Folia Geobotanica

, Volume 42, Issue 4, pp 363–382 | Cite as

Gradients of continentality and moisture in South Patagonian ombrotrophic peatland vegetation

  • Till Kleinebecker
  • Norbert Hölzel
  • Andreas Vogel


This study presents the analysis of 381 phytosociological relevés describing predominantly ombrotrophic South Patagonian lowland peatland vegetation along a gradient of increasing continentality. Numerical methods such as cluster analysis and detrended correspondence analysis (DCA) were carried out to explore the data set. Cluster analysis resulted in nine vegetation types that were also distinctly separated in DCA ordination. The major floristic coenocline along the first DCA axis reflected a gradient of continentality ranging from pacific blanket bogs dominated by cushion plants toSphagnum-dominated continental raised bogs. Increasing continentality along the first axis was parallel with decreasing peat decomposition and increasing peat depth and acidity. In contrast, floristic variation along the second DCA axis represented a water level gradient.

The typical sequence of vegetation types along the hollow-hummock moisture gradient that is well established for north hemispherical peatlands could also be observed inSphagnum-dominated South Patagonian raised bogs with a surprising similarity in floristic and structural features. Concerning the gradient of continentality significant differences in comparison with the northern hemisphere could be established. Most obvious was the dominance of cushion building plants (e.g.Astelia pumila, Donatia fascicularis) in South Patagonian oceanic peatlands, whereas this life form is totally absent from the northern hemisphere. Similar to the continentalSphagnum bogs the cushion plant vegetation of hyperoceanic peatlands exhibited a clear separation along the moisture gradient.


Blanket bog Climatic gradient Cluster analysis Cushion bog DCA Mire Raised bog 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AG Boden (2005):Bodenkundliche Kartieranleitung. Bundesanstalt für Geowissenschaften und Rohstoffe & Staatliche Geologische Dienst, Hannover.Google Scholar
  2. Banner A., Hebda R.J., Oswald E.T., Pojar J. &Trowbridge R. (1988): Wetlands of Pacific Canada. In: National Wetlands Working Group Canada Committee on Ecological Land Classificaton (ed.),Wetlands of Canada, Sustainable Development Branch, Environment Canada, Ottawa, Ontario, and Polyscience Publication Inc., Montreal, Quebec, pp. 307–346.Google Scholar
  3. Baumann M. A. (2006):Water flow, spatial patterns, and hydrological self-regulation of a raised bog in Tierra del Fuego (Argentina). Diploma Thesis, Ernst-Moritz-Arndt University, Greifswald.Google Scholar
  4. Blanco D.E. &de la Balze V.M. (eds.) (2004):Los Turbales de la Patagonia. Bases para su inventario y la conservation de su biodiversidad. Wetlands International - América del Sur, Buenos Aires.Google Scholar
  5. Boelcke O., Moore D.M. &Roig F.A. (1985):Transecta Botánica de la Patagonia Austral. CONICET Argentina, Inst. Patagonia Chile & Royal Society Gran Bretana, Buenos Aires.Google Scholar
  6. Bragazza F., Tahvanainen T., Kutnar L., Rydin H., Limpens J., Hájek M., Grosvernier P., Hájek T., Hájková P., Hansen I., Lacumin P. &Gerdol R. (2004): Nutritional constraints in ombrotrophicSphagnum plants under increasing atmospheric nitrogen deposition in Europe.New Phytol. 163: 609–616.CrossRefGoogle Scholar
  7. Bragazza L., Freeman C., Jones T., Rydin H., Limpens J., Fenner N., Ellis T., Gerdol R., Hájek M., Lacumin P., Kutnar L., Tahvanainen T. &Toberman H. (2006): Atmospheric nitrogen deposition promotes carbon loss from peat bogs.Proc. Natl. Acad. Sci. U.S.A. 103: 19386–19389.PubMedCrossRefGoogle Scholar
  8. Braun-Blanquet J. (1964):Pflanzensoziologie. Springer, Wien.Google Scholar
  9. Burgos J.J. (1985): Clima del extremo sur de Sudamerica. In:Boelcke O., Moore D.M. &Roig F.A. (eds.),Transecta botánica de la Patagonia Austral, CONICET Argentina, Inst. Patagonia Chile & Royal Society Gran Bretaña, Buenos Aires, pp. 10–40.Google Scholar
  10. Caspers G. (2002): DieSphagnum-Moore in Süd-Patagonien und auf West-Feuerland, Chile.Telma 32: 37–50.Google Scholar
  11. Chytrý M., Tichy L., Holt J. &Botta-Dukát Z. (2002): Determination of diagnostic species with statistical fidelity measures.J. Veg. Sci. 13: 79–90.CrossRefGoogle Scholar
  12. Couwenberg J. &Joosten H. (2005): Self-organization in raised bog patterning: the origin of microtope zonation and mesotope diversity.J. Ecol. 93: 1238–1248.CrossRefGoogle Scholar
  13. Damman A.W.H. (1995a): Major mire vegetation units in relation to the concepts of ombrotrophy and minerotrophy: a worldwide perspective.Gunneria 70: 23–34.Google Scholar
  14. Damman A.W.H. (1995b): Boreal peatlands in Norway and eastern North America: a comparison.Gunneria 70: 43–65.Google Scholar
  15. Daniels R.E. (1978): Floristic analyses of British mires and mire communities.J. Ecol. 66: 773–802.CrossRefGoogle Scholar
  16. Dawson J.W. (1963): Origins of the New Zealand alpine flora.Proc. New Zealand Ecol. Soc. 10: 12–15.Google Scholar
  17. Dierssen B. &Dierssen K. (1984): Vegetation und Flora der Schwarzwaldmoore.Veröff. Naturschutz Landschaftspflege Baden-Württemberg Beih. 39: 1–512.Google Scholar
  18. Dierssen K. (1982):Die wichtigsten Pflanzengesellschaften der Moore NW-Europas. Conservatoire et Jardin Botanique de la Ville de Genéve, hors sér 6. Genéve.Google Scholar
  19. Dierssen K. (1996):Die Vegetation Nordeuropas. Ulmer, Stuttgart.Google Scholar
  20. Dierssen K. &Dierssen B. (2001): Moore. In:Pott R. (ed.),Ökosysteme Mitteleuropas aus geobotanischer Sicht, Ulmer, Stuttgart.Google Scholar
  21. Dollenz O. (1980): Estudios fitosociológicos en el Archipelago Cabo de Hornos.Anales Inst. Patagonia 11: 223–238.Google Scholar
  22. Dollenz O. (1982): Estudios fitosociológicos en las Reservas Forestales Alacalufes e Isla Riesco.Anales Inst. Patagonia 13: 161–169.Google Scholar
  23. Dollenz O. (1986): Relevamientos fitosociológicos en la Península Muños Gamero, Magallanes.Anales Inst. Patagonia 16: 55–62.Google Scholar
  24. Engel J.J. (1978): A taxonomic and phytogeographic study of Brunswick Península.Hepaticae andAnthocerotae.Fieldiana, Bot. 41: 1–319.Google Scholar
  25. Feuerer T. (ed.) (2006):Checklists of lichens and lichenicolous fungi of Chile. (November 2006).Google Scholar
  26. Fulford M. (1963): Manual of theleafy Hepaticae of Latin America, Part I.Mem. New York Bot. Gard. 11: 1–172.Google Scholar
  27. Fulford M. (1966): Manual of the leafyHepaticae of Latin America, Part II.Mem. New York Bot. Gard. 11: 173–276.Google Scholar
  28. Fulford M. (1976): Manual of theleafy Hepaticae of Latin America, Part IV.Mem. New York Bot. Gard. 11: 393–535.Google Scholar
  29. Gerdol R. (1995): The growth dynamicsof Sphagnum based on field measurements in a temperate bog and on laboratory cultures.J. Ecol. 83: 431–437.CrossRefGoogle Scholar
  30. Gibson N. &Kirkpatrick J.B. (1985): A comparison of the cushion plant communities of New Zealand and Tasmania.New Zealand J Bot. 23: 549–566.Google Scholar
  31. Gignac L.D., Vitt D.H., Zoltai S.C. &Bayley S.E. (1991): Bryophyte response surfaces along climatic, chemical and physical gradients in peatlands of western Canada.Nova Hedwigia 53: 27–71.Google Scholar
  32. Glaser M. (2001):Zur raumzeitlichen Klimavariabilität am Gran Campo Nevado, Patagonien. Diploma thesis, Institut für Physische Geographie, Albert-Ludwigs-Universität Freiburg.Google Scholar
  33. Godoy R., Oyarzún C. &Gerding V. (2001): Precipitation chemistry in deciduous and evergreenNothofagus forests of southern Chile under a low-deposition climate.Basic Appl. Ecol. 2: 65–72.CrossRefGoogle Scholar
  34. Hájek M., Horsák M., Hájková P. &Dítě D. (2006): Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies.Perspect. Pl. Ecol. Evol. Syst. 8: 97–114.CrossRefGoogle Scholar
  35. Hässel de Menéndez G.G. &Solari S.S. (1985): Catalogo de las hepaticas. In:Boelcke O., Moore D.M. &Roig F.A. (eds.),Transecta Botánica de la Patagonia Austral, CONICET Argentina, Inst. Patagonia Chile & Royal Society Gran Bretaña, Buenos Aires, pp. 299–232.Google Scholar
  36. He S. (1998): A checklist of the mosses of Chile.J. Hattori Bot. Lab. 85: 23–109.Google Scholar
  37. Hill M.O. &Gauch H.G. (1980): Detrended correspondence analysis: an improved ordination technique.Vegetatio 42: 47–58.CrossRefGoogle Scholar
  38. Jeschke L., Knapp H.D. &Succow M. (2001): Moorregionen Europas. In:Succow M. &Joosten H. (eds.),Landschaftsökologische Moorkunde, Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 256–316.Google Scholar
  39. Johnson L.C. &Damman A.W.H. (1991): Species-controlledSphagnum decay on a South Swedish raised bog.Oikos 61: 234–242.CrossRefGoogle Scholar
  40. Jongman R.H.G., ter Braak C.J.F. &van Tongeren O.F.R. (1995):Data analysis in community and landscape ecology. Cambridge University Press, Cambridge.Google Scholar
  41. Keller J.K., White J.R., Bridgham S.D. &Pastor J. (2004): Climate change effects on carbon and nitrogen mineralization in peatlands through changes in soil quality.Global Change Biol. 10: 1053–1064.CrossRefGoogle Scholar
  42. Lappalainen E. (1996): General review on world peatland resources. In:Lappalainen E. (ed.),Global peat resources, International Peat Society /UNESCO/ Geological Survey of Finland, Saarijärvi, pp. 53–56.Google Scholar
  43. Malmer N. (1986): Vegetational gradients in relation to environmental conditions in northwestern European mires.Canad. J. Bot. 64: 375–383.CrossRefGoogle Scholar
  44. Malmer N., Horton D.G. &Vitt D.H. (1992): Element concentrations in mosses and surface waters of western Canadian mires relative to precipitation chemistry and hydrology.Ecography 15: 114–128.CrossRefGoogle Scholar
  45. Mccune B. &Mefford M.J. (2006):PC-ORD. Multivariate analysis of ecological data. Version 5. MjM Software, Gleneden Beach, Oregon.Google Scholar
  46. Moen A. (2005): Comments on the regional variation and mires in Tierra del Fuego - a comparison with Fennoscandia.Int. Mire Conservation Group, Newslett. 2005/4: pp. 11–13.Google Scholar
  47. Moore B.M. (1983):Flora of Tierra del Fuego. Anthony Nelson, Oswesty.Google Scholar
  48. Moore D.M. (1979): Southern oceanic wet-heathlands (including Magellanic Moorland). In:Specht R.L. (ed.),Heathlands and related shrublands, Ecosystems of the World 9A, Elsevier, Amsterdam, pp. 489–497.Google Scholar
  49. Oberdorfer E. (1992) (ed.):Süddeutsche Pflanzengesellschaften Teil I: Fels- und Mauergesellschaften, alpine Fluren, Wasser-, Verlandungs- und Moorgesellschaften. Gustav Fischer Verlag, Jena, Stuttgart, New York.Google Scholar
  50. Økland R.H., Økland T. &Rydgren K. (2001): A Scandinavian perspective on ecological gradients in north-west European mires: reply to Wheeler and Proctor.J. Ecol. 89: 481–486.CrossRefGoogle Scholar
  51. Pisano E. (1971): Comunidades vegetales del area del Fiordo Parry, Tierra del Fuego.Anales Inst. Patagonia 2: 93–133.Google Scholar
  52. Pisano E. (1972): Comunidades vegetales del area de Bahia Morris, Isla Capitan Aracena, Tierra del Fuego (Parque Nacional “Hernando de Magallanes”).Anales Inst. Patagonia 3: 103–130.Google Scholar
  53. Pisano E. (1973): Fitogeografia de la Peninsula Brunswick, Magallanes.Anales Inst. Patagonia 4: 141–205.Google Scholar
  54. Pisano E. (1977): Fitogeografia de Fuego-Patagonia Chilena - Comunidades vegetales entre las latitudes 52 y 56° S.Anales Inst. Patagonia 8: 121–250.Google Scholar
  55. Pisano E. (1983a): Comunidades en el sector norte de la Peninsula Munos Gamero (Ultima Esperanza, Magallanes).Anales Inst. Patagonia 14: 83–101.Google Scholar
  56. Pisano E. (1983b): The Magellanic tundra complex. In:Gore A. J. P. (ed.),Mires: swamp, bog, fen and moor, B. Regional studies, Ecosystems of the world 4, Elsevier, Amsterdam, pp. 295–329.Google Scholar
  57. Proctor M.C.F. (1994): Seasonal and shorter-term changes in surface-water chemistry on four English ombrogenous bogs.J. Ecol. 82: 597–610.CrossRefGoogle Scholar
  58. Rochefort L. &Lode E. (2006): Restoration of degraded boreal peatlands. In: Wieder R.K. & Vitt D.H. (eds.), Boreal peatland ecosystems,Ecol. Stud. 188: 381–423.Google Scholar
  59. Rodwell J.S. (ed.) (1991):British plant communities 2, Mires and heaths. Cambridge University Press, Cambridge.Google Scholar
  60. Roig F.A., Dollenz O. &Menendez E. (1985): Las Comunidades Vegetales de la Transecta Botánica de la Patagonia Austral. La Vegetación en los Canales. In:Boelcke O., Moore D.M. &Roig F.A. (eds.),Transecta Botánica de la Patagonia Austral, CONICET Argentina, Inst. Patagonia Chile & Royal Society Gran Bretaña, Buenos Aires, pp. 457–520.Google Scholar
  61. Roivainen H. (1954): Studien über die Moore Feuerlands.Ann. Bot. Soc. Zool.-Bot. Fenn. Vanamo 28:1–205.Google Scholar
  62. Schneider C., Glaser M., Kilian R., Santana A., Butorovic N. &Casassa G. (2003): Weather observations across the southern Andes at 53°S.Phys. Geogr. 24: 97–119.CrossRefGoogle Scholar
  63. Schwaar J. (1976): Die Hochmoore Feuerlands und ihre Pflanzengesellschaften.Telma 6: 51–59.Google Scholar
  64. Schwaar J. (1981): Pflanzengesellschaften derOxycocco-Sphagnetea undScheuchzerio-Caricetea fuscae in Feuerland. In:Dierschke H. (ed.),Berichte der Internationalen Symposien der Internationalen Vereinigung dür Vegetationskunde, Syntaxonomie, J. Cramer, Vaduz, pp. 397–401.Google Scholar
  65. Sjörs H. (1983): A comparison between mires of southern Alaska and Fennoscandia.Aquilo, Ser. Bot. 21: 89–94.Google Scholar
  66. Succow M. (2001): Kurzer Abriß der Nutzungsgeschichte mitteleuropäischer Moore. In:Succow M. &Joosten H. (eds.),Landschaftsökologische Moorkunde, Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 404–406.Google Scholar
  67. Teneb E. &Dollenz O. (2004): Distribución especial de la flora vascular, la humedad y el pH en un turbal de esfagno (Sphagnum magellanicum BRID.), Magallanes, Chile.Anales Inst. Patagonia, Ci. Nat. 32: 5–12.Google Scholar
  68. Ter Braak C.F.J. &Šmilauer P. (1998):CANOCO reference manual and user’s guide to Canoco for Windows: Software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NY, USA.Google Scholar
  69. Tichý L. (2002): JUICE, software for vegetation classification.J. Veg. Sci. 13: 451–453.CrossRefGoogle Scholar
  70. Tichý L. &Chytry M. (2006): Statistical determination of diagnostic species for site groups of unequal size.J. Veg. Sci. 17: 809–818.CrossRefGoogle Scholar
  71. Tuhkanen S. (1992): The climate of Tierra del Fuego from a vegetation geographical point of view and its ecoclimatic counterparts elsewhere.Acta Bot. Fenn. 145: 1–64.Google Scholar
  72. Turunen J. &Tolonen K. (1996): Rate of carbon accumulation in boreal peatlands and climate change. In:Lappalainen E. (ed.),Global peat resources, International Peat Society /UNESCO/ Geological Survey of Finland, Saarijärvi, pp. 21–28.Google Scholar
  73. van der Maarel E. (1979): Transformation of cover-abundance values in phytosociology and its effects on community similarity.Vegetatio 39: 97–114.CrossRefGoogle Scholar
  74. van Groenendael J.M., Hochstenbach S.M.H., van Mansfeld M.J.M., Roozen M.J.M. &Westhoff V. (1982): The influence of the sea on the vegetation of lakes in southwest Connemara.J. Life Sci. Roy. Dublin Soc. 3:221–242.Google Scholar
  75. Vitt D.H., Halsey L.A., Bauer I.E. &Campbell C. (2000): Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene.Canad. J. Earth Sci. 37: 683–693.CrossRefGoogle Scholar
  76. Vitt D.H., Horton D.G., Slack N.G. &Malmer N. (1990): Sphagnum-dominated peatlands of the hyperoceanic British Columbia coast: patterns in surface water chemistry and vegetation.Canad. J. Forest Res. 20:696–711.CrossRefGoogle Scholar
  77. Wells E.D. (1996): Classification of peatland vegetation in Atlantic Canada.J. Veg. Sci. 7: 847–878.CrossRefGoogle Scholar
  78. Westhoff V. &van der Maarel E. (1973): The Braun-Blanquet approach. In:Whittaker R.H. (ed.),Ordination and classification of communities, Dr. W. Junk, Publishers, Den Haag, pp. 617–737.Google Scholar
  79. Wheeler B.D. &Proctor M.C.F. (2000): Ecological gradients, subdivisions and terminology of north-west European mires.J. Ecol. 88: 187–203.CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2007

Authors and Affiliations

  • Till Kleinebecker
    • 1
  • Norbert Hölzel
    • 1
  • Andreas Vogel
    • 1
  1. 1.Institute of Landscape EcologyUniversity of MünsterMünsterGermany

Personalised recommendations