The Botanical Review

, Volume 11, Issue 6, pp 310–355 | Cite as

Absorption of water by plants

  • Paul J. Kramer


Soil Moisture Root System Moisture Content Active Absorption Osmotic Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Adams, W. R. 1934. Studies in tolerance of New England forest trees XI. The influence of soil temperature on the germination and development of white pine seedlings. Vermont Agr. Exp. Sta., Bull. 379.Google Scholar
  2. 2.
    Anderson, D. B. andT. Kerr. 1943. A note on the growth behavior of cotton bolls. Pl. Physiol.18: 261–269.Google Scholar
  3. 3.
    Anderssen, F. G. 1929. Some seasonal changes in the tracheal sap of pear and apricot. Pl. Physiol.4: 459–476.CrossRefGoogle Scholar
  4. 4.
    Arndt, C. H. 1937. Water absorption in the cotton plant as affected by soil and water temperatures. Pl. Physiol.12: 703–720.Google Scholar
  5. 5.
    Arnon, D. I. andD. R. Hoagland. 1940. Crop production in artificial culture solutions and in soils with special reference to factors influencing yields and absorption of inorganic nutrients. Soil Sci.50: 463–484.Google Scholar
  6. 6.
    — andC. M. Johnson. 1942. Influence of hydrogen ion concentration on the growth of higher plants under controlled conditions. Pl. Physiol.17: 525–539.CrossRefGoogle Scholar
  7. 7.
    Atkins, W. R. G. 1916. Some recent researches in plant physiology.Google Scholar
  8. 8.
    Ayers, A. D.,et al. 1943. The interrelationships of salt concentration and soil moisture content with the growth of beans. Jour. Am. Soc. Agron.35: 796–810.Google Scholar
  9. 9.
    Bakhuyzen, H. L. Van De Sande. 1930. Vital staining electric charges and physiological behavior of cells in the roots of Vicia faba. [Abst paper presented at meeting of Am. Soc Pl. Physiol.]Google Scholar
  10. 10.
    Bartholomew, E. T. 1926. Internal decline of lemons. III. Water deficit in lemon fruits caused by excessive leaf evaporation. Am. Jour. Bot.13: 102–117.CrossRefGoogle Scholar
  11. 11.
    Bates, C. G. 1924. Relative resistance of tree seedlings to excessive heat U. S. Dept Agr., Dept Bull. 1263.Google Scholar
  12. 12.
    Bennett, J. al. 1927. Methods of obtaining tracheal sap from woody plants. New Phytol.26: 316–323.CrossRefGoogle Scholar
  13. 13.
    Bennett-Clark, T. al. 1936. Water relations and osmotic pressures of plant cells. New Phytol.35:277–291.CrossRefGoogle Scholar
  14. 14.
    Bialoglowski, J. 1936. Effect of extent and temperature of roots on transpiration of rooted lemon cuttings. Proc. Am. Soc. Hort. Sci.34: 96–102.Google Scholar
  15. 15.
    Biswell, H. H. 1935. Effect of the environment upon the root habits of certain deciduous forest trees. Bot. Gaz.96: 676–708.CrossRefGoogle Scholar
  16. 16.
    — andJ. E. Weaver. 1933. Effect of frequent clipping on the development of roots and tops of grasses in prairie sod. Ecology14: 368–390.CrossRefGoogle Scholar
  17. 17.
    Blackman, V. H. 1921. Osmotic pressure, root pressure and exudation. New Phytol.20: 106–115.CrossRefGoogle Scholar
  18. 18.
    Boehm, J. 1892. Ueber einen eigenthümlichen Stammdruck. Ber. Deut. Bot. Ges.10: 539–544.Google Scholar
  19. 19.
    Boonstra, A. E. H. R. 1935. Die Bedeutung der Wurzeldrucks für erhöhte Transpiration der Erbsen bei höherer Wurzeltemperatur. Planta24: 59–65.CrossRefGoogle Scholar
  20. 20.
    Bose, J. C. 1927. Plant autographs and their revelations.Google Scholar
  21. 21.
    Boynton, D. 1940. Soil atmosphere and the production of new rootlets by apple tree root systems. Proc. Am. Soc. Hort. Sci.37: 19–26.Google Scholar
  22. 22.
    -. 1941. Soils in relation to fruit-growing in New York. Part XV. Seasonal and soil influences on oxygen and carbon-dioxide levels of New York orchard soils. Cornell Univ. Agr. Exp. Sta., Bull. 763.Google Scholar
  23. 23.
    et al. 1938. Are there different critical oxygen concentrations for the different phases of root activity? Science88: 569–570.PubMedCrossRefGoogle Scholar
  24. 24.
    — andW. Reuther. 1938. Seasonol variation of oxygen and carbon dioxide in three different orchard soils during 1938 and its possible significance. Proc. Am. Soc. Hort. Sci.36: 1–6.Google Scholar
  25. 25.
    Braun, E. L. 1936. Notes on root behavior of certain trees and shrubs of the Illinoian till plain of southwestern Ohio. Ohio Jour. Sci.36: 141–146.Google Scholar
  26. 26.
    Breazeale, J. F. 1930. Maintenance of moisture-equilibrium and nutrition of plants at and below the wilting percentage. Ariz. Agr. Exp. Sta., Tech. Bull. 29.Google Scholar
  27. 27.
    - andF. J. Crider. 1934. Plant association and survival, and the build-up of moisture in semi-arid soils. Ariz. Agr. Exp. Sta., Tech. Bull. 53.Google Scholar
  28. 28.
    Brewig, A. 1936. Beobachtungen über den Einfluss der Spross-Saugung auf die Stoffdurchlässigkeit der Wurzel. Ber. Deut. Bot. Ges.54: 80–85.Google Scholar
  29. 29.
    —. 1936. Die Regulationserscheinungen bei der Wasseraufnahme und die Wasserleitgeschwindigkeit inVicia faba-Wurzeln. Jahrb. Wiss. Bot.82: 803–828.Google Scholar
  30. 30.
    Brown, E. M. 1939. Some effects of temperature on the growth and chemical composition of certain pasture grasses. Missouri Agr. Exp. Sta., Res. Bull. 299.Google Scholar
  31. 31.
    Broyer, T. C. andD. R. Hoagland. 1943. Metabolic activities of roots and their bearing on the relation of upward movement of salts and water in plants. Am. Jour. Bot.30: 261–273.CrossRefGoogle Scholar
  32. 32.
    Burgerstein, A. 1887. Materialien zu einer Monographie betreffend die Erscheinungen der Transpiration der Pflanzen. Zoolog.-Bot. Ges. Wien37: 691–782.Google Scholar
  33. 33.
    Burns, G. P. 1915. The relative transpiration of white pine seedlings. Pl. World18: 1–6.Google Scholar
  34. 34.
    -. 1923. Studies in tolerance of New England forest trees. IV. Minimum light requirement referred to a definite standard. Vermont Agr. Exp. Sta., Bull. 235.Google Scholar
  35. 35.
    Cannon, W. A. 1917. Relation of the rate of root-growth in seedlings of Prosopis velutina in the temperature of the soil. Pl. World20: 320–333.Google Scholar
  36. 36.
    -. 1925. Physiological features of roots, with especial reference to the relation of roots to aeration of the soil. Carnegie Inst. Wash., Publ. 368.Google Scholar
  37. 37.
    —. 1932. Absorption of oxygen by roots when the shoot is in darkness or in light. Pl. Physiol.4: 673–684.Google Scholar
  38. 38.
    Chang, H. T. andW. E. Loomis. 1944. The effect of carbon dioxide on absorption of water and minerals by roots. [Abstr. of papers presented at meeting of Am. Soc. Pl. Physiol.]Google Scholar
  39. 39.
    Chapman, H. D. andE. R. Parker. 1942. Weekly absorption of nitrate by young bearing orange trees growing out of doors in solution, cultures. Pl. Physiol.17: 366–376.Google Scholar
  40. 40.
    Childers, N. F. andD. G. White. 1942. Influence of submersion of the roots on transpiration, apparent photosynthesis, and respiration of young apple trees. Pl. Physiol.17: 603–618.Google Scholar
  41. 41.
    Clark, W. S. 1874. The circulation of sap in plants. Mass. State Board Agr., Ann. Rep.21: 159–204.Google Scholar
  42. 42.
    —. 1875. Observations upon the phenomena of plant life. Mass. State Board Agr., Ann. Rep.22: 204–312.Google Scholar
  43. 43.
    Clements, F. E. 1921. Aeration and air content. Carnegie Inst. Wash., Publ. 315.Google Scholar
  44. 44.
    — andE. V. Martin. 1934. Effect of soil temperature on transpiration inHelianthus annum. Pl. Physiol.9: 619–630.Google Scholar
  45. 45.
    Coile, T. S. 1940. Soil changes associated with loblolly pine succession on abandoned agricultural land of the Piedmont Plateau. Duke Univ. School For., Bull. 5.Google Scholar
  46. 46.
    Collison, R. C. 1935. Lysimeter investigations. IV. Water movement, soil temperatures, and root activity under apple trees. Cornell Univ. Agr. Exp. Sta., Tech. Bull. 237.Google Scholar
  47. 47.
    Commoner, al. 1943. The mechanism of auxin action. The effect of auxin on water absorption by potato tuber tissue. Am. Jour. Bot.30: 23–28.CrossRefGoogle Scholar
  48. 48.
    Conner, S. D. andC. T. Gregory. 1927. Excess soluble salts as the cause of vegetable diseases in greenhouses. Proc. Ind. Acad. Sci.37: 385–390.Google Scholar
  49. 49.
    Conrad, J. P. andF. J. Veihmeyer. 1929. Root development and soil moisture. Hilgardia4: 113–134.Google Scholar
  50. 50.
    Conway, V. M. 1940. Aeration and plant growth in wet soils. Bot. Rev.6: 149–163.Google Scholar
  51. 51.
    Coupin, H. 1919. Sur le pouvoir absorbant du sommet des racines. Compt. Rend. Acad. Sci., Paris168: 519–522. 1919; Bot. Abs.4: 1402. 1920.Google Scholar
  52. 52.
    —. 1919. Sur le lieu d’absorption de l’eau par la racine. Compt. Rend. Acad. Sci., Paris168: 1005–1008. 1919; Bot. Abs.5: 2138. 1920.Google Scholar
  53. 53.
    Cpville, F. V. 1910. Experiments in blueberry culture. U. S. Dept. Agr., Bur. Pl. Ind., Bull. 193.Google Scholar
  54. 54.
    Crafts, A. S. 1936. Further studies on exudation in cucurbits. Pl. Physiol.11: 63–79.Google Scholar
  55. 55.
    — andT. C. Broyer. 1938. Migration of salts and water into xylem of the roots of higher plants. Am. Jour. Bot.25: 529–535.CrossRefGoogle Scholar
  56. 56.
    Crider, F. J. 1933. Selective absorption of ions not confined to young roots. Science78: 169.PubMedCrossRefGoogle Scholar
  57. 57.
    Currier, H. B. 1944. Water relations of root cells of Beta vulgaris. Am. Jour. Bot.31: 378–387.CrossRefGoogle Scholar
  58. 58.
    Curtis, L. C. 1943. Deleterious effects of guttated fluid on foliage. Am. Jour. Bot.30: 778–781.CrossRefGoogle Scholar
  59. 59.
    —. 1944. The influence of guttation fluids on pesticides. Phytopath.34: 196–205.Google Scholar
  60. 60.
    —. 1944. The exudation of glutamine from lawn grass. Pl. Physiol.19: 1–5.Google Scholar
  61. 61.
    Curtis, O. F. 1935. The translocation of solutes in plants.Google Scholar
  62. 62.
    Davis, C. H. 1940. Absorption of soil moisture by maize roots. Bot. Gaz.101: 791–805.CrossRefGoogle Scholar
  63. 63.
    DeCandolle, A. P. 1832. Physiologie végétale.Google Scholar
  64. 64.
    Dittmer, H. J. 1937. A quantitative study of the roots and root hairs of a winter rye plant (Secale cereale). Am. Jour. Bot.24: 417–420.CrossRefGoogle Scholar
  65. 65.
    Dixon, H. H. 1910. Transpiration and the ascent of sap. Prog. Rei Bot.3: 1–66.Google Scholar
  66. 66.
    —. 1933. Bast-sap. Proc. Roy. Soc. Dublin20: 487–497.Google Scholar
  67. 67.
    — andW. R. G. Atkins. 1915. On the constituents and concentration of the sap in the conducting tracts, and on the circulation of carbohydrates in plants. Proc. Roy. Soc. Dublin14: 374–392.Google Scholar
  68. 68.
    ——. 1916. On the composition of the sap in the conducting tracts of trees at different levels and at different seasons of the year. Proc. Roy. Soc. Dublin15: 51–62.Google Scholar
  69. 69.
    — andG. J. Dixon. 1931. The exudation of water from the leaf-tips ofColocasia antiquorum, Schott. Proc. Roy. Soc. Dublin20: 7–10.Google Scholar
  70. 70.
    Döring, B. 1935. Die Temperaturabhängigkeit der Wasseraufnahme und ihre ökologische Bedeutung. Zeits. Bot.28: 305–383.Google Scholar
  71. 71.
    Duncan, W. H. 1941. The study of root development in three soil types in the Duke Forest. Ecol. Mon.11: 141–164.CrossRefGoogle Scholar
  72. 72.
    Duncan, H. F. andD. A. Cooke. 1932. A preliminary investigation of the effect of temperature on root absorption of the sugar cane. Hawaiian Planters Rec.36: 31–39.Google Scholar
  73. 73.
    Dutrochet, H. J. 1837. Mémoires pour servir à l’histoire anatomique et physiologique des végétaux et des animaux.Google Scholar
  74. 74.
    Eames, A. J. andL. H. MacDaniels. 1925. An introduction to plant anatomy.Google Scholar
  75. 75.
    Eaton, F. M. 1927. The water-requirement and cell-sap concentration of Australian saltbush and wheat as related to the salinity of the soil. Am. Jour. Bot.14: 212–226.CrossRefGoogle Scholar
  76. 76.
    —. 1941. Water uptake and root growth as influenced by inequalities in the concentration of the substrate. Pl. Physiol.16: 545–564.Google Scholar
  77. 77.
    —. 1943. The osmotic and vitalistic interpretations of exudation. Am. Jour. Bot.30: 663–674.CrossRefGoogle Scholar
  78. 78.
    Figidor, W. 1898. Untersuchungen über die Erscheinung des Blutungsdruckes in den Tropen. Sitzb. Wien. Akad. Abt.1, 107–640.Google Scholar
  79. 79.
    Firbas, F. 1931. Untersuchungen über den Wasserhaushalt der Hochmoorpflanzen. Jahrb. Wiss. Bot74: 459–696.Google Scholar
  80. 8O.
    Franklin, H.J. et al. 1942. Weather in cranberry culture. Mass. Agr. Exp. Sta., Bull. 402.Google Scholar
  81. 81.
    Freeland, R. O. 1937. Effect of transpiration upon the absorption of mineral salts. Am. Jour. Bot.21: 373–374.CrossRefGoogle Scholar
  82. 82.
    Friesner, R. C. 1940. An observation on the effectiveness of root pressure in the ascent of sap. Butler Univ., Bot. Stud.4: 226–227.Google Scholar
  83. 83.
    Gast, P. R. 1937. Studies on the development of conifers in raw humus. III. The growth of Scots pine seedlings in pot cultures of different soils under varied radiation intensities. Medd. Fran. Statens Skogsförsöksanstalt29: 587–682.Google Scholar
  84. 84.
    Gäumann, E. 1938. Über die experimentelle Auslösung der Guttation. Ber. Deut. Bot. Ges.56: 396–405.Google Scholar
  85. 85.
    Gilbert, S. G. andJ. W. Shive. 1942. The significance of oxygen in nutrient substrates for plants. I. The ogygen requirement. Soil Sci.53: 143–152.CrossRefGoogle Scholar
  86. 86.
    Glasstone, V. F. C. 1942, Passage of air through plants and its relation to measurement of respiration and assimilation. Am. Jour. Bot.29: 156–159.CrossRefGoogle Scholar
  87. 87.
    Grossenbacher, K. A. 1938. Diurnal fluctuation in root pressure. Pl. Physiol.13: 669–676.Google Scholar
  88. 88.
    —. 1939. Autonomic cycle of rate of exudation of plants. Am. Jour. Bot.26: 107–109.CrossRefGoogle Scholar
  89. 89.
    Gustafson, F. G. 1934. The effect of a decrease in the amount of transpiration on the growth of certain plants. Pap. Mich. Acad. Sci., Arts, & Let.19:65–82.Google Scholar
  90. 90.
    Haas, A. R. C. 1936. Growth and water losses in citrus as affected by soil temperature. Cal. Citrog. p. 467.Google Scholar
  91. 91.
    Haberlandt, G. 1914. Physiological plant anatomy. [Eng. trans.]Google Scholar
  92. 92.
    Hales, S. 1727. Vegetable staticks.Google Scholar
  93. 93.
    Harris, G. H. 1926. The activity of apple and filbert roots especially during the winter months. Proc. Am. Soc. Hort. Sci.23: 414–422.Google Scholar
  94. 94.
    Harris, J. A. 1934. The physico-chemical properties of plant saps in relation to phytogeography. Data on natural vegetation in its natural environment.Google Scholar
  95. 95.
    Harrison, C. M. 1931. Effect of cutting and fertilizer applications on grass development. Pl. Physiol.6: 669–684.Google Scholar
  96. 96.
    Hasselbring, H. 1914. Effect of shading on the transpiration and assimilation of the tobacco plant in Cuba. Bot. Gaz.57: 257–286.CrossRefGoogle Scholar
  97. 97.
    Hatch, A. B. 1937. The physical basis of mycotrophy inPinus. The Black Rock Forest Bull. 6.Google Scholar
  98. 98.
    — andK. D. Doak. 1933. Mycorrhizal and other features of the root systems of Pinus. Jour. Arn. Arb.14: 85–99.Google Scholar
  99. 99.
    Hayward, H. E. 1938. The structure of economic plants.Google Scholar
  100. 100.
    — andW. M. Blair. 1942. Some responses of Valencia orange seedlings to varying concentrations of chloride and hydrogen ions. Am. Jour. Bot.29: 148–155.CrossRefGoogle Scholar
  101. 101.
    et al. 1942. Device for measuring entry of water into roots. Bot. Gaz.104: 152–160.CrossRefGoogle Scholar
  102. 102.
    — andE. M. Long. 1941. Anatomical and physiological responses of the tomato to varying concentrations of sodium chloride, sodium sulphate, and nutrient solutions. Bot. Gaz.102: 437–462.CrossRefGoogle Scholar
  103. 103.
    - and -. 1942. The anatomy of the seedling and roots of the Valencia orange. U. S. Dept. Agr., Tech. Bull. 786.Google Scholar
  104. 103a.
    ——. 1942. Vegetative responses of the Elberta peach on Lovell and Shalil rootstocks to high chloride and sulfate solutions. Proc. Am. Soc. Hort. Sci.41: 149–155.Google Scholar
  105. 104.
    — andW. B. Spurr. 1943. Effects of osmotic concentration of substrate on the entry of water into corn roots. Bot. Gaz.105: 152–164.CrossRefGoogle Scholar
  106. 105.
    Henderson, L. 1934. Relation between root respiration and absorption. Pl. Physiol.9: 283–300.Google Scholar
  107. 106.
    Hendrickson, A. H. andF. J. Veihmeyer. 1931. Influence of dry soil on root extension. Pl. Physiol.6: 567–576.Google Scholar
  108. 107.
    Herrick, E. H. 1933. Seasonal and diurnal variations in the osmotic values, and suction tension values in the aerial portions ofAmbrosia trifida. Am. Jour. Bot.20: 18–34.CrossRefGoogle Scholar
  109. 108.
    Heyl, J. G. 1933. Der Einfluss von Aussenfaktoren auf das Bluten der Pflanzen. Planta20: 294–353. 1933.CrossRefGoogle Scholar
  110. 109.
    Hibbard, R. P. andO. E. Harrington. 1916. The depression of the freezing point in triturated plant tissue and the magnitude of this depression as related to soil moisture. Physiol. Res.1: 441–454.Google Scholar
  111. 110.
    Hoagland, D. R. 1944. The inorganic nutrition of plants.Google Scholar
  112. 111.
    — andT. C. Broyer. 1942. Accumulation of salt and permeability in plant cells. Jour. Gen. Physiol.25: 865–880.CrossRefGoogle Scholar
  113. 112.
    Hofmeister, W. 1862. Ueber Spannung, Ausflussmenge und Ausflussgeschwindigkeit von Säften lebender Pflanzen. Flora45: 97–108, 113–120, 138–144, 145–152, 170–175.Google Scholar
  114. 113.
    Hohn, K. 1934. Die Bedeutung der Wurzelhaare für Wasseraufnahme der Pflanzen. Zeits. Bot.27: 529–564.Google Scholar
  115. 114.
    Holch, A. E. 1931. Development of roots and shoots of certain deciduous tree seedlings in different forest sites. Ecology12: 259–298.CrossRefGoogle Scholar
  116. 115.
    Howard, A. 1925. The effect of grass on trees. Proc. Roy. Soc.B 97: 284–320.Google Scholar
  117. 116.
    Huber, B. 1934. Review of paper by James and Baker. Zeits. Bot.27: 519–521.Google Scholar
  118. 117.
    —. 1937. Wasserumsatz und Stoffbewegungen. Fortschritte Bot.7: 197–207.Google Scholar
  119. 118.
    et al. 1937. Untersuchungen über den Assimilatstrom. Tharandter Forstl. Jahrb.88: 1017–1050.Google Scholar
  120. 119.
    Huberty, M. R. andA. F. Pillsbury. 1943. Solid, liquid, gaseous phase relationships of soils on which avocado trees have declined. Proc. Am. Soc. Hort. Sci.42: 39–45.Google Scholar
  121. 120.
    Iljin, W. S. 1929. Der Einfluss der Standortsfeuchtigkeit auf den osmotischen Wert bei Pflanzen. Planta7: 45–58.CrossRefGoogle Scholar
  122. 121.
    Ingold, C. T. 1935. Note on exudation and exudation pressures in birch. New Phytol.34: 437–441.CrossRefGoogle Scholar
  123. 122.
    Ivanoff, S. S. 1944. Guttation-salt injury on leaves of cantaloupe, pepper, and onion. Phytopath.34: 436–437.Google Scholar
  124. 123.
    James, W. O. andH. Baker. 1933. Sap pressure and the movements of sap. New Phytol.32: 317–343.CrossRefGoogle Scholar
  125. 124.
    Jenny, H. andR. Overstreet. 1939. Cation exchange between plant roots and soil colloids. Soil Sci.47: 257–272.CrossRefGoogle Scholar
  126. 125.
    Johnson, J. 1936. Relation of root pressure to plant disease. Science84: 135–136.PubMedCrossRefGoogle Scholar
  127. 126.
    Jones, C. al. 1903. The maple sap flow. Vermont Agr. Exp. Sta., Bull. 103.Google Scholar
  128. 127.
    Jones, L. H. 1938. Relation of soil temperature to chlorosis of gardenia. Jour. Agr. Res.57: 611–621.Google Scholar
  129. 128.
    Jost, L. 1916. Versuche über die Wasserleitung in der Pflanze. Zeits. Bot.8: 1–55.Google Scholar
  130. 129.
    Karsten, K. S. 1939. Root activity and the oxygen requirement in relation to soil fertility. Am. Jour. Bot.26: 855–860.CrossRefGoogle Scholar
  131. 130.
    Keller, R. 1930. Der elektrische Faktor des Wassertransports im Lichte der Vitalfarbung. Ergebn. Physiol.30: 294–407.Google Scholar
  132. 131.
    Kiesselbach, T. A. 1916. Transpiration as a factor in crop production. Neb. Agr. Exp. Sta., Res. Bull. 6.Google Scholar
  133. 132.
    Kohnlein, E. 1930. Untersuchungen über die Höhe des Wurzelwiderstandes und die Bedeutung aktiver Wurzeltätigkeit für die Wasserversorgung der Pflanzen. Planta10: 381–423.CrossRefGoogle Scholar
  134. 133.
    Korstian, C. F. 1924. Density of cell sap in relation to environmental conditions in the Wasatch Mountains of Utah. Jour. Agr. Res.28: 845–907.Google Scholar
  135. 134.
    — andN. J. Fetherolf. 1921. Control of stem girdle of spruce transplants caused by excessive heat. Phytopath.11: 485–490.Google Scholar
  136. 135.
    Kozlowski, T. T. 1943. Transpiration rates of some forest tree species during the dormant season. Pl. Physiol.18: 252–260.CrossRefGoogle Scholar
  137. 136.
    Kramer, P. J. 1932. The absorption of water by root systems of plants. Am. Jour. Bot.19: 148–164.CrossRefGoogle Scholar
  138. 137.
    —. 1933. The intake of water through dead root systems and its relation to the problem of absorption by transpiring plants. Am. Jour. Bot20: 481–492.CrossRefGoogle Scholar
  139. 138.
    —. 1934. Effects of soil temperature on the absorption of water by plants. Science79: 371–372.PubMedCrossRefGoogle Scholar
  140. 139.
    —. 1937. The relation between rate of transpiration and rate of absorption of water in plants. Am. Jour. Bot.24: 10–15.CrossRefGoogle Scholar
  141. 140.
    —. 1938. Root resistance as a cause of the absorption lag. Am. Jour. Bot.25: 110–113.CrossRefGoogle Scholar
  142. 141.
    —. 1939. The forces concerned in the intake of water by transpiring plants. Am. Jour. Bot.26: 784–791.CrossRefGoogle Scholar
  143. 142.
    —. 1940. Causes of decreased absorption of water by plants in poorly aerated media. Am. Jour. Bot.27: 216–220.CrossRefGoogle Scholar
  144. 143.
    —. 1940. Sap pressure and exudation. Am. Jour. Bot.27: 929–931.CrossRefGoogle Scholar
  145. 144.
    —. 1940. Root resistance as a cause of decreased water absorption by plants at low temperatures. Pl. Physiol.15: 63–79.CrossRefGoogle Scholar
  146. 145.
    —. 1941. Soil moisture as a limiting factor for active absorption and root pressure. Am. Jour. Bot.28: 446–451.CrossRefGoogle Scholar
  147. 146.
    —. 1942. Species differences with respect to water absorption at low soil temperatures. Am. Jour. Bot.29: 828–832.CrossRefGoogle Scholar
  148. 147.
    -. 1944. Absorption of water through suberized roots of trees. [Absts. of papers presented at meeting of Am. Soc. Pl. Physiol.]Google Scholar
  149. 148.
    —. Soil moisture in relation to plant growth. 1944. Bot. Rev.10: 525–559.CrossRefGoogle Scholar
  150. 149.
    — andT. S. Coile. 1940. An estimate of the volume of water made available by root extension. Pl. Physiol.15: 743–747.Google Scholar
  151. 150.
    Lachenmeier, J. 1932. Transpiration und Wasserabsorption intakter Pflanzen nach vorausgegangener Verdunkelung bei Konstanz der Lichtintensität und der übrigen Aussenfaktoren. Jahrb. Wiss. Bot.76: 765–827.Google Scholar
  152. 151.
    Laing, H. E. 1940. Respiration of the rhizomes ofNuphar advenum and other water plants. Am. Jour. Bot.27: 574–581.CrossRefGoogle Scholar
  153. 152.
    —. 1940. The composition of the internal atmosphere ofNuphar advenum and other water plants. Am. Jour. Bot.27: 861–868.CrossRefGoogle Scholar
  154. 153.
    Lauritzen, C. W. 1934. Displacement of soil solubles through plant roots by means of air pressure as a method of studying soil fertility problems. Jour. Am. Soc. Agron.26: 807–819.Google Scholar
  155. 154.
    Leonard, O. A. 1944. Use of root pressures in determining injury to roots by cultivation. Pl. Physiol.19: 157–163.Google Scholar
  156. 155.
    Lepeschkin, W. W. 1906. Zur Kenntnis des Mechanismus der aktiven Wasserausscheidung der Pflanzen. Beih. Bot. Centralbl.19: 409–452.Google Scholar
  157. 156.
    —. 1923. Über aktive und passive Wasserdrusen und Wasserspalten. Ber. Deut. Bot. Ges.41: 298–300.Google Scholar
  158. 157.
    Livingston, B. E. 1927. Plant water relations. Quart. Rev. Biol.2: 494–515.CrossRefGoogle Scholar
  159. 158.
    — andE. E. Free. 1917. The effect of deficient soil oxygen on the roots of higher plants. Johns Hopkins Univ., Circ.3: 182–185.Google Scholar
  160. 159.
    - andL. A. Hawkins. 1915. The water-relation between plant and soil. Carnegie Inst. Wash., Publ. 204.Google Scholar
  161. 160.
    Loehwing, W. F. 1934. Physiological aspects of the effect of continuous soil aeration on plant growth. Pl. Physiol.9: 567–583.Google Scholar
  162. 161.
    Long, E. M. 1943. The effect of salt additions to the substrate on intake of water and nutrients by roots of approach-grafted tomato plants. Am. Jour. Bot.30: 594–601.CrossRefGoogle Scholar
  163. 162.
    Loomis, W. E. andL. M. Ewan. 1936. Hydrotropic responses of roots in soil. Bot. Gaz.97: 728–743.CrossRefGoogle Scholar
  164. 163.
    Loweneck, M. 1930. Untersuchungen über Wurzelatmung. Planta10: 185–228.CrossRefGoogle Scholar
  165. 164.
    Lowry, M. W. andP. Tabor. 1931. Sap for analysis by bleeding corn plants. Science73: 453.PubMedCrossRefGoogle Scholar
  166. 165.
    Lund, E. J. 1931. Electric correlation between living cells in cortex and wood in the Douglas fir. Pl. Physiol.6: 631–652.Google Scholar
  167. 166.
    Lundegardh, H. 1940. Anionenenatmung und Bluten. Planta31: 184–191.CrossRefGoogle Scholar
  168. 167.
    Lyon, C. J. 1942. A non-osmotic force in the water relations of potato tubers during storage. Pl. Physiol.17: 250–266.Google Scholar
  169. 168.
    MacDougal, D. T. 1920. Hydration and growth. Carnegie Inst. Wash., Publ. 297.Google Scholar
  170. 169.
    —. 1925. Absorption and exudation pressures of sap in plants. Am. Phil. Soc, Proc.64: 102–130.Google Scholar
  171. 170.
    -. 1926. The hydrostatic system of trees. Carnegie Inst. Wash., Publ. 373.Google Scholar
  172. 171.
    McCool, M. M. andC. E. Millar. 1917. The water content of the soil and the composition and concentration of the soil solution as indicated by the freezing-point lowerings of the roots and tops of plants. Soil Sci.3: 113–138.CrossRefGoogle Scholar
  173. 172.
    McDougall, W. B. 1916. The growth of forest tree roots. Am. Jour. Bot.3: 384–392.CrossRefGoogle Scholar
  174. 173.
    —. 1921. Thick-walled root hairs ofGleditsia and related genera. Am. Jour. Bot.8: 171–175.CrossRefGoogle Scholar
  175. 174.
    McLean, R. G. 1919. Studies in the ecology of tropical rain forest. Jour. Ecol.7: 5–54.CrossRefGoogle Scholar
  176. 175.
    Magistad, O. al. 1943. Effect of salt concentration, kind of salt, and climate on plant growth in sand cultures. Pl. Physiol.18: 151–166.Google Scholar
  177. 176.
    — andR. F. Reitemeier. 1943. Soil solution concentrations at the wilting point and their correlation with plant growth. Soil Sci.55: 351–360.CrossRefGoogle Scholar
  178. 177.
    Mallery, T. D. 1935. Changes in the osmotic value of the expressed sap of leaves and small twigs ofLarrea tridentata as influenced by environmental conditions. Ecol. Monog.5: 1–35.CrossRefGoogle Scholar
  179. 178.
    Mason, T. G. andE. Fhillis. 1939. Experiments on the extraction of sap from the vacuole of the leaf of the cotton plant and their bearing on the osmotic theory of water absorption by the cell. Ann. Bot.3: 531–544.Google Scholar
  180. 179.
    Maximov, N. A. 1929. The plant in relation to water.Google Scholar
  181. 180.
    Mendiola, N. B. 1922. Effect of different rates of transpiration on the dry weight and ash content of the tobacco plant. Philippine Jour. Sci.20: 639–655; Bot. Abs.12: 1417. 1923.Google Scholar
  182. 181.
    Merwin, H. E. andH. Lyon. 1909. Sap pressure in the birch stem. Bot. Gaz.48: 442–458.CrossRefGoogle Scholar
  183. 182.
    Meyer, B. S. 1931. Effects of mineral salts upon the transpiration and water requirement of the cotton plant. Am. Jour. Bot.18: 79–93.CrossRefGoogle Scholar
  184. 183.
    —. 1938. The water relations of plant cells. Bot. Rev.4: 531–547.Google Scholar
  185. 184.
    - andD. B. Anderson. 1939. Plant Physiology.Google Scholar
  186. 185.
    Michaelis, P. 1934. Ökologische Studien an der alpinen Baumgrenze. IV. Zur Kenntnis des winterlichen Wasserhaushaltes. Jahrb. Wiss. Bot.80: 169–247.Google Scholar
  187. 186.
    Miller, E. C. 1938. Plant physiology. 2nd ed.Google Scholar
  188. 187.
    Mitchell, H. L. 1936. The effect of varied solar radiation upon the growth, development and nutrient content of white pine seedlings grown under nursery conditions. Black Rock Forest Papers1: 16–22.Google Scholar
  189. 188.
    Molisch, H. 1902. Ueber localen Blutungsdruck und seine Ursachen. Bot. Ztg.60:45–63.Google Scholar
  190. 189.
    Montfort, C. 1920. Physiologische Grundlegung einer Guttations-methode zur relativen Prüfung der Wasseraufnahme. Jahrb. Wiss. Bot.59: 467–524.Google Scholar
  191. 190.
    —. 1922. Die Wasserbilanz in Nährlösung, Salzlösung und Hochmoorwasser. Zeits. Bot.14: 97–172.Google Scholar
  192. 191.
    Moose, C. A. 1938. Chemical and spectroscopic analysis of phloem exudate and parenchyma sap from several species of plants. Pl. Physiol.13: 365–380.Google Scholar
  193. 192.
    Muenscher, W. C. 1922. The effect of transpiration on the absorption of salts by plants. Am. Jour. Bot.9: 311–329.CrossRefGoogle Scholar
  194. 193.
    Münch, E. 1930. Die Stoffbewegungen in der Pflanze.Google Scholar
  195. 194.
    Nightingale, G. T. 1935. Effects of temperature on growth, anatomy, and metabolism of apple and peach roots. Bot. Gaz.96: 581–639.CrossRefGoogle Scholar
  196. 195.
    Parker, K. W. andA. W. Sampson. 1931. Growth and yield of certain Gramineae as influenced by reduction of photosynthetic tissue. Hilgardia5: 361–381.Google Scholar
  197. 196.
    Pavlychenko, T. K. 1937. Quantitative study of the entire root system of weed and crop plants under field conditions. Ecology18: 62–79.CrossRefGoogle Scholar
  198. 197.
    Pearson, G. A. 1931. Forest types in the southwest as determined by climate and soil. U. S. Dept. Agr., Tech. Bull. 247.Google Scholar
  199. 198.
    —. 1936. Some observations on the reaction of pine seedlings to shade. Ecology17: 270–276.CrossRefGoogle Scholar
  200. 199.
    Pfeffer, W. 1900. The physiology of plants. [Eng. trans.]Google Scholar
  201. 200.
    Pierre, W. H. andG. G. Pohlman. 1933. Preliminary studies of the exuded plant sap and the relation between the composition of the sap and the soil solution. Jour. Am. Soc. Agron.25: 144–160.Google Scholar
  202. 201.
    Priestley, J. H. 1920. The mechanism of root pressure. New Phytol.19: 189–200.CrossRefGoogle Scholar
  203. 202.
    —. 1922. Further observations upon the mechanism of root pressure. New Phytol.21: 41–48.CrossRefGoogle Scholar
  204. 203.
    — andR. M. Tupper-Carey. 1922. The water relations of the plant growing point. New Phytol.21: 210–229.CrossRefGoogle Scholar
  205. 204.
    — andA. Wormall. 1925. On the solutes exuded by root pressure from vines. New Phytol.24: 24–38.CrossRefGoogle Scholar
  206. 205.
    Proebsting, E. L. 1943. Root distribution of some deciduous fruit trees in a California orchard. Proc. Am. Soc. Hort Sci.43: 1–4.Google Scholar
  207. 206.
    Purer, E. A. andD. Demaree. 1934. Influence of temperature changes on the water content of Salix and Helianthus. Proc. Ind. Acad. Sci.44: 45–46.Google Scholar
  208. 207.
    Puri, A. N. 1939. Physical characteristics of soils: V. The capillary tube hypothesis. Soil Sci.48: 505–520.Google Scholar
  209. 208.
    Raber, O. 1937. Water utilization by trees, with special reference to the economic forest species of the north temperate zone. U. S. Dept Agr., Misc. Publ. 257.Google Scholar
  210. 209.
    Raleigh, G. J. 1941. The effect of culture solution temperature on water intake and wilting of the muskemelon. Proc. Am. Soc. Hort. Sci.38: 487–488.Google Scholar
  211. 210.
    Reed, J. F. 1939. Root and shoot growth of shortleaf and loblolly pines in relation to certain environmental conditions. Duke Univ. School For., Bull. 4.Google Scholar
  212. 211.
    Renner, O. 1912. Versuche zur Mechanik der Wasserversorgung. Ber. Deut Bot. Ges.30: 576–580,642–648.Google Scholar
  213. 212.
    —. 1915. Die Wasserversorgung der Pflanzen. Handworterbuch Naturwiss.10: 538–557.Google Scholar
  214. 213.
    —. 1929. Versuche zur Bestimmung des Filtrationswiderstandes der Wurzeln. Jahrb. Wiss. Bot.70: 805–838.Google Scholar
  215. 214.
    Richards, L. A. andL. R. Weaver. 1943. Fifteen-atmosphere percentage as related to the permanent wilting percentage. Soil Sci.56: 331–339.CrossRefGoogle Scholar
  216. 215.
    Robertson, J. H. 1933. Effect of frequent clipping on the development of certain grass seedlings. Pl. Physiol.8: 425–447.Google Scholar
  217. 216.
    Robinson, O. W. 1930. Some chemical phases of submerged soil conditions. Soil Sci.30: 197–217.CrossRefGoogle Scholar
  218. 217.
    Rogers, W. S. 1933. Root studies. IV. A method of observing root growth in the field ; illustrated by observations in an irrigated apple orchard in British Columbia. East Mailing Agr. Exp. Sta., Ann. Rep.21: 86–91.Google Scholar
  219. 218.
    Romell, L. G. 1918. Zur Frage einer Reizbarkeit blütender Zellen durch hydrostatischen Druck. Svensk. Bot Tidskr.12: 338.Google Scholar
  220. 219.
    —. 1918. Eine neue anscheinend tagesautonomische Periodezitate. Svensk Bot. Tidskr.12: 446–483.Google Scholar
  221. 220.
    Rosene, H. F. 1937. Distribution of the velocities of absorption of water in the onion root. Pl. Physiol.12: 1–19.Google Scholar
  222. 221.
    —. 1941. Control of water transport in local root regions of attached and isolated roots by means of the osmotic pressure of the external solution. Am. Jour. Bot.28: 402–410.CrossRefGoogle Scholar
  223. 222.
    —. 1941. Comparison of rates of water intake in contiguous regions of intact and isolated roots. Pl. Physiol.16: 19–38.Google Scholar
  224. 223.
    —. 1941. Water balance in the onion root: relation of volume intake to volume exudate of excised roots and isolated root segments. Pl. Physiol.16: 447–460.Google Scholar
  225. 224.
    —. 1943. Quantitative measurement of the velocity of water absorption in individual root hairs by a microtechnique. Pl. Physiol.18: 588–607.Google Scholar
  226. 225.
    —. 1944. Effect of cyanide on rate of exudation in excised onion roots. Am. Jour. Bot.31: 172–174.CrossRefGoogle Scholar
  227. 226.
    Rouschall, E. 1935. Untersuchungen über die Temperatur-Abhängigkeit der Wasseraufnahme ganzer Pflanzen mit besonderer Berucksichtigung der Übergangsreakationen. Sitzb. Wien Akad.144: 313–348.Google Scholar
  228. 227.
    Sabinin, D. A. 1925. On the root system as an osmotic apparatus. Bull. Inst. Recher. Biol. Univ. Perm4: suppl. 2, 1–136.Google Scholar
  229. 228.
    Sachs, J. 1887. On the physiology of plants. [Eng. trans.]Google Scholar
  230. 229.
    Schneider, G. W. andN. F. Childers. 1941. Influence of soil moisture on photosynthesis, respiration, and transpiration of apple leaves. Pl. Physiol.16: 565–583.Google Scholar
  231. 230.
    Schroeder, R. A. 1939. The effect of root temperature upon the absorption of water by the cucumber. Missouri Agr. Exp. Sta., Res. Bull. 309.Google Scholar
  232. 231.
    Shantz, H. L. 1927. Drought resistance and soil moisture. Ecology8: 145–157.CrossRefGoogle Scholar
  233. 232.
    Shear, G. M. andS. A. Wingard. 1944. Some ways by which nutrition may affect severity of disease in plants. Phytopath.34: 603–605.Google Scholar
  234. 233.
    Shirley, H. L. 1936. Lethal high temperatures for conifers, and the cooling effect of transpiration. Jour. Agr. Res.53: 239–258.Google Scholar
  235. 234.
    Shull, C. A. 1924. Imbibition in relation to absorption and transportation of water in plants. Ecology5: 230–240.CrossRefGoogle Scholar
  236. 235.
    —. 1930. Absorption of water by plants and the forces involved. Jour. Am. Soc. Agron.22: 459–471.Google Scholar
  237. 236.
    Shunk, I. V. 1940. Persistent root hairs ofDionaea muscipula, Venus’ fly-trap. Jour. Elisha Mitchell Sci. Soc.56: 224.Google Scholar
  238. 237.
    Sierp, H. andA. Brewig. 1935. Quantitative Untersuchungen über die Wasserabsorptionszone der Wurzeln. Jahrb. Wiss. Bot.82: 99–122.Google Scholar
  239. 238.
    Skoog, al. 1938. Effects of auxin on rates, periodicity, and osmotic relations in exudation. Am. Jour. Bot.25: 749–759.CrossRefGoogle Scholar
  240. 239.
    Speidel, B. 1939. Untersuchungen zur Physiologie des Blutens bei höheren Pflanzen. Planta30: 67–112.CrossRefGoogle Scholar
  241. 240.
    Stanescu, P. P. 1936. Daily variations in products of photosynthesis, water content, and acidity of leaves toward end of vegetative period. Am. Tour. Bot.23: 374–379.CrossRefGoogle Scholar
  242. 241.
    Stern, K. 1919. Über elektroosmotische Erscheinungen und ihre Bedeutung für pflanzenphysiologische Erscheinungen. Zeits. Bot.11: 561–604.Google Scholar
  243. 242.
    Stoddart, L. A. 1935. Osmotic pressure and water content of prairie plants. Pl. Physiol.10: 661–680.CrossRefGoogle Scholar
  244. 243.
    Strasburger, E. 1891. Ueber den Bau und die Verrichtungenen der Leitungsbahnen in den Pflanzen.Google Scholar
  245. 244.
    Stuckey, I. H. 1941. Seasonal growth of grass roots. Am. Jour. Bot.28:486–491.CrossRefGoogle Scholar
  246. 245.
    Tagawa, T. 1934. The relation between the absorption of water by plant root and the concentration and nature of the surrounding solution. Jap. Jour. Bot.7: 33–60.Google Scholar
  247. 246.
    Thoday, D. 1918. On turgescence and the absorption of water by the cells of plants. New Phytol.17: 108–113.CrossRefGoogle Scholar
  248. 247.
    Thut, H. F. 1932. The movement of water through some submerged plants. Am. Jour. Bot.19: 693–709.CrossRefGoogle Scholar
  249. 248.
    Turner, L. M. 1936. Root growth of seedlings ofPinus echinata andPinus taeda. Jour. Agr. Res.53: 145–149.Google Scholar
  250. 249.
    Ursprung, A. 1929. The osmotic quantities of the plant cell. Proc. Int. Cong. Pl. Sci. Vol. 2: 1081–1094.Google Scholar
  251. 250.
    Van Overbeek, J. 1942. Water uptake by excised root systems of the tomato due to non-osmotic forces. Am. Jour. Bot.29: 677–683.CrossRefGoogle Scholar
  252. 251.
    —. 1944. Auxin, water uptake and osmotic pressure in potato tissue. Am. Jour. Bot.31: 265–269.CrossRefGoogle Scholar
  253. 252.
    Vesque, J. 1878. L’absorption comparée directement à la transpiration. Ann. Sci. Nat. VI. Bot.6: 201–222.Google Scholar
  254. 253.
    Wadleigh, C. al. 1943. The trend of starch reserves in bean plants before and after irrigation of a saline soil. Proc. Am. Soc. Hort. Sci.43:201–209.Google Scholar
  255. 254.
    Warne, L. G. G. 1942. The supply of water to transpiring leaves. Am. Jour. Bot.29:875–884.CrossRefGoogle Scholar
  256. 255.
    Weaver, J. E. 1925. Investigations on the root habits of plants. Am. Jour. Bot.12: 502–509.CrossRefGoogle Scholar
  257. 256.
    - andW. E. Bruner. 1927. Root development of vegetable crops.Google Scholar
  258. 257.
    - andF. E. Clements. 1938. Plant ecology.Google Scholar
  259. 258.
    — andJ. W. Crist. 1922. Relation of hardpan to root penetration in the Great Plains. Ecology3: 237–249.CrossRefGoogle Scholar
  260. 259.
    — andW. J. Himmel. 1930. Relation of increased water content and decreased aeration to root development in hydrophytes. Pl. Physiol.5: 69–92.Google Scholar
  261. 260.
    -et al. 1922. Development and activities of roots of crop plants. Carnegie Inst. Wash., Publ. 316.Google Scholar
  262. 261.
    — andJ. Kramer. 1932. Root system ofQuercus macrocarpa in relation to the invasion of prairie. Bot. Gaz.94: 51–85.CrossRefGoogle Scholar
  263. 262.
    Weber, F. andH. Hohenegger, 1923. Reversible Viscositätserhöhung des Protoplasmas bei Kälte. Ber. Deut. Bot. Ges.41: 198–204.Google Scholar
  264. 263.
    Weller, D. M. 1931. Root pressure and root pressure liquids of the sugar cane plant. Hawaiian Planters Rec.35: 349–382.Google Scholar
  265. 264.
    Whitaker, E. S. 1927. Root hairs and secondary thickening in the Compositae. Bot. Gar.76: 30–59.CrossRefGoogle Scholar
  266. 265.
    White, P. R. 1938. “Root-pressure”—an unappreciated force in sap movement. Am. Jour. Bot.25: 223–227.CrossRefGoogle Scholar
  267. 266.
    Whitfield, C. J. 1932. Ecological aspects of transpiration. II. Pikes Peak and Santa Barbara regions: edaphic and climatic aspects. Bot. Gaz.94: 183–196.CrossRefGoogle Scholar
  268. 267.
    Whitney, J. B., Jr. 1942. Effects of the composition of the soil atmosphere on the absorption of water by plants. [Abst. Doc. Diss. Ohio State Univ.38:97–103.]Google Scholar
  269. 268.
    Wieler, A. 1893 Das Bluten der Pflanzen. Beit. Biol. Pflan.6: 1–211.Google Scholar
  270. 269.
    Wilson, J. D. andB. E. Livingston. 1937. Lag in water absorption by plants in water culture with respect to changes in wind. Pl. Physiol.12: 135–150.Google Scholar
  271. 270.
    Wilson, J. K. 1923. The nature and reaction of water from hydathodes. Cornell Agr. Exp. Sta., Mem. 65.Google Scholar
  272. 271.
    Woodhouse, E. D. 1933. Sap hydraulics. Pl. Physiol.8: 177–202.Google Scholar
  273. 272.
    Wright, K. E. 1939. Transpiration and the absorption of mineral salts. Pl. Physiol.14: 171–174.Google Scholar
  274. 273.
    Yocum, W. W. 1937. Development of roots and tops of young Delicious apple trees with different cultural treatments in two soil types. Neb. Agr. Exp. Sta., Res. Bull. 95.Google Scholar

Copyright information

© The New York Botanical Garden 1945

Authors and Affiliations

  • Paul J. Kramer
    • 1
  1. 1.Duke UniversityUSA

Personalised recommendations