 128.
    — andTitus, E. Streptomycin B, an antibiotically active constituent of streptomycin concentrates. Jour. Biol. Chem.168: 391–392. 1947.Google Scholar
  141. 129.
    — andStavely, H. E. Streptomycin. IV. Degradation of streptomycin B to streptidine, streptobiosamine, and d-mannose. Jour. Am. Chem. Soc.69: 1549–1550. 1947.Google Scholar
  142. 130.
    Furuhashi, S., Uno, S. andMori, K. Physiological studies on sub-merged culture. I. On the oxidation-reduction potential of broth. Jour. Antibiotics [Japan]3: 332–333. 1950.Google Scholar
  143. 131.
    — andGoto, N. On the assay of streptomycin. I. The cup method and paper disc method using a new test organism. Jour. Antibiotics [Japan]3: 302–306. 1950.Google Scholar
  144. 132.
    —,Uno, S., andMori, K. Physiological studies on submerged culture. II. On the consumption and supply of oxygen. Jour. Antibiotics [Japan]3: 302–306. 1950.Google Scholar
  145. 133.
    Garber, R. H., Schall, L. A. andFults, J. L. Selectivity of pentachlorophenoxyacetic acid againstStreptomyces scabies. Jour. Col.-Wyo. Acad. Sci.4: 61. 1951.Google Scholar
  146. 134.
    Gardner, A. D. andChain, E. Proactinomycin: a “bacteriostatic” produced by a species ofProactinomyces. Brit. Jour. Exp. Path.23: 123–127. 1942.Google Scholar
  147. 135.
    Garey, J. C., Downing, J. F. andStark, W. H. Microbiological synthesis of vitamin B12 by a species ofStreptomyces. Abst. 119th meeting, Am. Chem. Soc: 22A. 1951.Google Scholar
  148. 136.
    Garner, H. R., Fahmy, M., Phillips, R. L., Koffler, H. andTetrault, P. A. Chemical changes during submerged growth ofStreptomyces griseus. Bact. Proc.: 139–140. 1950.Google Scholar
  149. 137.
    - andKoffler, H. Preliminary evidence against the existence of a Krebs cycle inStreptomyces griseus. Bact. Proc.: 139. 1951.Google Scholar
  150. 137a.
    -,Fahmy, M., Mallett, M. V., Koffler, H., Tetrault, P. A., Faust, R. A., Phillips, R. L. andBohonos, N. Biochemistry of filamentous fungi. II. Evaluation of factors affecting streptomycin yields in a complex medium. 1951. [Unpub.]Google Scholar
  151. 138.
    Garson, W. andWaksman, S. A. Strain specificity and production of antibiotic substances. VIII. Production of a grisein-like anti-biotic by a strain ofStreptomyces griseus. Proc. Nat. Acad. Sci. [U. S.]43: 232–239. 1948.Google Scholar
  152. 139.
    Gause, G. F. Litmocidin, a new antibiotic substance produced byProactinomyces cyaneus. Jour. Bact.51: 649–654. 1946.Google Scholar
  153. 140.
    Ghosh, L. M., Ghosh, S., Chatterjee, N. R. andDutt, A. T. Actinomyces: their biochemical reactions as aids in their classification. I. Reduction of nitrates. Jour. Indian Bot. Soc.17: 279–286. 1938.Google Scholar
  154. 141.
    Gibson, M. I. andGibson, F. Development of resistance to dihydrostreptomycin byBacterium coli. Nature167: 113–114. 1951.PubMedGoogle Scholar
  155. 142.
    Gilmour, G. M. andButhala, D. The isolation and study of actinophage from soil. Bact. Proc.: 17. 1950.Google Scholar
  156. 143.
    Gottlieb, D. andAnderson, H. W. Growth ofS. griseus in shake flask. Phytopath.37: 8. 1947.Google Scholar
  157. 144.
    ——. Morphological and physiological factors in streptomycin production. Bull. Torrey Bot. Club74: 293–302. 1947.Google Scholar
  158. 145.
    ——. The respiration ofStreptomyces griseus. Science107: 172–173. 1948.PubMedGoogle Scholar
  159. 146.
    —,Bhattacharya, P. K., Anderson, H. W. andCarter, H. E. Some properties of an antibiotic obtained from a species ofStreptomyces. Jour. Bact.55: 409–418. 1948.Google Scholar
  160. 147.
    -. Microbiological production of chloramphenicol. [Presented before Microbiol. Sec., Bot. Soc. Amer., Dec. 30, 1949].Google Scholar
  161. 148.
    — andSiminoff, P. The role of antibiotics in soil. Phytopath.40: 11. 1950.Google Scholar
  162. 149.
    — andDiamond, L. A synthetic medium for chloromycetin. Bull. Torrey Bot. Club78: 56–60. 1951.Google Scholar
  163. 150.
    - andSiminoff, P. Production and activity of chloromycetin in soil. Bact. Proc.:16. 1951; Phytopath.42: 91–97. 1952.Google Scholar
  164. 151.
    —,Bhattachryya, P. K., Carter, H. E. andAnderson, H. W. Endomycin, a new antibiotic. Phytopath.41: 393–400. 1951.Google Scholar
  165. 151a.
    —. The disappearance of antibiotics from soil. Phytopath.42: 9. 1952.Google Scholar
  166. 151b.
    Gregory, J. D., Novelli, G. D. andLipmann, F. The composition of coenzyme A. Jour. Am. Chem. Soc.74: 854. 1952.Google Scholar
  167. 152.
    Groupé, V., Frankel, J. W., Lechevalier, M. P. andWaksman, S. A. Ehrlichin, a new antibiotic with specific anti-viral properties. Bact. Proc.: 29. 1951; Jour. Immunology67: 471–482. 1951.Google Scholar
  168. 153.
    Grundy, W. E., Schenck, J. R., Clark, R. K., Hargie, M. P., Richards, R. K. andSylvester, J. C. A note on a new antibiotic. Arch. Biochem.28: 150–152. 1950.PubMedGoogle Scholar
  169. 153a.
    —,Whitman, A. L., Hanes, M. E. andSylvester, J. C. A study of streptomyces NA232-M1 and hydroxystreptomycin. Jour. Antibiotics & Chemotherapy1: 309–317. 1951.Google Scholar
  170. 154.
    Hall, H. H., Benjamin, J. C., Bricker, H. M., Gill, R. J., Haynes, W. C. andTsuchiya, H. M. A survey for vitamin B12 producing microorganisms Bact. Proc.: 21. 1950.Google Scholar
  171. 155.
    -, -,Wiesen, C. F. andTsuchiya, H. M. Production of vitamin B12 with certain streptomyces. Abst. 118th meeting, Am. Chem. Soc.: 20A-21A. 1950.Google Scholar
  172. 156.
    -, -, - and -. Production of vitamin B12 by microorganisms, especiallyStreptomyces olivaceus. Abst. 119th meeting, Am. Chem. Soc: 22A. 1951.Google Scholar
  173. 157.
    Handa, Y., Uchiyama, K., Hiraide, I. andHosaka, M. Studies on the antibiotic substances from soil actinomycetes. Jour. Antibiotics [Japan].2: 590–592. 1949.Google Scholar
  174. 158.
    ——Hosaka, M., Nakamura, Y., Sakaguchi, Y., Takezawa, R. andHarada, T. Actinomyces antibiotics. III. Shaking fermentation of strain 427 A. Tour. Antibiotics [Japan]2: 76–86. 1950.Google Scholar
  175. 159.
    Haskell, T. H., Fusari, S. A., Fronhardt, R. P. andBartz, Q. R. Chemistry of viomycin. Abst. 12th Int. Cong. Chem.: 282. 1951; Jour. Am. Chem. Soc.74: 599–602. 1952.Google Scholar
  176. 160.
    Hata, T., Higuchi, T., Sano, Y. andSawachi, K. Isolation of a new antibiotic substance “luteomycin”. Jour. Antibiotics [Japan]3: 307–325. 1950.Google Scholar
  177. 161.
    ————. Isolation of a new antibiotic substance “luteomycin”. Kitasato Arch. Exp. Med.22: 229–242. 1949.Google Scholar
  178. 161a.
    —,Yokoyama, Y., Higuchi, T., Sano, Y. andSawachika, K. Relations between the metabolism and vitamins in the processes of fermentation ofPenicillium chrysogenum Q176 orStreptomyces griseus. Jour. Antibiotics [Japan]4(Supp. A): 31–39. 1951.Google Scholar
  179. 162.
    Hayano, S. Studies on the antibiotic substances produced byActinomyces. IV. Jour. Antibiotics [Japan]1: 24–33. 1947.Google Scholar
  180. 163.
    —. Studies on the antibiotic substances fromActinomyces. V. On the differentiation of streptomycin and other resembling substances (streptothricin group). Jour. Antibiotics [Japan]2: 277–283. 1949.Google Scholar
  181. 164.
    Hazen, E. L. andBrown, R. Fungicidin, an antibiotic produced by a soil actinomycete. Proc. Soc. Exp. Biol. & Med.76: 93–97. 1951.Google Scholar
  182. 165.
    Heatley, N. G. A method for the assay of penicillin. Biochem. Jour.38: 61–65. 1944.Google Scholar
  183. 166.
    Heki, M. andTambo, S. Therapy ofEberthella typhosa infection. Jap. Med. Jour.3: 41–47. 1950.Google Scholar
  184. 167.
    Hendlin, D. andRuger, M. L. The effect of cobalt on the microbial synthesis of LLD active substances. Science111: 541–542. 1950.PubMedGoogle Scholar
  185. 168.
    Herrick, J. A. andAlexopoulos, C. J. Thiamine production byActinomyces viridochromogenus. Bull. Torrey Bot. Club69: 569–572. 1942.Google Scholar
  186. 169.
    ——. A further note on the production of thiamine by actinomycetes. Bull. Torrey Bot. Club80: 369–371. 1943.Google Scholar
  187. 170.
    Hickey, R. J. andHidy, P. H. Crystalline fradicin. Science113: 361–362. 1951; Arch. Biochem. & Biophys.34: 67–71. 1951.PubMedGoogle Scholar
  188. 171.
    Hirata, Y. andNakanishi, K. Antibiotic substances fromActinomyces flavus. Jour. Antibiotics [Japan]2: 180–182. 1948.Google Scholar
  189. 172.
    ——. An antibiotic substance fromActinomyces. III. Jour. Antibiotics [Japan]2: 702–703. 1949.Google Scholar
  190. 173.
    ——. Actinomycin J2, a by-product from a strain ofActinomyces. Bull. Chem. Soc. Japan22: 121–127. 1949.Google Scholar
  191. 174.
    Hirsch, H. M. Some metabolic aspects ofStreptomyces aureofaciens with special emphasis on its octanoxidase system. Ph.D. Thesis, Univ. Ill., 1951.Google Scholar
  192. 175.
    — andWallace, G. I. The octanoxidase system ofStreptomyces aureofaciens. Rev. Canadienne Biologie10: 191–214. 1951.Google Scholar
  193. 176.
    Hobby, G. L., Lenert, T. F., Donikian, M. andPikula, D. The activity of viomycin againstMycobacterium tuberculosis and other microorganismsin vitro andin vivo. Am. Rev. Tuberculosis63: 17–24. 1951.Google Scholar
  194. 177.
    Horne, R. E. andPollard, A. L. The identification of streptomycin on paper strip chromatography Jour. Bact.55: 231–234. 1948.Google Scholar
  195. 178.
    Hosoya, S., Soeda, M., Komatsu, N., Immamura, S., Iwasaki, M., Sonoda, Y. andOkada, K. The antibiotic substances produced byStreptomyces. Jap. Jour. Exp. Med.20: 121–133. 1949.Google Scholar
  196. 179.
    ——— andSonoda, Y. A new antibiotic reticulin produced byStreptomyces reticuli. Jap. Jour. Exp. Med.20: 327–335. 1949.Google Scholar
  197. 180.
    ———,Immamura, S., Iwasaki, M., Sonoda, Y., Arai, R. andUchida, M. Classification of antagonistic streptomyces and isolation of chloromycetin. Jap. Jour. Exp. Med.20: 473–480. 1950.Google Scholar
  198. 181.
    ————. Antibiotic substances produced by a streptomyces, H-277 strain. Jap. Jour. Exp. Med.20: 481–488. 1950.Google Scholar
  199. 181a.
    ————. Studies on the antibiotic substances produced by a streptomyces, H-277 strain. Jour. Antibiotics [Japan]4: 79–83. 1951.Google Scholar
  200. 181b.
    ——— andSonoda, Y. Studies on the streptothricin-like substances produced by a streptomyces (H-146 strain). Jour. Antibiotics [Japan]4: 84–87. 1951.Google Scholar
  201. 181c.
    ———,Frijimoto, H., Sonoda, Y. andArai, R.. Production and purification of reticulin. Jour. Antibiotics [Japan]4: 222–223. 1951.Google Scholar
  202. 181d.
    ———,Hara, N., Sonoda, Y. andArai, R. Studies on the several antibiotic substances produced by a streptomyces (H-277 strain). Jour. Antibiotics [Japan]4: 314–316. 1951.Google Scholar
  203. 181e.
    ———,Sonoda, Y. andArai, R. On the antibiotic substance produced byStreptomyces H-702. Jour. Antibiotics [Japan]4: 317–320. 1951.Google Scholar
  204. 181f.
    ———,Hara, N., Sonoda, Y. andArai, R. Xanthomycin-like substance produced by a species ofStreptomyces, H-1159 strain. Jour. Antibiotics [Japan]4: 467–469. 1951.Google Scholar
  205. 181g.
    ———,Immamura, S., Iwasaki, M. andArai, R. Studies on the classification of antagonisticStreptomyces and isolation of chloramphenicol. Jour. Antibiotics [Japan]4 (Supp. A): 58–62. 1951.Google Scholar
  206. 182.
    Howe, E. E. andPutter, I. Purification of streptomycin by carboxylic acid type ion exchange resins. U. S. Patent 2,541,420. 1951.Google Scholar
  207. 183.
    Hubbard, C. V. andThornberry, H. H. Utilization of various carbohydrates byStreptomyces griseus for production of streptomycin and growth. Trans. Ill. Acad. Sci.39: 57–64. 1946.Google Scholar
  208. 183a.
    ——. Utilization of some organic acids byStreptomyces griseus for streptomycin production and growth. Trans. Ill. Acad. Sci.43: 61–79. 1950.Google Scholar
  209. 184.
    Humfeld, H., Aeschlimann, E. andHoffman, J. R. Fermentor for submerged cultures. U. S. Patent 2,542,031. 1951.Google Scholar
  210. 185.
    Hungate, R. E. Studies on cellulose fermentation. II. An anaerobic cellulose-decomposing actinomycete,Micromonospora propionici. Jour. Bact.51: 51–56. 1946.Google Scholar
  211. 186.
    Hurd, E. L. andGilmour, C. M. Factors influencing the multiplication of actinophage. Bact. Proc.: 48–49. 1951.Google Scholar
  212. 187.
    Hutchison, D., Swart, E. A. andWaksman, S. A. Production, isolation, and antimicrobial, notably antituberculosis, properties of streptothricin. VI. Arch. Biochem.22: 16–30. 1949.PubMedGoogle Scholar
  213. 188.
    Ikemi, Y., andMatsuda, K. Studies on the antibacterial strains ofStreptomyces, especiallyStreptomyces griseus. Jour. Antibiotics [Japan]3: 392–394. 1950.Google Scholar
  214. 189.
    Ikeda, Y., Hirai, T. andNishimaki, T. Studies on the antifungal antibiotics from actinomycetes. Jour. Antibiotics [Japan]3: 726–729. 1950.Google Scholar
  215. 190.
    Isheda, N. Studies on the antibiotic substances from actinomycetes. IX. A new basic antibiotic produced by a strain ofStreptomyces roseochromogenus # 36. Jour. Antibiotics [Japan]3: 845–853. 1951Google Scholar
  216. 191.
    —,Shiratori, T. andOkamoto, S. The paper chromatography of antibiotic substances fromActinomyces. Jour. Antibiotics [Japan]3: 880. 1951.Google Scholar
  217. 192.
    —,Katagiri, K. andCheda, R. Studies on the biological methods of assaying streptomycin. A comparison of cup, paper disc, pulp disc, and super-position assay methods. Jour. Antibiotics [Japan]3(Supp. B): 47–63. 1950.Google Scholar
  218. 192a.
    —,Shiratori, T., Okamoto, S. andMyazaki, I. Studies on the antibiotic substances fromActinomyces. XIX. On the identificationof many antibiotics by paperographic methods. Jour. Antibiotics [Japan]4: 505–512. 1951.Google Scholar
  219. 193.
    Iverson, W. P. andWaksman, S. A. Use of streptomycin dependent strains of bacteria for demonstrating the ability of microorganisms to produce streptomycin. Science108: 382–383. 1948.PubMedGoogle Scholar
  220. 194.
    Jackson, W. G., Whitfield, G. B., DeVries, W. H., Nelson, H. A. andEvans, J. S. The isolation of vitamin B12b from neomycin fermentations. Jour. Am. Chem. Soc.73: 337–341. 1951.Google Scholar
  221. 195.
    Jacobs, W. L., Wright, R. K. andHildebrandt, F. M. General purpose fermentation plant. Ind. & Eng. Chem.40: 759–764. 1948.Google Scholar
  222. 196.
    Johnson, J. L., Jackson, W. G. andEble, T. E. Isolation of l-leucyl-1-proline anhydride from microbiological fermentations. Jour. Am. Chem Soc.73: 2947–2948. 1951.Google Scholar
  223. 197.
    Johnstone, D. B. andWaksman, S. A. The production of streptomycin byStreptomyces bikiniensis. Jour. Bact.35: 317–326. 1948.Google Scholar
  224. 198.
    Jones, D. andSchatz, A. Methods of study of antiphage agents produced by microorganisms. Jour. Bact.51: 566. 1946.Google Scholar
  225. 199.
    ——. Methods of study of antiphage agents produced by microorganisms. Jour. Bact.52: 327–336. 1946.Google Scholar
  226. 200.
    Jones, K. L. Further notes on variation in certain saprophytic actinomycetes. Jour. Bact.51: 211–216. 1946.Google Scholar
  227. 201.
    —. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. Jour. Bact.57: 141–146. 1949.Google Scholar
  228. 202.
    Joslyn, D. A. andGalbraith, M. A turbidimetric method for the assay of antibiotics. Jour. Bact.54: 26. 1947.Google Scholar
  229. 203.
    Junowicz-Kocholaty, R. andKocholaty, W. Two antibiotics (lavendulin and actinorubin) produced by two strains ofActinomyces. II. Purification and isolation. Jour. Biol. Chem.168: 757–764. 1947.Google Scholar
  230. 204.
    —— andKelner, A. Sulfactin, a new antibiotic produced by a soil actinomycete similar toA. roseus. Jour. Biol. Chem.168: 765–769. 1947.Google Scholar
  231. 205.
    Kaczka, E. A., Wolf, D. E., Kuehl, F. A. andFolkers, K. Vitamins B12: reactions of cyano-cobalamin and related compounds. Science112: 354–355. 1950.PubMedGoogle Scholar
  232. 206.
    —— andFolkers, K. Vitamin B12. V. Identification of crystalline vitamin B12a. Jour. Am. Chem. Soc.71: 1514. 1949.Google Scholar
  233. 207.
    —,Denkewalter, R. G., Holland, A. andFolkers, K. Vitamin B12. XIII. Additional data on vitamin B12a. Jour. Am. Chem. Soc.73: 335–337. 1951.Google Scholar
  234. 208.
    Kane, J. H., Finlay, A. C. andSobin, B. A. Antimicrobial agents from natural sources. Ann. N. Y. Acad. Sci.53: 226–228. 1950.PubMedGoogle Scholar
  235. 209.
    Kato, H. Studies on the antibiotic substances fromActinomyces. I. On the isolation of active strains and substances from strain 212. Jour. Antibiotics [Japan]3: 579–581. 1950.Google Scholar
  236. 210.
    —. Studies on synthetic media for penicillin production by shake culture method. Jour. Antibiotics [Japan]3: 791–800. 1951.Google Scholar
  237. 210a.
    Katsuya, N., Sakai, H., Komatsu, E. andMakabe, O. Studies on the streptomycin-producing Streptomyces. I. Isolation of strain, identification of antibiotic substances, and morphological observation. Jour. Antibiotics [Japan]4: 425–430. 1951.Google Scholar
  238. 211.
    Katznelson, H. Autolysis of a thermophilic actinomycete. Soil Sci.49: 83–93. 1940.Google Scholar
  239. 212.
    Kavanagh, F. Estimation of antibacterial substances by serial dilution methods. Bull. Torrey Bot. Club.74: 303–320. 1947.Google Scholar
  240. 213.
    —. Activities of twenty-two antibacterial substances against nine species of bacteria. Jour. Bact.54: 761–766. 1947.Google Scholar
  241. 214.
    Kelner, A., Kocholaty, W., Junowicz-Kocholaty, R. andMorton, H. E. Two antibiotics produced byActinomyces isolated from the soil. Jour. Bact.51: 591–592. 1946.Google Scholar
  242. 215.
    — andMorton, H. E. Two antibiotics (lavendulin and actinorubin) produced by actinomycetes. Jour. Bact.53: 695–704. 1947.Google Scholar
  243. 216.
    —. Mutation inStreptomyces flaveolus induced by x-rays and ultraviolet light. Jour. Bact.56: 457–466. 1948.Google Scholar
  244. 217.
    —. Effect of visible light on the recovery ofStreptomyces griseus conidia from ultraviolet irradiation injury. Proc. Nat. Acad. Sci. [U.S.]35: 73–79. 1949.Google Scholar
  245. 218.
    —. Studies on the genetics of antibiotic formation. The induction of antibiotic-forming mutants in actinomycetes. Jour. Bact.57: 73–82. 1949.Google Scholar
  246. 219.
    —. Action spectra for photoreactivation of ultraviolet irradiatedEscherichia coli andStreptomyces griseus. Jour. Gen. Physiol.34: 835–852. 1951.Google Scholar
  247. 220.
    Kempf, J. E. andSayles, P. The influence of the rate of aeration on oxidation-reduction potentials and streptomycin production byActinomyces griseus. Jour. Bact.51: 596–597. 1946.Google Scholar
  248. 221.
    Kikuchi, M. Studies on the antibiotic substances fromActinomyces roseochromogenous # 24. Jour. Antibiotics [Japan]3: 839–844. 1950.Google Scholar
  249. 222.
    Kluyver, A. J. andVisser, J. The determination of microorganisms in air. Antonie van Leeuwenhoek16: 299–310. 1950.PubMedGoogle Scholar
  250. 223.
    ——. Some observations on air filtration. Antonie van Leeuwenhoek16: 311–324. 1950.PubMedGoogle Scholar
  251. 234.
    Kobayashi, S., Saito, J. andIshida, N. Studies on the antibiotic substances from actinomycetes. IV. The isolation of streptomycin. Jour. Antibiotics [Japan]2(Supp. B): 51–54. 1949.Google Scholar
  252. 235.
    Kocholaty, W. andJunowicz-Kocholaty, R. The use of cation exchangers for the concentration and purification of antibiotics of basic nature. Arch. Biochem.15: 55–63. 1947.Google Scholar
  253. 236.
    —— andKelner, A. Actinomycin A produced by a soil actinomyces different fromActinomyces antibioticus. Arch. Biochem.17: 191–193. 1948.Google Scholar
  254. 237.
    Koerber, W. L., Greenspan, G. andLanglykke, A. F. Observations on the multiplications of phages affectingStreptomyces griseus. Jour. Bact.60: 29–38. 1950.Google Scholar
  255. 238.
    Kominami, K., Yoneshiga, K. andNehera, T. On preservation of molds by the lyophil method. Jour. Antibiotics [Japan]2: 546–547. 1949.Google Scholar
  256. 239.
    Kornfeld, E. C. andJones, R. G. The structure of actidione, an antibiotic fromStreptomyces griseus. Science108: 437–438. 1948.PubMedGoogle Scholar
  257. 240.
    —— andParke, T. V. Structure and chemistry of actidione, an antibiotic fromStreptomyces griseus. Jour. Am. Chem. Soc.71: 150–159. 1949.Google Scholar
  258. 241.
    Kotake, Y. Studies on chemical changes of media in penincillin fermentation. I. Equipment and method of fermentation and character of some strains. Jour. Antibiotics [Japan]3: 98–113. 1950.Google Scholar
  259. 242.
    Krassilnikov, N. A. [The phenomenon of autolysis in Actinomycetales. I. Cultural and morphological picture of autolysis]. Microbiology7: 708–720. 1938. [Russian]Google Scholar
  260. 243.
    — andKoreniako, A. I. [The phenomenon of autolysis inActinomycetales. II. Influence of environmental conditions upon autolysis of actinomycetes and proactinomycetes]. Microbiology7: 829–837. 1938. [Russian]Google Scholar
  261. 244.
    Kriss, A. E. [Variability of actinomycetes]. Acad. Sci. Moscow. 1937, 101 pages. [Russian]Google Scholar
  262. 245.
    Kuehl, F. A., Bishop, M. N. andFolkers, K. Streptomyces antibiotics. XXIII. 1,3 diamino-4,5,6-trihydroxy cyclohexane from neomycin A. Jour. Am. Chem. Soc.73: 881–882. 1951.Google Scholar
  263. 246.
    ——,Chaiet, L. andFolkers, K. Isolation and some chemical properties of grisein. Jour. Am. Chem. Soc.73: 1770–1773. 1951.Google Scholar
  264. 247.
    Kupferberg, A. B., Styles, H., Singher, H. O. andWaksman, S. A. The production of streptocin by different strains ofStreptomyces griseus. Jour. Bact.59: 523–526. 1950.Google Scholar
  265. 247a.
    Kurosawa, H. Mycological characters of antagonistic streptomyces. I. On the correlation between Pridham’s classification method and antibiotic characters. Jour. Antibiotics [Japan]4: 183–193. 1951.Google Scholar
  266. 248.
    Kuroya, M., Ouchi, N. andKatsuno, M. Studies on the antibiotic substances fromActinomyces. II. The classification of antibiotic producing actinomycetes by streak plate method (so-called “primary screening”). Jour. Antibiotics [Japan]2(Supp. A): 74–78. 1949.Google Scholar
  267. 249.
    —,Ishida, N., Kobayashi, S., Konno, J. andChida, R. Studies on the antibiotic substances fromActinomyces. IV. On the identification by the specificity of the culture fluid of the antibiotics fromActinomyces (so-called “secondary screening” of the first groupActinomyces). Jour. Antibiotics [Japan]2(Supp. B): 37–50. 1949.Google Scholar
  268. 250.
    ——,Katagiri, K., Shiratori, T. andChida, R. Studies on the antibiotic substances fromActinomyces. V. Secondary screening of 15 actinomycetes, specifically antagonistic to acidfast bacteria. Jour. Antibiotics [Japan]3: 69–75. 1950.Google Scholar
  269. 251.
    —,Takahashi, B., Ishida, N., Katagiri, K. andShimizu, I. The identification of antibiotic actinomyces by several kinds of methods. Jour. Antibiotics [Japan]3: 876–877. 1950.Google Scholar
  270. 252.
    ——,Shimizu, I. andTakahashi, I. Cross inhibition among various antibiotic-producing actinomycetes belonging to the first group. Jour. Antibiotics [Japan]3: 877–879. 1950.Google Scholar
  271. 253.
    —,Kurosawa, H. andIshida, N. The classification of antibiotic actinomyces by the utilization of carbohydrates. Jour. Antibiotics [Japan]3: 879–880. 1950.Google Scholar
  272. 253a.
    —,Ishida, N., Katagiri, K., Takahashi, B. andShiratori, T. Studies on the antibiotic substances fromActinomyces. XV. Reexamination of the antibacterial spectra of the first groupActinomyces using several streptothricin-fast strains ofE. coli as test organisms. Jour. Antibiotics [Japan]4: 321–326. 1951.Google Scholar
  273. 253b.
    —,Takahashi, B., Ishida, N., Katagiri, K. andShimizu, I. Studies on the antibiotic substances fromActinomyces. XVI. Cross-inhibition among various antibiotic-producing actinomyces belonging to first group Jour. Antibiotics [Japan]4: 327–330. 1951.Google Scholar
  274. 253c.
    ——,Shimizu, I. andTakahashi, I. Studies on the antibiotic substances fromActinomyces. XVII. Cross-inhibition among various antibiotic-producing actinomycetes belonging to the first group. Part 2. Jour. Antibiotics [Japan]4: 363–366. 1951.Google Scholar
  275. 253d.
    ————. Studies on the antibiotic substances fromActinomyces. XVIII. Antibiotic spectra of the first group streptomyces against several yeast and fungi with special reference to the characteristics of the antibiotics of the first group streptomyces. Jour. Antibiotics [Japan]4: 367–372. 1951.Google Scholar
  276. 254.
    Landerkin, G. B., Smith, J. R. G. andLochhead, A. G. Study of the antibiotic activity of actinomycetes from northern Canada. Canad. Jour. Res. C28: 690–698. 1950.Google Scholar
  277. 255.
    Langlykke, A. F. andPerlman, D. Methods of converting mannosidostreptomycin and diydromannosidostreptomycin into streptomycin and dihydrostreptomycin respectively. U. S. Patent 2,493,89. 1950.Google Scholar
  278. 256.
    Leach, B. J., Ford, J. H. andWhiffen, A. J. Actidione, an antibiotic fromStreptomyces griseus. Jour. Am. Chem. Soc.69: 474. 1947.Google Scholar
  279. 257.
    — andTeeters, C. M. Neamine, an antibacterial degradation product of neomycin. Jour. Am. Chem. Soc.73: 2794–2797. 1951.Google Scholar
  280. 258.
    —,DeVries, W. H., Nelson, H. A., Jackson, W. G. andEvans, J. S. The isolation and characterization of neomycin. Jour. Am. Chem. Soc.73: 2797–2800. 1951.Google Scholar
  281. 259.
    Leben, C. andKeitt, G. W. The effect of an antibiotic substance on apple leaf infection byVenturia inaequalis. Phytopath.37: 14. 1947.Google Scholar
  282. 260.
    ——. An antibiotic substance active against certain phytopathogens. Phytopath.38: 899–906. 1948.Google Scholar
  283. 261.
    Lehr, H. andBerger, J. The isolation of a crystalline actinomycinlike antibiotic. Arch. Biochem.23: 503–505. 1949.PubMedGoogle Scholar
  284. 262.
    LePage, G. A. andCampbell, E. Preparation of streptomycin. Jour. Biol. Chem.162: 163–171. 1946.Google Scholar
  285. 263.
    Lichtman, H., Watson, J., Ginsberg, V., Pierce, J. V., Stokstad, E. L. R., andJukes, T. H. Vitamin B12b: some properties and its therapeutic use. Proc. Soc. Exp. Biol. & Med.72: 643–645. 1949.Google Scholar
  286. 264.
    Lidwell, O. M. Methods of sampling air for bacteria. Chem. & Ind.: 805. 1950.Google Scholar
  287. 265.
    Loo, Y. H., Skell, P. S., Thornberry, H. H., Ehrlich, J., McGuire, J. M., Savage, G. M. andSylvester, J. C. Assay of streptomycin by the paper-disc plate method. Jour. Bact.50: 701–709. 1945.Google Scholar
  288. 266.
    Lott, W. A., Bernstein, J. andHeuser, L. J. Preparation of antibiotic salts of mono (higher aliphatic) sulfates and purification of antibiotics thereby. U. S. Patent 2,537,933. 1951.Google Scholar
  289. 267.
    Lumb, M. The detection and isolation of a new antibiotic from culture liquors ofStreptomyces griseus. Jour. Gen. Microbiol.2: viii. 1949.Google Scholar
  290. 268.
    -. Biochemical investigations of fermentations of the Actinomycetales. Ph.D. Thesis, London. 1949.Google Scholar
  291. 269.
    —. Improvements in experimental fermentors. Jour. Gen. Microbiol.5: x. 1951.Google Scholar
  292. 270.
    Maeda, K. Chemical studies on antibiotic substances. I. Purification of aureothricin and its molecular formula. Jap. Med. Jour.2: 85–88. 1949.Google Scholar
  293. 271.
    Marston, R. Q. The isolation of antibiotics produced byProactinomyces (Nocardia) gardneri. Brit. Jour. Exp. Path.30: 398–407. 1949.Google Scholar
  294. 272.
    — andFlorey, H. W. The antibacterial and pharmacological properties of the proactinomycins A, B, and C. Brit. Jour. Exp. Path.30: 407–418. 1949.Google Scholar
  295. 273.
    Marwin, R. M. Processing of fungus extracts by ultrasonic disintegration. Bact. Proc: 115. 1951.Google Scholar
  296. 274.
    Masuyama, M. On a one-dimensional diffusion method of assaying antibiotic substances and its fundamental formulas. Biometrics5: 317–329. 1949.PubMedGoogle Scholar
  297. 275.
    Mayer, R. L., Crane, C., DeBoer, C. J., Konopka, E. A., Marsh, J. S. andEisman, P. C. Antibiotics fromAct. vinaceus (Nov. sp). Microbiological studies. Abst. 12th Int. Chem. Cong.: 283–284. 1951.Google Scholar
  298. 276.
    McConnell, W. B. The proteolytic enzymes of microorganisms. III. Some characteristics of extracellular proteases produced in submerged culture. Canad. Jour. Res. C28: 600–612. 1950.Google Scholar
  299. 277.
    McCormack, R. B. The associative action of some species ofActinomyces. Ph.D. Thesis, Cornell Univ. 1935.Google Scholar
  300. 278.
    McDaniel, L. E. Process for producing streptomycin on medium containing whole yeast. U. S. Patent 2,515,461. 1950.Google Scholar
  301. 279.
    -. Process for the production of streptomycin using soybean meal-distillers’ solubles medium. U. S. Patent 2,538,492. 1951.Google Scholar
  302. 280.
    - andHendlin, D. Production of streptomycin. U. S. Patent 2,538,943. 1951.Google Scholar
  303. 281.
    - andHodges, A. B. Production of streptomycin-resistant strains ofStreptomyces griseus. U. S. Patent 2,545,554. 1951.Google Scholar
  304. 282.
    Mellors, H. Ultra-violent irradiation of air supplies with special references to intensity measurements. Chem. & Ind.29: 806. 1950.Google Scholar
  305. 283.
    Merck and Company, Inc. Antibiotics. French Patent 944,317. 1949.Google Scholar
  306. 284.
    -. Process of preparing an antibiotic substance. British Patent 644,582. 1950.Google Scholar
  307. 285.
    -. Production of antibiotics. Brit. Patent 650,187. 1951.Google Scholar
  308. 286.
    -. Improvement in fermentation media and process for production of streptomycin. Brit. Patent 650,087. 1951.Google Scholar
  309. 287.
    Meredith, C. H. The antagonism ofActinomyces toFusarium oxysporum cubense. Phytopath.34: 426–429. 1949.Google Scholar
  310. 288.
    Michaelson, M. E. Fungicidal effect of synthetic plant hormones onActinomyces species. Jour. Col.-Wyo. Acad. Sci.4: 41–42. 1949.Google Scholar
  311. 288a.
    —,Schall, L. A. andFults, J. L. Some effects of 2,4 dichlorophenoxyacetic acid, its salts and esters on several physiologic strains of the potato scab organismActinomyces scabies (Thaxt.) Guss. Soil Sci. Soc. Am., Proc.13: 267–270. 1948.Google Scholar
  312. 288b.
    Mitchison, D. A. andSpicer, C. C. A method of estimating streptomycin in serum and other fluids by diffusion through agar enclosed glass tubes. Jour. Gen. Microbiol.3: 184–203. 1949.Google Scholar
  313. 288c.
    Miyamura, S. On the influence of pH of sample on the cup assay of antibiotics. Jour. Antibiotics [Japan]4: 290–295. 1951.Google Scholar
  314. 288d.
    —. On cup assay of new antibiotic substances H-277 and H-365 (Reticulin) fromActinomyces. Jour. Antibiotics [Japan]4: 456–457. 1951.Google Scholar
  315. 288e.
    — andKanazawa, Y. On assay of chloramphenicol by cup method. Jour. Antibiotics [Japan]4(Supp. A): 40–43. 1951.Google Scholar
  316. 288f.
    Mold, J. D. andBartz, Q. R. An antibiotic related to the xanthomycins. Jour. Am. Chem. Soc.72: 1847–1849. 1950.Google Scholar
  317. 289.
    Munder, D. L. Industrial and large scale purification of air supplies (with special reference to the electrostatic precipitator). Chem. & Ind.29: 806. 1950.Google Scholar
  318. 290.
    Nagao, I. Studies on the antibiotic substances fromActinomyces. XIII. Comparative study of roseomycin, streptomycin, chloromycetin, and marfanil on the effect of experimentalVibrio comma infections. Jour. Antibiotics [Japan]3(Supp. C): 20–23. 1950.Google Scholar
  319. 291.
    — Studies on the antibiotic substances fromActinomyces. XI. Three basic antibiotics (streptomycin, roseomycin, and # 259 (streptothricin type 2). Jour. Antibiotics [Japan]4: 24–28. 1951.Google Scholar
  320. 292.
    van Ngu, D. andShiozawa, F. A simple method of isolation and purification of molds. Jour. Antibiotics [Japan]3: 371–373. 1950.Google Scholar
  321. 293.
    Nelson, H. A., Calhoun, K. M. andCollingsworth, D. R. Neomycin and vitamin B12 activity in streptomyces 3535 fermentations. Abst. 118th meeting, Am. Chem. Soc.: 16A. 1950.Google Scholar
  322. 293a.
    O’Brien, E., Wagman, G. H. andPerlman, D. Synthetic media for production of streptomycin. Bact. Proc. 25. 1952.Google Scholar
  323. 294.
    Ogata, K., Tadokoro, I. andNakazawa, K. Studies onActinomyces and its antibiotics. I. Isolation of active strains. Jour. Antibiotics [Japan]3: 297–301. 1950.Google Scholar
  324. 295.
    — andNakazawa, K. Studies onActinomyces and its antibiotics. II. On the production of actinomycin A and its inactivation by sun-light. Jour. Antibiotics [Japan]3: 363–366. 1950.Google Scholar
  325. 296.
    —— Studies onActinomyces and its antibiotics. III. On the two streptothricin-like substances having different bacteriostatic spectra. Jour. Antibiotics [Japan]3: 367–370. 1950.Google Scholar
  326. 297.
    —— Studies onActinomyces and its antibiotics. IV. On the mat formation of A-809 strain and its antibiotic. Jour. Antibiotics [Japan]3: 435–439. 1950.Google Scholar
  327. 298.
    — Studies onActinomyces and its antibiotics. V. Dextromycin, a new antibiotic produced byActinomyces. Jour. Antibiotics [Japan]3: 440–444. 1950.Google Scholar
  328. 299.
    — Studies on Actinomyces and its antibiotics. VI. Production of cloromycetin. Jour. Antibiotics [Japan]3: 512–516. 1950.Google Scholar
  329. 299a.
    —,Shibata, M., Ueno, T. andNakazawa, K. Studies onActinomyces and its antibiotics. VII. Production of chloramphenicol. II. Tank culture of a high potency producing strain. Jour. Antibiotics [Japan]4 (Supp. A): 44–47. 1951.Google Scholar
  330. 300.
    Ogata, Y. Biological studies on the antibiotics produced byStreptomyces griseoluteus. I. Bacteriostatic effects of griseolutein. Jap. Med. Jour.3: 213–218. 1950.Google Scholar
  331. 300a.
    Ogino, S. Studies on the variability ofStreptomyces. II. Phage resistant mutation ofStreptomyces griseus. Jour. Antibiotics [Japan]4: 500–504. 1951.Google Scholar
  332. 300b.
    — Studies on the variability ofStreptomyces. I. Natural variation ofStreptomyces griseus. Jour. Antibiotics [Japan]4 (Supp. A): 1–6. 1951.Google Scholar
  333. 301.
    Oginsky, E. L., Smith, P. H. andUmbreit, W. W. The action of streptomycin on the respiration ofStreptomyces griseus. Jour. Bact.61: 639–642. 1951.Google Scholar
  334. 301a.
    Ohtsuki, T. andImai, M. Studies on the monospore isolation ofStreptomyces griseus by spray method. Jour. Antibiotics [Japan]4: 636–640. 1951.Google Scholar
  335. 302.
    Okami, Y. Studies on the characters of antibioticStreptomyces. I. On the characters of a chloromycetin-producing strain (O-163). Jap. Med. Jour.1: 499–503. 1948; Jour. Antibiotics [Japan]2: 593–598. 1949.Google Scholar
  336. 303.
    — Studies on antibiotic strains ofStreptomyces. II. Streptomycin-producing strains. Jap. Med. Jour.2: 16–23. 1949.Google Scholar
  337. 304.
    — Studies on the characters of antibioticStreptomyces. III. Characters of grisein-producing strains. Jour. Antibiotics [Japan]3: 93–97. 1950. Jap. Med. Jour.2: 203–206. 1950.Google Scholar
  338. 305.
    —. Studies on the characters of antibioticStreptomyces. IV. On the strains which produce streptothricin group substances. Jap. Med. Jour.2: 251–262. 1949; Jour. Antibiotics [Japan]3: 582–595. 1950.Google Scholar
  339. 306.
    —, Ashino, K. and Umezawa, H. The influence of the nitrogen mustard and the ultra-violet irradiation on the strain ofS. griseus No. 41. Jour. Antibiotics [Japan]3(Supp. A): 11–15. 1950.Google Scholar
  340. 307.
    — andUmezawa, H. Studies on the mutation ofStreptomyces griseus 200 by x-ray irradiation. Jour. Antibiotics [Japan]3(Supp. B): 7–9. 1950.Google Scholar
  341. 308.
    — Studies on the characters of antibioticStreptomyces. V. On types ofS. griseus. Jap. Med. Jour.3: 205–211. 1950.Google Scholar
  342. 309.
    —,Hayano, S., Ogata, Y. andUmezawa, H. The isolation of streptomycin-producing strains and the relation between the strain and the production media. Jour. Antibiotics [Japan]3(Supp. B): 1–6. 1950.Google Scholar
  343. 310.
    O’Keeffe, A. E., Dolliver, M. A. andStiller, E. T. Separation of the streptomycins. Jour. Am. Chem. Soc.71: 2452–2457. 1949.Google Scholar
  344. 311.
    Olive, T. R. Chloromycetin by Parke, Davis. Chem. Eng. (October): 107–113. 1949.Google Scholar
  345. 312.
    Otani, S., Okuno, K., Nagano, H. andFujisawa, Y. On a chloromycetin-producing streptomyces and its cultivation. Jour. Antibiotics [Japan]3: 736–737. 1950.Google Scholar
  346. 313.
    ———. On the chloromycetin-producing streptomyces. Jour. Antibiotics [Japan]3 (Supp C): 44. 1950.Google Scholar
  347. 314.
    Ouchi, N. Studies on the antibiotic substances fromActinomyces. VIII. On the isolation of special anti-phlei factor from an actinomyces in a crystalline form. Jour. Antibiotics [Japan]3: 517–523. 1950.Google Scholar
  348. 312.
    Oxford, A. E. Note on the production of soluble blue pigment in simple media byActinomyces coelicolor. Jour. Bact.51: 267–270. 1950.Google Scholar
  349. 316.
    Oyaas, J. E., Ehrlich, J. andSmith, R. M. Chemical changes during chloramphenicol (Chloromycetin) fermentation. Ind. & Eng. Chem.42: 1775–1776. 1950.Google Scholar
  350. 317.
    Oyake, S. Effect of various preparations of peptone and meat extract on streptomycin production. Jour. Antibiotics [Japan]3: 463–466. 1950.Google Scholar
  351. 318.
    Oyama, Y. andAiba, S. Studies on air filtering equipment. Jour. Antibiotics [Japan]2: 348–354. 1949.Google Scholar
  352. 319.
    Pansy, F. E., Kahn, P., Pagano, J. F. andDonovick, R. The relationship between aureomycin, chloramphenicol, and terramycin. Proc. Soc. Exp. Biol. & Med.75: 618–620. 1950.Google Scholar
  353. 320.
    Parker, A. Aseptic technique in industrial fermentations. Recent Advances in the Fermentation Industries. Royal Inst. Chem. [London]. 1950.Google Scholar
  354. 321.
    — andCherry, G. B. Removal of bacteria from air by filtration and its application to industrial fermentation. Chem. & Ind.29: 806. 1950.Google Scholar
  355. 322.
    Pasternack, R., Regna, P. P., Wagner, R. L., Bavley, A., Hochstein, F. A., Gordon, P. N. andBrunings, K. J. Degradation of terramycin. Jour. Am. Chem. Soc.73: 2400. 1951.Google Scholar
  356. 323.
    -,Bavley, A., Hess, G. B., Conover, L. H., Brunings, K. J. andHochstein, F. A. Alkaline degradation of terramycin. Abst 12. Int. Cong. Chem.: 281–282. 1951.Google Scholar
  357. 324.
    Peck, R. L. Chromatography in the streptomycin problem. Ann. N. Y. Acad. Sci.49: 235–248. 1948.Google Scholar
  358. 325.
    —,Hoffhine, C. E., Gale, P. andFolkers, K. Streptomyces antibiotics. XXIII. Isolation of neomycin A. Jour. Am. Chem. Soc.71: 2590–2591. 1949.Google Scholar
  359. 326.
    -. Chemistry of neomycin. [Presented before section C., A.A.A.S. meeting, Dec. 29, 1950].Google Scholar
  360. 327.
    -. Chromatographic purification of streptomycin and streptothricin hydrochloride. U. S. Patent 2,540,284. 1951.Google Scholar
  361. 328.
    Perlman, D. 1946. [Unpub.]Google Scholar
  362. 329.
    — andLanglykke, A. F. The occurrence of mannosidostreptomycinase. Jour. Am. Chem. Soc.70: 3968. 1948.Google Scholar
  363. 330.
    —. A chemical method for the determination of mannosidostreptomycin. Jour. Biol. Chem.179: 1147–1154. 1949.Google Scholar
  364. 331.
    - andLanglykke, A. F. Methods for the extraction of streptomycin from fermentation media. Abst. 116 meeting, Am. Chem. Soc.: 18A-19A 1949.Google Scholar
  365. 332.
    - and -. The utilization of glycerides byStreptomyces griseus. Abst. 117 meeting, Am. Chem. Soc.: 18A. 1950.Google Scholar
  366. 333.
    — Observations on the production of ethanol by fungi and yeasts. Am. Jour. Bot.37: 237–241. 1950.Google Scholar
  367. 334.
    — Some mycological aspects of penicillin production. Bot. Rev.16: 449–523. 1950.Google Scholar
  368. 335.
    —,Langlykke, A. F. andRothberg, H. D. Chemical inhibition of multiplication ofStreptomyces griseus bacteriophage. Jour. Bact.61: 135–143. 1951.Google Scholar
  369. 336.
    — andWagman, G. H. Studies on the utilization of glycerides byStreptomyces griseus. Jour. Bact.63: 253–262. 1952.Google Scholar
  370. 337.
    — Microbiological conversion of pregnenolone to progesterone. Science115: 529. 1952.Google Scholar
  371. 338.
    —,Titus, E. andFried, J. Microbiological hydroxylation of progesterone. Jour. Am. Chem. Soc.74: 2126. 1952.Google Scholar
  372. 339.
    -. Microbiological degradation of streptomycin. Bact. Proc. 58. 1952.Google Scholar
  373. 340.
    Peterson, D. H., Collingsworth, D. R., Reineke, L. M. andDeBoer, C. Evidence for the presence of streptothricin in streptolin culture filtrates. Jour. Am. Chem. Soc.69: 3145–3146. 1949.Google Scholar
  374. 341.
    — andReineke, L. M. A paper Chromatographic technique and its application to the study of new antibiotics. Jour. Am. Chem. Soc.72: 3598–3603. 1950.Google Scholar
  375. 342.
    Peterson, M. H., Hanes, M. E. and Sylvester, J. C. The submerged production of hydroxystreptomycin. Abst. 119th meeting, Am. Chem. Soc: 24A–25A. 1951; Ind. & Eng. Chem.44: 231–232. 1952.Google Scholar
  376. 343.
    Petty, M. A. andMatrishin, M. The utilization of chlorine in the fermentation medium byStreptomyces aureofaciens in the production of aureomycin. Abst. 118th meeting, Am. Chem. Soc: 18A. 1950.Google Scholar
  377. 344.
    Pierce, J. V., Pagen, A. C., Stokstad, E. L. R. andJukes, T. H. Studies of some characteristics of vitamin B12b. Jour. Am. Chem. Soc.72: 2615–2616. 1950.Google Scholar
  378. 345.
    Pittinger, R. C. Lethal and sub-lethal effects of ultraviolet radiation and methyl (bis chlorethyl) amine onStreptomyces species. M.Sc. Thesis, Univ. Wis. 1947.Google Scholar
  379. 346.
    Plaut, G. W. E. andMcCormack, R. B. Countercurrent distribution system for the separation and determination of streptomycin types. Jour. Am. Chem. Soc.71: 2264–2265. 1949.Google Scholar
  380. 347.
    Porter, R. W. Streptomycin engineered into commercial production. Chem. & Met. Eng.53(October): 94–98. 1946.Google Scholar
  381. 348.
    Pramer, D. andStarkey, R. L. The determination of streptomycin in soil. Bact. Proc: 18–19. 1950.Google Scholar
  382. 349.
    — andStarkey, R. L. Decomposition of streptomycin. Science113: 127. 1951.PubMedGoogle Scholar
  383. 350.
    Prescott, S. C. andDunn, C. G. Industrial microbiology. 2nd. Ed. 1949.Google Scholar
  384. 351.
    Price, C. W., Randall, W. A. andWelch, H. Bacteriological studies on aureomycin. Ann. N. Y. Acad. Sci.51: 211–220. 1948.PubMedGoogle Scholar
  385. 352.
    Pridham, T. G., andGottlieb, D. The utilization of carbon compounds by some actinomycetales as an aid for species determination. Jour. Bact.56: 107–114. 1948.Google Scholar
  386. 353.
    -,Hall, H. H. andShakleton, M. C. The identification of some actinomycetales with particular reference to isolates produring vitamin B12 and related growth factors. Bact. Proc.: 27–28. 1951.Google Scholar
  387. 354.
    Rake, G., McKee, C. M. andJones, H. A rapid test for the activity of certain antibiotic substances. Proc. Soc. Exp. Biol. & Med.51: 273–274. 1942.Google Scholar
  388. 355.
    — andDonovick, R. Studies on the nutritional requirements ofStreptomyces griseus for the formation of streptomycin. Jour. Bact.52: 223–226. 1946.Google Scholar
  389. 356.
    —. Streptomycin as an essential nutrilite. Proc. Soc. Exp. Biol. & Med.67: 249–253. 1948.Google Scholar
  390. 357.
    -,Koerber, W. L. andDonovick, R. Antibiotic extraction from solids ofActinomyces griseus culture. U. S. Patent 2,461,922. 1949.Google Scholar
  391. 358.
    Randall, W. A., Kirchbaum, A., Nielson, J. K. andWintermere, D. Diffusion plate assay for chloramphenicol and aureomycin. Jour. Clin. Invest.28: 940–942. 1949.Google Scholar
  392. 359.
    Rao, R. R. Role of inorganic constituents of wheat bran extract in streptomycin production. Nature162: 850. 1948.PubMedGoogle Scholar
  393. 360.
    Rebstock, M. C., Crooks, H. M., Controulis, J. andBartz, Q. R. Chloramphenicol (Chloromycetin). IV. Chemical studies. Jour. Am. Chem. Soc.71: 2458–2461. 1948.Google Scholar
  394. 360a.
    Reeves, R. V. Terramycin: from dirt to drug. Chem. Eng.59: 145–147. 1952.Google Scholar
  395. 361.
    Regna, P. P. andMurphy, F. X. Neomycin B. Jour. Am. Chem. Soc.72: 1045–1046. 1950.Google Scholar
  396. 362.
    - andSolomons, I. A. Recovery of streptomycin from fermentation broths. U. S. Patent 2,538,847. 1951.Google Scholar
  397. 363.
    ——,Murai, K., Timreck, A. E., Brunings, K. J. andLazar, W. A. The isolation and general properties of terramycin and terramycin salts. Jour. Am. Chem. Soc.73: 4211–4215. 1951.Google Scholar
  398. 364.
    Reilly, H. C., Harris, D. A. andWaksman, S. A. An actinophage forStreptomyces griseus. Jour. Bact.54: 451–466. 1947.Google Scholar
  399. 365.
    Reynolds, D. M., Schatz, A. andWaksman, S. A. Grisein, a new antibiotic produced by a strain ofStreptomyces griseus. Proc. Soc. Exp. Biol. & Med.64: 50–54. 1947.Google Scholar
  400. 366.
    — andWaksman, S. A. Grisein, an antibiotic produced by certain strains ofStreptomyces griseus. Jour. Bact.55: 739–752. 1948.Google Scholar
  401. 366a.
    Rhodehamel, H. W., Fortune, W. B. andMcCormack, S. L. A solvent extraction procedure for purifying streptomycin. Jour. Am. Chem. Soc.73: 5485–5486. 1951. U. S. Patent 2,578,840. 1951.Google Scholar
  402. 367.
    Richardson, E. M. andGrant, G. A. Recovery ofActinomyces griseus elaboration products. U. S. Patent, 2,550,939. 1951.Google Scholar
  403. 368.
    Rickes, E. L., Brink, N. G., Koniuszy, F. R., Wood, T. R. andFolkers, K. Comparative data on vitamin B12 from liver and from a new source,Streptomyces griseus. Science106: 634–636. 1948.Google Scholar
  404. 369.
    Rivett, R. W. andPeterson, W. H. Streptolin, a new antibiotic from a species ofStreptomyces. Jour. Am. Chem. Soc.69: 3006–3009. 1947.Google Scholar
  405. 370.
    —,Johnson, M. J., andPeterson, W. H. Laboratory fermentor for aerobic fermentations. Ind. & Eng. Chem.42: 188–190. 1950.Google Scholar
  406. 371.
    Robbins, W. J., Hervey, A. andStebbins, M. E. Studies onEuglena and vitamin B12. Science112: 455. 1950; B12ll. Torrey Bot. Club77: 423–441. 1950.PubMedGoogle Scholar
  407. 372.
    Robinson, H. J., Smith, D. G. andGraessle, O. E. Chemotherapeutic properties of streptomycin. Proc. Soc. Exp. Biol. & Med.57: 226–231. 1944.Google Scholar
  408. 372a.
    Rosenblum, C. H. Applications of radioactive isotopes. [Presented before Sigma Xi Section, Princeton, N. J., January 21, 1952].Google Scholar
  409. 373.
    Rouatt, J. W., Lechevalier, M. P. andWaksman, S. A. Distribution of antagonistic properties among actinomycetes isolated from different soils. Jour. Antibiotics & Chemotherapy1: 185–192. 1951.Google Scholar
  410. 374.
    Rubin, B. A. andSteinglass, P. The recovery of streptomycin from cultures of streptomycin-requiring mutants ofEscherichia coli. Bact. Proc: 33–34. 1951.Google Scholar
  411. 374a.
    St. John, C. V., Flick, D. E. andTepe, J. B. Streptomycin and mannosidostreptomycin in fermentation broths. Anal. Chem.23: 1289–1291. 1951.Google Scholar
  412. 375.
    Sarlet, H. The actinomycin produced byStreptomyces S67. Enzymologia14: 49–50. 1950.PubMedGoogle Scholar
  413. 375a.
    —,Toussaint, J. andBrasseur, H. Radiocrystallographic study and molecular weight of actinomycin fromStreptomyces S-67. Nature168: 469–470. 1951.PubMedGoogle Scholar
  414. 376.
    Sato, S. Cytochromes in bacteria especially actinomycetes. Kitasato Arch. Exp. Med. [Abst.]17: 2. 1940.Google Scholar
  415. 377.
    Saudek, E. C. andColingsworth, D. R. A bacteriophage in the streptomycin fermentation. Jour. Bact.54: 41–42. 1947.Google Scholar
  416. 378.
    Saunders, A. P. A study of various environmental factors and strain differences in relation to streptomycin production. Ph.D. Thesis, Univ. Wis. 1950.Google Scholar
  417. 379.
    - andSylvester, J. C. Synthetic media for the production of streptomycin. Abst. 112 meeting, Am. Chem. Soc.: 9A–10A. 1947.Google Scholar
  418. 380.
    -,Otto, R. H., andSylvester, J. C. The production of B12 by various strains of actinomycetes. Abst. 119 meeting, Am. Chem. Soc.: 21A. 1951.Google Scholar
  419. 381.
    Savage, G. M. Improvement in streptomycin-producing strains ofStreptomyces griseus by ultraviolet and x-ray energy. Jour. Bact.57: 429–442. 1949.Google Scholar
  420. 382.
    Schaal, L. A. Variation and physiological specialization in the common scab fungus (Actinomyces scabies). Jour. Agr. Res.69: 169–187. 1944.Google Scholar
  421. 383.
    Schatz, A., Bugie, E. andWaksman, S. A. Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Proc. Soc. Exp. Biol. & Med.52: 66–69. 1944.Google Scholar
  422. 384.
    — andWaksman, S. A. Strain specificity and production of antibiotic substances. IV. Variation among actinomycetes, with special reference toActinomyces griseus. Proc. Nat. Acad. Sci. [U.S.]81: 129–137. 1945.Google Scholar
  423. 385.
    -. Streptomycin, an antibiotic agent produced byActinomyces griseus. Ph.D. Thesis, Rutgers Univ. 1945.Google Scholar
  424. 386.
    — andJones, D. The production of anti-phage agents by actinomycetes. B12ll. Torrey Bot. Club74: 9–19. 1947.Google Scholar
  425. 387.
    — andPlager, H. A search for virus inhibitors among soil actinomycetes antagonistic to bacteriophages. Bull. Torrey Bot. Club75: 256–264. 1948.Google Scholar
  426. 388.
    — andHazen, E. L. The distribution of soil microorganisms antagonistic to fungi pathogenic for man. Mycologia40: 461–477. 1948.Google Scholar
  427. 389.
    Schenck, J. R. andSpielman, M. A. Formation of maltol by degradation of streptomycin. Jour. Am. Chem. Soc.67: 2276. 1945.Google Scholar
  428. 390.
    Shockman, G. andWaksman, S. A. Rhodomycin (Rhodomycetin) —an antibiotic produced by a red-pigmented mutant ofSteptomyces griseus. Jour. Antibiotics & Chemotherapy1: 68–75. 1951.Google Scholar
  429. 391.
    Shull, G. M. andRoutien, J. B. Survey of vitamin B12 production by actinomycetes. Abst. 119 meeting, Am. Chem. Soc.: 22A-23A. 1951.Google Scholar
  430. 392.
    Siminoff, P. andGottlieb, D. The production and role of antibiotics in the soil. I. The fate of streptomycin. Phytopath.41: 420–430. 1951.Google Scholar
  431. 393.
    Skeen, J. R. Antibiotics. Chem. Eng.57 (September): 265–267. 1950.Google Scholar
  432. 394.
    Skinner, C. E. The tyrosinase reaction of the actinomycetes. Jour. Bact.35: 415–424. 1938.Google Scholar
  433. 395.
    Smith, G. N. andWorrel, C. S. The decomposition of Chloromycetin (chloramphenicol) by microorganisms. Arch. Biochem.28: 232–241. 1950.PubMedGoogle Scholar
  434. 396.
    Smith, R. M., Kuhn, W. H. andMiesel, G. R. M. An actinophage in streptomycin-producing cultures ofStreptomyces griseus. Jour. Bact.54: 545. 1947.Google Scholar
  435. 397.
    —,Joslyn, D. A., Gruhzit, O. M., McLean, I. W., Penner, M. A. andEhrlich, J. Chloromycetin: biological studies. Jour. Bact.55: 425–448. 1948.Google Scholar
  436. 398.
    Sobin, B. A. andKane, J. H. Terramycin and its production. U.S. Patent 2,516,080. 1950.Google Scholar
  437. 399.
    Solomons, I. A. andRegna, P. P. Bis (alpha hydroxystreptomycyl) amine a toxic derivative of streptomycin. Jour. Chem. Soc.72: 2974–2977. 1950.Google Scholar
  438. 400.
    -. Streptomycin preparation. U.S. Patent 2,565,402. 1951.Google Scholar
  439. 401.
    Spilsbury, J. F. Observations on the nutritional requirements ofStreptomyces griseus (Krainsky) Waksman and Schatz. Trans. Brit. Mycol. Soc.31: 210–228. 1948.Google Scholar
  440. 402.
    Stanier, R. Y. Agar decomposing strains of theActinomyces coelicolor species group. Jour. Bact.44: 555–570. 1942.Google Scholar
  441. 403.
    Stanley, A. R. Improving streptomycin yields by strain selection and inoculum development. Jour. Bact.53: 254. 1947.Google Scholar
  442. 404.
    Stark, W. H. andPohler, G. M. Sterile air for industrial fermentations. Ind. & Eng. Chem.42: 1789–1792. 1950.Google Scholar
  443. 405.
    Starks, O. B. and Koffler, H. Aerating liquids by agitation on a mechanical shaker. Science109: 495–496. 1949.PubMedGoogle Scholar
  444. 406.
    Stockton, J. R., Spizizen, J., Wyss, O. andHampil, B. The action of certain protein reagents on bacterial viruses. Bact. Proc.: 49–50. 1951.Google Scholar
  445. 407.
    Stodola, F. H., Shotwell, O. L., Borud, A. M. andBenedict, R. G. Hydroxystreptomycin, a new antibiotic fromStreptomyces griseocarneus. Abst. 118 meeting, Am. Chem. Soc: 16A. 1950.Google Scholar
  446. 408.
    ———— andRiley, A. C. Hydroxystreptomycin, a new antibiotic fromStreptomyces griseocarneus. Jour. Am. Chem. Soc.73: 2290–2293. 1951.Google Scholar
  447. 409.
    Stokes, J. L. andGunness, M. The amino acid composition of microorganisms. Jour. Bact.52: 195–208. 1946.Google Scholar
  448. 409a.
    Sumner, J. B. andMyrback, K. The enzymes (chapter 78), 1952.Google Scholar
  449. 410.
    Suzuki, S. Mycological studies on penicillin and streptomycin. I. Preservation of penicillin-producing strains and streptomycin-producing strains by the lyophile process. Jour. Antibiotics [Japan]2: 660–665. 1949.Google Scholar
  450. 411.
    —. Mycological studies on penicillin and streptomycin. III. On the production of streptomycin in shaking flasks. Jour. Antibiotics [Japan]2: 675–680. 1949.Google Scholar
  451. 412.
    Swart, E. A., Hutchison, D. andWaksman, S. A. Neomycin, recovery and purification. Arch. Biochem.24: 92–103. 1949.PubMedGoogle Scholar
  452. 413.
    -,Romano, A. H. andWaksman, S. A. Fradicin, an antifungal agent produced byStreptomyces fradiae. Bact. Proc.: 65–66. 1950; Proc. Soc. Exp. Biol. & Med.73: 376–378. 1950.Google Scholar
  453. 414.
    -,Lechevalier, H. A. andWaksman, S. A. Countercurrent distribution studies on the neomycin complex. Abst. 118 meeting, Am. Chem. Soc: 33C-34C. 1950.Google Scholar
  454. 415.
    ———. The identity of the neomycin complex, as measured by counter-current distribution and microbiological analyses. Jour. Am. Chem. Soc.73: 3253–3255. 1951.Google Scholar
  455. 416.
    Taguchi, H., Nishimura, K. andTanaka, G. Antibiotic substances fromStreptomyces. VI. Jour. Antibiotics [Japan]3: 739. 1950.Google Scholar
  456. 417.
    Taira, T., Yamatodani, S., Komatsu, H., Takamoto, I. andTanabe, K. An equipment for the laboratory-scale penicillin fermentations. Jour. Antibiotics [Japan]2: 355–357. 1949.Google Scholar
  457. 418.
    ——,Fujii, S. andTakamoto, I. Paper chromatography of antibiotics. II. Jour. Antibiotics [Japan]3: 724–725. 1950.Google Scholar
  458. 419.
    Takahashi, T., Ishimoto, N. andFuruya, S. Studies on the antibiotic substances produced byStreptomyces. I. Isolation of streptomycin. Jour Antibiotics [Japan]2: 341–347. 1949.Google Scholar
  459. 420.
    Takeda, K. andSuzuki, W. On the effect of iron and other metals and oils on the production of streptomycin and chloromycetin. Jour. Penicillin [Japan]2 (Supp. A): 9. 1949.Google Scholar
  460. 421.
    —. Studies on the effect of metals on the streptomycin and chloromycetin production. Jour. Antibiotics [Japan]3: 241–242. 1950.Google Scholar
  461. 422.
    Takeuchi, T. Biological studies on streptothricin BI and BII. Bacteriostatic effectin vitro comparing with streptomycin and chloramphenicol. Jap. Med. Jour.3: 219–229. 1950; Jour. Antibiotics [Japan]4: 607–613. 1951.Google Scholar
  462. 423.
    Tanaka, H. andNishimura, K. Studies on the antibiotic substances fromActinomyces. V. Jour. Antibiotics [Japan]3: 605–606. 1950.Google Scholar
  463. 424.
    Tanner, F. W., Means, J. A. andDavisson, J. W. Thiolutin, an antibiotic from certain strains ofStreptomyces albus. Abst. 118 meeting, Am. Chem. Soc: 18A. 1950.Google Scholar
  464. 425.
    Tarr, H. L. A. Microbiological formation of vitamin B12. I. Production in fish press liquid. Canad. Jour. Tech.29: 391–400. 1951.Google Scholar
  465. 426.
    Taylor, R. J. Two tower process for recovery of streptomycin employing cation exchange resins. U. S. Patent 2,528,188. 1950.Google Scholar
  466. 427.
    Terjesen, S. G. andCherry, G. B. The removal of micro-organisms from air by filtration. Trans. Inst. Chem. Eng.25: 89–110. 1947.Google Scholar
  467. 428.
    Thaysen, A. C. andMorris, M. Medium suitable for cultivation of Meredith’s actinomycete. Nature159: 100. 1947.Google Scholar
  468. 429.
    Thornberry, H. H. Nutrient requirements of an antibiotic soil fungus,Streptomyces griseus (Krainsky) Waksman and Henrici. Phytopath.36: 412. 1946.Google Scholar
  469. 430.
    —. Streptomycin production byS. griseus from peanut and soybean protein waste liquor. Phytopath.37: 21. 1947.Google Scholar
  470. 431.
    —. The role of minerals in production of streptomycin byStreptomyces griseus. Phytopath.38: 26. 1948.Google Scholar
  471. 432.
    — andAnderson, H. W. Synthetic medium forStreptomyces griseus and the production of streptomycin. Arch. Biochem.16: 389–398. 1948.Google Scholar
  472. 433.
    - and -. Improvements in or relating to culture medium for growing microorganisms. Brit. Patent 635,529. 1950.Google Scholar
  473. 433a.
    — andShanahan, A. J. Streptomycin production byStreptomyces griseus from fractions of peanuts and soybeans. Arch. Biochem.33: 459–464. 1951.PubMedGoogle Scholar
  474. 434.
    Thorne, C. B. andPeterson, W. H. Xanthomycins, A and B, new antibiotics produced by a species of streptomyces. Jour. Biol. Chem.176: 413–428. 1948.Google Scholar
  475. 435.
    Townley, R. W., Mull, R. F. andScholz, C. R. Antibiotics produced byActinomyces vinaceus. Chemical studies. Abst. 12th Int. Cong. Chem.: 284. 1951.Google Scholar
  476. 436.
    Trussell, P. C., Fulton, C. O. andGrant, G. A. Two antibiotics produced by a streptomyces. Jour. Bact.53: 769–780. 1947.Google Scholar
  477. 437.
    — andRichardson, E. M. Actinomycin from a new streptomyces. Canad. Jour. Res. C26: 27–30. 1948.Google Scholar
  478. 438.
    -. Production of streptomycin. U. S. Patent 2,541,726. 1951.Google Scholar
  479. 439.
    Uesaka, I. The actinomycetes isolated from soils and their antibiotic properties. Jour. Antibiotics [Japan]2: 471–473. 1949.Google Scholar
  480. 440.
    —. Studies on the antibiotic action ofNocardia. Jour. Antibiotics [Japan]3: 730–735. 1950.Google Scholar
  481. 441.
    —. Studies on the antibiotic action ofNocardia. II. Production of antibiotic substance by the surface culture of A422 strain. Jour. Antibiotics [Japan]3 (Supp. C): 27–34. 1950.Google Scholar
  482. 442.
    Umezawa, H., van Ngu, D. andSekezawa, Y. Studies on the antibiotic substances produced byActinomyces sp. III. A slightly toxic and basic antibiotic substance from a strain ofActinomyces. Jour. Antibiotics [Japan]1: 221–234. 1947.Google Scholar
  483. 443.
    —,Hayano, S., Takeuchi, T. andMizuhara, Y. Studies on the antibacterial substances fromActinomyces. I. A crystalline antibacterial substance from a strain ofActinomyces. Jour. Antibiotics [Japan]1: 129–133. 1947.Google Scholar
  484. 444.
    ————. Studies on the antibacterial substances fromActinomyces. II. A basic antibiotic substance from several strains ofActinomyces. Jour. Antibiotics [Japan]1: 130–134. 1948.Google Scholar
  485. 445.
    ————. Isolation of actinomycin A from a strain ofStreptomyces. Jap. Med. Jour.1: 100–103. 1948.Google Scholar
  486. 446.
    —— andOgata, Y. Differentiation of streptomycin and allied substances (streptothricin group) and rapid isolation of streptomycin-producing strains. Jap. Med. Jour.1: 339–346. 1948.Google Scholar
  487. 447.
    —,Tazaki, T., Kanari, H., Okami, Y. andFukuyama, S. Isolation of a crystalline antibiotic substance from a strain ofStreptomyces and its identity with chloromycetin. Jap. Med. Jour.1: 358–363. 1948.Google Scholar
  488. 448.
    —,Hayano, S. andOgata, Y. Classification of antibiotic strains ofStreptomyces and their antibiotic substances on the basis of their antibacterial spectra. Jap. Med. Jour.1: 504–511. 1948.Google Scholar
  489. 449.
    —,Tazaki, T., Okami, Y. andFukuyama, S. On the new source of chloromycetin,Streptomyces omiyaensis. Jap. Med. Jour.2: 207, 211. 1948.Google Scholar
  490. 450.
    —,Ogata, Y., Takeuchi, T. andTabata, T. Isolation of streptomycin from a pink variant ofS. griseus. Jap. Med. Jour.1: 397–404. 1948.Google Scholar
  491. 451.
    —,Hayano, S. andOgata, Y. Studies on the antibiotic substances fromActinomyces. VI. A rapid isolation and identification of streptomycin-producing strains. Jour. Antibiotics [Japan]2: 284–288. 1949.Google Scholar
  492. 452.
    —,Takeda, K. andSuzuki, W. Studies on the antibiotic substances fromActinomyces. VII. Studies on streptomycin production and other chemical changes during laboratory tank fermentation. Jour. Antibiotics [Japan]2: 289–291. 1949.Google Scholar
  493. 453.
    — andKanari, H. Studies on the antibiotic substances fromActinomyces. VIII. Isolation of streptomycin reineckate and streptidine picrate. Jour. Antibiotics [Japan]2: 292–295. 1949.Google Scholar
  494. 454.
    —,Tazaki, T., Kanari, H. andFukuyama, S. Isolation of a crystalline antibiotic substance from a strain ofStreptomyces and its identity with chloromycetin. Jour. Antibiotics [Japan]2: 415–419. 1949.Google Scholar
  495. 455.
    ————. Isolation of streptomycin from a pink variant ofS. griseus. Jour. Antibiotics [Japan]2: 489–495. 1949.Google Scholar
  496. 456.
    —,Maeda, K. andKosuka, H. Isolation of a new antibiotic substance, aureothricin, from a strain ofStreptomyces. Jap. Med. Jour.1: 512–517. 1948.Google Scholar
  497. 457.
    —,Tazaki, T. andFukuyama, S. Resistances of antibiotic strains ofStreptomyces to chloromycetin and a rapid isolation method of chloromycetin-producing strains. Jap. Med. Jour.2: 73–78. 1949.Google Scholar
  498. 458.
    — andTabata, T. On some differences in the antibacterial spectra of the antibioticStreptomyces growing in broth and on agar. Jour. Antibiotics [Japan]2 (Supp. B): 55–59. 1949.Google Scholar
  499. 459.
    — andKanari, H. On the molecular formula and the bacteriostatic action of chloromycetin. Jap. Med. Jour.2: 19–20. 1949.Google Scholar
  500. 460.
    — andMaeda, K. Studies on the fermentation and the extraction of chloromycetin. Jour. Antibiotics [Japan]2: 41–52. 1950.Google Scholar
  501. 461.
    —,Takeuchi, T. andKurosu, E. Studies on the streptothricin-group substances; on streptothricin A and streptothricin B. Jour. Antibiotics [Japan]3: 232–234. 1950; Jap. Med. Jour.2: 9–15. 1949.Google Scholar
  502. 462.
    —— andYamagiwa, S. Studies on streptothricin BI produced byS. fradiae. Jour. Antibiotics [Japan]3: 833–888. 1950; Jap. Med. Jour.3: 25–30. 1950.Google Scholar
  503. 463.
    —,Tazaki, T., Okami, Y. andFukuyama, S. On the new source of chloromycetin,S. omiyaensis. Jour. Antibiotics [Japan]3: 292–296. 1950.Google Scholar
  504. 464.
    —,Kametani, R., Osato, T., Kanari, H., Kawahara, W. R. andOkami, Y. Studies on the pilot plant scale production of streptomycin in various fermentors. Jour. Antibiotics [Japan]3: (Supp. A): 19–24. 1950.Google Scholar
  505. 465.
    ——,Okami, Y., Kawahara, A. andOsato, T. An observation of actinophage during streptomycin production in the stainless steel fermenter. Jour. Antibiotics [Japan]3 (Supp. A): 25–30. 1950.Google Scholar
  506. 466.
    —,Okami, Y. andAshino, K. On streptomycin production ofS. griseus, the strain No. R4-3475. Jour. Antibiotics [Japan]3 (Supp. A): 1–9. 1950.Google Scholar
  507. 467.
    —,Hayano, S., Ogata, Y. andOkami, Y. The isolation of streptomycin-producing strains and the relation between the strains and the production media. Jour. Antibiotics [Japan]3 (Supp. B): 1–6. 1950.Google Scholar
  508. 468.
    —,Osato, T., Utahara, R., Yagashita, K. andOkami, Y. Studies on the pilot plant scale production of streptomycin. III. On the aeration and the comparison of Waksman’s medium and soybean medium. Jour. Antibiotics [Japan]3 (Supp. B): 16–21. 1950.Google Scholar
  509. 469.
    —,Suami, T. andYamada, R. Studies on the solventextraction process of streptomycin. Jour. Antibiotics [Japan]3 (Supp. B): 38–44. 1950.Google Scholar
  510. 470.
    —,Kametani, R., Osato, T., Takeda, K., Kanari, H., Utahara, R., Kawahara, A. andWada, R. On the pilot plant scale production of chloromycetin. Jour. Antibiotics [Japan]2 (Supp. B): 95–103. 1950.Google Scholar
  511. 471.
    —,Hayano, S. andOgata, Y. Studies on an antibiotic substance ofS. griseus, grisein. Jap. Med. Jour.2: 79–84. 1950.Google Scholar
  512. 472.
    —, —,Maeda, K., Ogata, Y. andOkami, Y. On a new antibiotic, griseolutein, produced by a streptomyces. Jour. Antibiotics [Japan]4: 34–40. 1951; Jap. Med. Jour.3: 111–117. 1950.Google Scholar
  513. 473.
    — andSuzuki, M. On the bacteriostatic effect of naturally occurring chloramphenicol and syntheticdl-chloramphenicol. Jour. Antibiotics [Japan]4 (Supp. A): 56–57. 1951.Google Scholar
  514. 473a.
    —,Maeda, K. andOkami, Y. On the various sources of actinomycin. Jour. Antibiotics [Japan]4: 335–337. 1951.Google Scholar
  515. 473b.
    —,Osata, Y., Utehara, R., Yageshita, K. andOkami, Y. Studies on the pilot plant scale production of streptomycin. III. On the extraction process. Jour. Antibiotics [Japan]4(Supp. A): 20–30. 1951.Google Scholar
  516. 474.
    Underkofler, L. A. andHickey, R. J. Industrial fermentations. 1953.Google Scholar
  517. 475.
    Uraya, A., Kawamata, J. andOkada, S. On the cujtivation of chloromycetin-producing streptomyces. Jour. Antibiotics [Japan]3 (Supp. C): 43. 1950.Google Scholar
  518. 476.
    VanderBrook, M. J., Wick, A. N., DeVries, W. H., Harris, R. andCartland, G. F. Extraction and purification of streptomycin with a note on streptothricin. Jour. Biol. Chem.165: 463–465. 1946.Google Scholar
  519. 477.
    Vanderlinde, R. J. andYegian, D. Streptomycin-dependent bacteria in the identification of streptomycin-producing microorganisms. Jour. Bact.56: 357–362. 1948.Google Scholar
  520. 478.
    VanDolah, R. W. andChristenson, G. L. Chemical inactivation of streptomycin. Arch. Biochem.12: 7–12. 1947.Google Scholar
  521. 479.
    -, - andShelton, R. S. Purification of antibiotics by ion exchange procedures. U. S. Patent 2,528,022. 1950.Google Scholar
  522. 480.
    Waksman, S. A. Production and activity of streptothricin. Jour. Bact.46: 299–310. 1943.Google Scholar
  523. 481.
    —. Certain aspects of the physiology of actinomycetes. Antonie van Leeuwenhoek12: 49–58. 1947.Google Scholar
  524. 482.
    - (editor). Streptomycin. 1949.Google Scholar
  525. 483.
    -. Microbial antagonisms and antibiotic substances. 1947.Google Scholar
  526. 484.
    -. The Actinomycetes. 1950.Google Scholar
  527. 485.
    — andWoodruff, H. B. Bacteriostatic and bactericidal substances produced by a soil actinomyces. Proc. Soc. Exp. Biol. & Med.45: 609–614. 1940.Google Scholar
  528. 486.
    ——.Actinomyces antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria. Jour. Bact.42: 231–249. 1941.Google Scholar
  529. 487.
    — andTischler, M. The chemical nature of actinomycin, an antimicrobial substance produced byActinomyces antibioticus. Jour. Biol. Chem.142: 519–528. 1942.Google Scholar
  530. 488.
    — andWoodruff, H. B. Streptothricin, a new selective agent, particularly against Gram-negative bacteria. Proc. Soc. Exp. Biol. & Med.49: 207–210. 1942.Google Scholar
  531. 489.
    —,Horning, E. A., Welsch, M. andWoodruff, H. B. Distribution of antagonistic actinomycetes in nature. Soil Science54: 281–296. 1942.Google Scholar
  532. 490.
    —,Bugie, E. andSchatz, A. Isolation of antibiotic substances from soil microorganisms with special reference to streptothricin and streptomycin. Proc. Mayo Clinic19: 537–541. 1944.Google Scholar
  533. 491.
    — andReilly, H. C. Agar-streak method for assaying antibiotic substances. Ind. & Eng. Chem., Anal. Ed.17: 556–558. 1945.Google Scholar
  534. 492.
    — andSchatz, A. Strain specificity and production of antibiotic substances. VI. Strain variation and production of streptothricin byActinomyces lavendulae. Proc. Nat. Acad. Sci. [U.S.]31: 208–214. 1945.Google Scholar
  535. 493.
    ——. Streptomycin—a review. Jour. Am. Pharm. Assoc. (Pharm. Ed.)6: 308–321. 1945; (Sci. Ed.)34: 273–286. 1945.Google Scholar
  536. 494.
    —,Geiger, W. B. andReynolds, D. M. Strain specificity and production of antibiotic substances. VII. Production of actinomycin by different actinomycetes. Proc. Nat. Acad. Sci. [U.S.]32: 117–120. 1946.Google Scholar
  537. 495.
    —,Schatz, A. andReilly, H. C. Metabolism and the chemical nature ofStreptomyces griseus. Jour. Bact.51: 753–760. 1946.Google Scholar
  538. 496.
    —— andReynolds, D. M. Production of antibiotic substances by actinomycetes. Ann. N. Y. Acad. Sci.48: 73–86. 1946.Google Scholar
  539. 497.
    —,Reilly, H. C. andJohnstone, D. B. Isolation of streptomycin-producing strains ofStreptomyces griseus. Jour. Bact.52: 393–398. 1946.Google Scholar
  540. 498.
    —,Geiger, W. B. andBugie, E. Micromonosporin, an antibiotic substance from a little-known group of microorganisms. Jour. Bact.53: 355–359. 1947.Google Scholar
  541. 499.
    —,Reilly, H. C. andHarris, D. A. A rapid-method for demonstrating the identity of streptomycin-producing strains ofS. griseus. Proc. Soc. Exp. Biol. & Med.66: 617–619. 1947.Google Scholar
  542. 500.
    - andSchatz, A. Streptomycin and process of preparation. U. S. Patent 2,449,866. 1948.Google Scholar
  543. 501.
    - andWoodruff, H. B. Antibacterial substance and method for producing it. U. S. Patent 2,443,485. 1948.Google Scholar
  544. 502.
    —,Reilly, H. C. andHarris, D. A. Streptomyces griseus (Krainsky) Waksman and Henrici. Jour. Bact.56: 259–270. 1948.Google Scholar
  545. 503.
    — andHarris, D. A. Streptomycin-producing capacity of different strains ofStreptomyces griseus. Proc. Soc. Exp. Biol. & Med.71: 232–235. 1949.Google Scholar
  546. 504.
    ——Kupferberg, A. B., Singher, H. O. andStyles, H. Streptocin, antibiotic isolated from mycelium ofStreptomyces griseus, active againstTrichomonas vaginales and certain bacteria. Proc. Soc. Exp. Biol. & Med.70: 308–312. 1949.Google Scholar
  547. 505.
    — andLechevalier, H. A. Neomycin, a new antibiotic active against streptomycin-resistant bacteria including tuberculosis organisms. Science109: 305–307. 1949.PubMedGoogle Scholar
  548. 506.
    —— andHarris, D. A. Neomycin—production and antibiotic properties. Jour. Clin. Invest.26: 934–939. 1949.Google Scholar
  549. 507.
    -,Kochi, M. andLechevalier, H. A. Actinomycetes as producers of antibiotics, with special reference to the flavus group. Bact. Proc.: 30. 1951.Google Scholar
  550. 508.
    —,Harris, D. A. andLechevalier, M. Studies onStreptomyces lavendulae. Jour. Bact.62: 149–162. 1951.Google Scholar
  551. 508a.
    —. Streptomycin: Isolation, properties, and utilization. Jour. Hist. Med. and Allied Sci.6: 318–347. 1951.Google Scholar
  552. 508b.
    Walton, R. B. Effect of cations upon multiplication of actinophage forStreptomyces griseus. Jour. Antibiotics & Chemotherapy1: 518–522. 1951.Google Scholar
  553. 509.
    Weindling, R. andKapros, Ch. An actinophage ofStreptomyces aureojaciens. Bact. Proc: 48. 1951.Google Scholar
  554. 510.
    Welsch, M. Influence of culture medium on production of lysines by the actinomycetes. Compt. Rend. Soc. Biol.126: 244–246. 1937.Google Scholar
  555. 511.
    —. Bacteriostatic and bacteriolytic properties of actinomycetes. Jour. Bact.44: 571–588. 1942.Google Scholar
  556. 512.
    —. Production of actinomycin or a related substance by a streptomyces different fromS. antibioticus Waksman and Woodruff. Bull. Soc. Chim. Biol.28: 557–566. 1946.Google Scholar
  557. 513.
    —. Production of actinomycin and actinomycetin in submerged culture by a number of actinomycetes. Schweiz. Zeit. Path. Bakt.9: 379–384. 1946.Google Scholar
  558. 514.
    —. Streptomycetes producting actinomycin or related substances but differing fromStreptomyces antibioticus. Compt. Rend. Soc. Biol.140: 1157–1159. 1946.Google Scholar
  559. 515.
    —. The phenomenon of antibiosis in the actinomycetes. Thesis, Duculot, Gembloux. 1947.Google Scholar
  560. 516.
    — andHeusghem, C. A streptomyces which transforms estradiol into estrone. Compt. Rend. Soc. Biol.142: 1074–1076. 1948.Google Scholar
  561. 517.
    Whiffen, A. J., Bohonos, N. andEmerson, R. L. The production of an antifungal antibiotic byStreptomyces griseus. Jour. Bact.52: 610. 1946; U. S. Patent. 2,574,519. 1951.Google Scholar
  562. 518.
    —. Actidione, an antibiotic fromStreptomyces griseus. Jour. Bact.54: 41. 1947.Google Scholar
  563. 519.
    —. The production, assay, and antibiotic activity of actidione, an antibiotic fromStreptomyces griseus. Jour. Bact.56: 283–292. 1948.Google Scholar
  564. 520.
    —. The activityin vitro of cycloheximide (actidione) against fungi pathogenic to plants. Mycologia42: 253–258. 1950.Google Scholar
  565. 521.
    Wiebols, G. L. W. andWieringa, K. T. Bacteriophagie een algemeen voorkomend verschijnsel. H. Veenman, Wageningen. 1936.Google Scholar
  566. 522.
    Wieringa, K. T. andWiebols, G. L. W. Potato scab and the heterolysis of the scab parasite. Tijdschr. Plziekt.42: 235–240. 1936.Google Scholar
  567. 523.
    Wilson, E., Koffler, H., Coty, V. F. andTetrault, P. A. The effect of streptomycin on the respiration and growth of various strains ofStreptomyces griseus. Bact. Proc.: 15. 1951.Google Scholar
  568. 524.
    Winsten, W. A. andEigen, E. Studies on the streptomycin complex using paper-partition chromatography. Jour. Am. Chem. Soc.70: 3333–3336. 1948.Google Scholar
  569. 525.
    Wintersteiner, O. andFried, J. Method of obtaining highly-purified streptomycin acid addition salts. U. S. Patent 2,501,014. 1950.Google Scholar
  570. 526.
    Wise, W. S. Aeration in culture media. Nature165: 249. 1950.Google Scholar
  571. 527.
    —. The aeration of culture media: a comparison of the sulfite and polarographic methods. Jour. Soc. Chem. & Ind.69 (Supp. 1): 40–41. 1950.Google Scholar
  572. 528.
    —. The measurement of the aeration of culture media. Jour. Gen. Microbiol.5: 167–177. 1951.Google Scholar
  573. 529.
    Wolf, F. T. Process for recovering vitamin B12. U. S. Patent 2,530,416. 1950.Google Scholar
  574. 630.
    Woodruff, H. B. andFoster, J. W. Cultivation of actionmycetes under submerged conditions with special reference to the formation of streptothricin. Jour. Bact.45: 30. 1943.Google Scholar
  575. 531.
    ——. Quantitative estimation of streptothricin. Jour. Biol. Chem.45: 408. 1943.Google Scholar
  576. 532.
    ——. Microbiological aspects of streptothricin. I. Metabolism and streptothricin formation in stationary and submerged cultures ofActinomyces lavendulae. Arch. Biochem.2: 301–315. 1943.Google Scholar
  577. 533.
    ——. Microbiological aspects of penicillin. VII. Bacterial penicillinase. Jour. Bact.49: 7–17. 1945.Google Scholar
  578. 534.
    ——. Streptin, an antibiotic from a species ofStreptomyces. Jour. Bact.52: 502. 1946.Google Scholar
  579. 535.
    —. Production of streptomycin in stationary culture on liquid and solid substrates. Jour. Bact.54: 42. 1947.Google Scholar
  580. 536.
    —,Nunheimer, T. D. andLee, S. B. A bacterial virus forActinomyces griseus. Jour. Bact.54: 535–542. 1947. U. S. Patent 2,585,713. 1952.Google Scholar
  581. 537.
    — andRuger, M. Studies on the physiology of a streptomycin-producing strain ofStreptomyces griseus on proline medium. Jour. Bact.56: 315–322. 1948.Google Scholar
  582. 538.
    Woodthorpe, T. J. andIreland, D. M. A method for extracting and purifying streptomycin suitable for large scale production. Jour. Gen. Microbiol.1: 344–352. 1947.Google Scholar
  583. 539.
    Yagishita, K. andUmezawa, H. Studies on the inoculum for the production of streptomycin. Journ. Antibiotics [Japan]3 (Supp. B): 10–15. 1950.Google Scholar
  584. 540.
    —,Osato, T., Utahara, R. andUmezawa, H. Studies on the chloramphenicol production in the pilot plant by fermentation. Jour. Antibiotics [Japan]4 (Supp. A): 48–53. 1951.Google Scholar
  585. 540a.
    — andUmezawa, H. Studies on the intermediate metabolism of chloramphenicol production. I. Changes of amino acids during fermentation and utilization of amino acids for chloramphenicol production. Jour. Antibiotics [Japan]4: 441–449. 1951.Google Scholar
  586. 540b.
    —,Osato, T., Utahara, R. andUmezawa, H. Studies on the chloramphenicol production in the pilot-plant by fermentation. Jour. Antibiotics [Japan]4 (Supp. A): 48–53. 1951.Google Scholar
  587. 541.
    Yanagisawa, F. andArai, T. Comparative studies on the bacterio-static spectra of antibiotic substances produced by different actinomycetes. Jour. Antibiotics [Japan]2: 316–318. 1949.Google Scholar
  588. 542.
    Yonehara, H., Tanaka, M. andSumiki, Y. Studies on the purification of streptomycin. Part. I. Purification by precipitating agents. Jour. Antibiotics [Japan]4 (Supp. A): 12–13. 1951.Google Scholar
  589. 543.
    —,Toyama, T. andSumiki, Y. Studies on the purification of streptomycin. II. Purification with cation exchange. Jour. Antibiotics [Japan]4 (Supp. A): 14–19. 1951.Google Scholar

Copyright information

© The New York Botanical Garden 1953

Authors and Affiliations

  • D. Perlman
    • 1
  1. 1.Princeton

Personalised recommendations