Economic Botany

, Volume 52, Issue 2, pp 134–145 | Cite as

Distinguishing rice (Oryza sativa poaceae) from wildOryza species through phytolith analysis, II Finalized method

  • Zhijun Zhao
  • Deborah M. Pearsall
  • Robert A. Benfer
  • Dolores R. Piperno
Article

Abstract

Asian rice is an important grain, not only in its homeland but in many areas of the world. Preliminary studies suggested that phytolith analysis, the identification of opaline silica bodies, provided a reliable way of identifying rice, especially in situations where preservation of charred botanical remains was poor. Results of this follow-up study, which incorporates all Asian wild Oryza species and a diverse array of traditional Oryza sativa cultivars, confirm that rice can be identified with a high level of certainty by the size and qualitative features of a distincitve phytolith, the double-peaked glume cell.

Key Words

Oryza sativa phytoliths Asia China discriminant analysis 

Discerner entre le riz (Oryza sativa poaceae) et les espèces sauvages d’Oryza par l’analyze phytolithique, II: Méthode finale

Résumé

Le riz d’Asie est une céréale importante, non seulement dans son pays d’origine, mais à travers le monde. Des études préliminaires suggèrent que l’analyze phytolithique—identification de particules de silica opalisé—fournit un moyen sur pour identifier le riz, surtout dans les cas de mauvais état de conservation des restes brulés organiques. Les résultats de cette étude de suite, incorporant toutes les espèces asiatiques d’Oryza sauvage et un groupe divers de formes traditionellement cultivées d’Oryza sativa, confirment le fait que le riz peut être identifié avec un haut degrès d’assurance par la taille et les traits qualitatifs d’un phytolithe distinctif, la glume bidentée.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ball, T., J. S. Gardner, and J. D. Brotherson. 1996. Identifying phytoliths produced by the inflores- cence bracts of three species of wheat (Triticum monococcum L.,T. dicoccon Schrank., andT. aestivum L.) using computer-assisted image and statistical analyses. Journal of Archaeological Science 23:619–632.CrossRefGoogle Scholar
  2. Benfer, R. A., Jr. 1975. Classification and Sampling. Pages 227–250in J. W. Mueller, ed., Sampling in Archaeology. University of Arizona Press, Tuscon.Google Scholar
  3. Benfer, R. A., Jr.,and A. N. Benfer. 1981. Automatic classification of inspectional categories: Multivariate theories of archaeological data. American Antiquity 46:381–396.CrossRefGoogle Scholar
  4. Chang, T-T. 1976. Rice. Pages 98–104in N. W. Simmonds, ed., The evolution of crop plants. Longman, London.Google Scholar
  5. Fujiwara, H. 1993. Research into the history of rice cultivation using plant opal analysis. Pages 147–158in D. M. Pearsall and D. R. Piperno, eds., Current research in phytolith analysis: applications in archaeology and paleoecology. MASCA, University of Pennsylvania Museum, Philadelphia, PA.Google Scholar
  6. Kachigan, S. K. 1991. Multivariate statistical analysis: a conceptual introduction. Radium Press, New York.Google Scholar
  7. Lachenbruch, P. A. 1975. Discriminant analysis. Hafner Press, New York.Google Scholar
  8. Lee, P. M. 1989. Bayesian statistics: an introduction. Oxford University Press, New York.Google Scholar
  9. Mardia, K. V., J. T. Kent, and J. M. Bibby. 1979. Multivariate analysis. Academic Press, New York.Google Scholar
  10. Mulholland, S. C. 1993. A test of phytolith analysis at Big Hidatsa, North Dakota. Pages 131–148in D. M. Pearsall and D. R. Piperno, eds., Current research in phytolith analysis: applications in archaeology and paleoecology. MASCA, University of Pennsylvania Museum, Philadelphia, PA.Google Scholar
  11. Pearsall, D. M. 1989. Paleoethnobotany. A Handbook of Procedures. Academic Press, San Diego.Google Scholar
  12. —,and D. R. Piperno. 1990. Antiquity of maize cultivation in Ecuador: summary and reevaluation of the evidence. American Antiquity 55:324–337.CrossRefGoogle Scholar
  13. —,and —,eds. 1993. Current research in phytolith analysis: applications in archaeology and paleoecology. MASCA, University of Pennsylvania Museum, Philadelphia, PA.Google Scholar
  14. —,and R. A. Benfer, Jr. 1994. Identifying crops through phytolith analysis. Paper presented at the 59th Annual Meeting of the Society for American Archaeology, Anaheim, CA.Google Scholar
  15. —,D. R. Piperno, E. H. Dinan, M. Umlauf, Z. Zhao, and R. A. Benfer, Jr. 1995. Distinguishing rice(Oryza sativa Poaceae) from wild Oryza spe- cies through phytolith analysis: results of prelimi- nary research. Economic Botany 49:183–196.Google Scholar
  16. Piperno, Dolores R. 1988. Phytolith analysis. An ar- chaeological and geological perspective. Academic Press, San Diego.Google Scholar
  17. Powers-Jones, A. H., and J. Padmore. 1993. The use of quantitative methods and statistical analysis in the study of opal phytoliths. Pages 47–56in D. M. Pearsall and D. R. Piperno, eds., Current research in phytolith analysis: applications in archaeology and paleoecology. MASCA, University of Pennsylvania Museum, Philadelphia, PA.Google Scholar
  18. Rapp, George, Jr.,and Susan C. Mulholland, eds. 1992 Phytolith systematics. Emerging issues. Plenum Press, New York.Google Scholar
  19. Zhao, Z. 1996. Rice domestication in the Middle Yangtze region, China: an application of phytolith analysis. Unpublished doctoral dissertation, Department of Anthropology, University of Missouri, Columbia.Google Scholar

Copyright information

© The New York Botanical Garden 1998

Authors and Affiliations

  • Zhijun Zhao
    • 1
  • Deborah M. Pearsall
    • 2
  • Robert A. Benfer
    • 2
  • Dolores R. Piperno
    • 3
  1. 1.Smithsonian Tropical Research InstituteAPOUSA
  2. 2.Department of AnthropologyUniversity of MissouriColumbia
  3. 3.Smithsonian Tropical Research InstituteAPOUSA

Personalised recommendations