The Botanical Review

, Volume 49, Issue 3, pp 259–307 | Cite as

Plant/animal interactions during the upper carboniferous

  • Andrew C. Scott
  • Thomas N. Taylor
Article

Abstract

This paper discusses evidence for plant/animal relationships in the Upper Carboniferous. Close interactions are examined from the study of fossil plants and animals preserved in coal swamp and coastal plain environments. Evidence for plant/animal interactions is in the form of: (1) animal morphology, including both vertebrates and invertebrates. The vertebrates are dominated by amphibians; however, a few reptiles are known and are mostly carnivores or insectivores. The invertebrate communities are dominated by arthropods, many of which are herbivores. Millipedes, springtails and mites are present on the forest floor and in peats, with insects dominating above ground environments. The diets of the animals have been studied using evidence from gut contents, coprolites, anatomy and comparisons to modern representatives. (2) Plant morphology, including positive stimulation (i.e., dispersal vectors) or in terms of negative stimulation such as protection against herbivory. These data include plant anatomy and morphology, evidence of herbivory in the form of chewed leaves, bored seeds and megaspores, etc. Evidence is provided that suggests that the medullosan seed fern pollen typeMonoletes may have been dispersed by animal vectors. Information on plant/animal relationships in a single environment is based on a study of coprolites extracted from permineralizations (coal balls). Assemblages of coprolites found in these coal balls suggest that they were formed principally from mites, Collembola and millipedes, and demonstrates that the association of soil arthropods, which is important in modern soil ecosystems, was already dominating similar environments in the late Carboniferous. The abundant fossil evidence for plant/animal interrelationships during the Upper Carboniferous should be evaluated when considering co-evolution.

Абстракт

В этой статье рассмат ривается очевидност ь связи растениеживотное в Верхней каменноуго льной аормации. Их тес ное взаимодействие доказывалось путем и сследования окамене лых растений и животных, сохранивш ихся в угольных топях и на береговых равнинах. Очевидност ь взаимодействия растение-животное пр оявляется в виде: 1) морфологии жив отных, включая как поз воночные так и беспозвоночные. У позвоночных домини руют земноводные, однако, известны и нек оторые пресмыкающие и, главным образом, плотоядные или насек омоядные. У беспозвон очных доминируют членистоногие, многи е из которых являются травоядными. Многоно жки, ногохвостики и клещи находятся в лесном оп аде и в торфе, в то время как насеком ые доминируют в надзе мной среде. Питание животных изучалось п утем исследования со держания кишечника, копролитов, анатомии этих животных и их сра внения с современными особями. 2) Морфологии р астений, включая поло жительную стимуляцию (т. у. перено счики распыления) или с точки зрения негативной стимуляц ии, такой как защита от травоядных. Эти данные включают анат омию и морфологию рас тений, признаки присутствия травояд ных в виде прожеванны х листьев, проеденных семян, мегаспор и т.д. Пр иводятся доказатель ства которые указывают на то, что пыльца папор отника вида Monoletes может распыляться животны ми-переносчиками. Инф ормация о связи растение-животное в е диной среде основана на изучении копролитов, выделенных из минера лизации (угольных шар иков). Скопление копролитов предпола гает, что они были обра зованы, главным образом, от клещей, чле нистоногих вида Collembola и многоножек, и доказывает, что ассо циация почвенных чле нистоногих, которая важна в современных э косистемах почвы, был а уже доминирующей в подобных условиях в поздней каменноугол ьной формации. При рассмотрении совмес тной эволюции следуе т учтиывать значительное количество окаменел остей, указывающих на взаимосвязь растениеживотное в периодуе Верхней ка менноугольной форма ции.

Resúmen

Este trabajo discute evidencias de relaciones de planta/animal en el Carbonifero Alto. Se examinan interacciones recíprocas cercanas basadas en el estudio de plantas fósiles y animales consevados en ambientes de pantanos de carbón de piedra y llanos costeros. La evidencia de interacciones planta/animal existe en la forma de: (1) morfología animal incluyendo ambos vertebrados e invertebrados. Los vertebrados están dominados por anfibios, sin embargo, se conocen algunos reptiles que son en la mayor parte carnivoros o insectívoros. Las comunidades de invertebrados están dominadas por artrópodos, muchos de los cuales son herbivoros. Milpies, colémbolos (orden Collembola) y acaros están présente sobre el suelo del bosque y en turbas con insectos dominando los ambientes sobre el suelo. Las dietas de los animales han sido estudiadas usando evidencia de contenido del intestino, coprolitos, anatomia y comparaciones con representantes modernos. (2) morfología de planta, incluyendo estimulación positiva (i.e., agentes de dispersión) o estimulación negativa (i.e., protección contra herbivorías). Estos datos incluyen anatomía y morfología de plantas, evidencia de herbívoros en la forma de hojas masticadas, semillas y megaesporas excavadas, etc. Proveemos evidencias que sugieren que el polen del tipoMonoletes de helechos de medulosa con semillas puede haber sido dispersado por agentes de dispersión animal. Informatión sobre relaciones planta/animal en un solo ambiente está apoyado en un estudio de coprolitos sacado de permineralizaciones (bolas de carbón). Conjuntos de coprolitos sugieren que fueron formados principalmente de acaros, colémbolos (orden Collembola), y milipies, y demuestran que la asociación de artrópodos del suelo, que es importante en los ecosistemas de suelos modernos, ya había dominado ambientes semejantes a fines del Carbonífere La abundante evidencia fosíl de interrelaciones planta/animal durante el Carbonífero Alto debe ser evaluada cuando se considera la co-evolución.

Zusammenfassung

Der vorliegende Beitrag erörtert Beweismaterial für Wechselbeziehungen zwischen Pflanzen und Tieren im oberen Karbon. Enge Interaktionen sind durch das Studium fossiler Pflanzen und Tiere, die in Kohlsumpf-und Kustenebenen-Gemeinschaften konserviert wurden, beschrieben. Beweise für Interaktionen zwischen Pflanzen und Tieren treten in folgenden Formen auf: 1) Morphologie der Tiere, einschliesslich Vertebraten und Invertebraten. Amphibien sind die vorherrschended Vertebraten; auch einige Reptilien sind bekannt, diese sind aber meistens Carnivoren oder Insektivoren. Arthropoden dominieren die Invertebraten Gemeinschaften, und viele unter ihnen sind Herbivoren. Doppelfüssler, Springschwänze, Milben und Zecken in Mooren und Waldböden anzutreffen, während Insekten die höheren Schichtendominieren. Die Nahrung der Tiere wurde durch Analyse von Darminhalten, Koprolithen, Anatomie und Vergleiche zu modernen Vertretern studiert. 2) Morphologie der Pflanzen, einschliesslich positive (z.B. Verbreitungsvektoren) und negative Stimulation, wie Schutz vor Herbivoren. Diese Resultate schliessen Pflanzen Anatomie, Morphologie, Nachweis von Herbivoren in Form angefressener Blatter und eingebohrter Samen und Megasporen, etc. ein. Beweise, die Vermutung dass der Pollen der Medullosen Farnsamer des TypenMonoletes mit Hilfe von Tiervektoren verbreitet wurden nahelegen, sind gegeben. Informationen über Wechselbeziehungen zwischen Pflanzen und Tierenin einer bestimmten Umgebung sind auf das Studium der Koprolithen gestützt, die aus Permineralisationen (Dolomitknollen) extraktiert wurden. Anhaufungen von Koprolithen deuten dahin, dass sie vorallem von Milben, Zecken, Springschwänzen und Doppelfüsslern gebildet wurden. Dies zeigt, dass die Assoziation von Gliederfüsslern, welche in den modernen Boden-Oekosystemen so Wichtig ist, schon im oberen Karbon ähnliche Ausmasse angenommen hat. Bei einer Diskussion von K-Evolution sollte der reichliche Nachweis von Beziehungen zwischen Pflanzen und Tieren im oberen Karbon in Betracht gezogen werden.

Sommaire

Cette etude discute le rapport entre les plantes et les animaux dans le carbonifère supérieur. Les interactions discrètes sont examinées par l’étude des plantes et des animaux fossiles, préservés dans les marais du charbon et dans les environnementes des plaines costaux. Évidence des interactions est des classes suivi: (1) Morphologie des animaux, comprenant les vertébrés et les invertébrés. Les vertébrés était dominés par les amphibiens, pourtant, quelque amphibiens sont connus, mais ils sont pour la plupart des carnivores et des insectivores. Les communautés des invertébrés sont dominé par des arthropodes, une grande parties des celles-ci sont des herbivores. Les millipieds, les mites, et les Collembola sont presentés au sol de la forêt et dans les tourbes, avec des insects qiu dominent les environnements au-dessus des sols. Les régimes des animaux étont etudiés en faissons l’usage de l’evidence reçu des contenus des intestins, des coprolithes, de l’anatomie et des comparaisons avec des représentatives modernes. (2) La morphologie des plantes, comprenant la stimulation positive (par example, les vécteurs de la dispersion) ou la stimulation negative telle que la protéction contre l’herbivorie. Ces données comprennent l’anatomie et la morphologie des plantes, l’evidénce de l’herbivorie dans les formes de feuilles mâchées, les semances et les mégaspores percées. L’évidence qui propose que le pollen des pteridospermées du typeMonoletes était dispersé par un vécteur animal, est fourni. Les reseignements sur la relations entre les plantes et les animaux dans un environnement particulier est fondé sur l’étude des coprolithes extrayant des permineralizations (coal balls). Des assemblages des coprolithes proposent qu’ils étèrent formé principalement par les Acari, les Collembola, et les Diploda, et elles demonstrent que l’association des arthropodes du sol qui est important aux ecosystems des sols modernes, etait dominé déjà dans les environnements semblables du carbonifère supérieur. L’évidence abundante des interactions entre des plantes et des animaux pendent le carbonifère supérieur soit evalué, quand on conisidère le co-evolution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ausmus, B. S. 1977. Regulation of wood decomposition rates by arthropod and annelid populations. Ecol. Bull. (Stockholm)25: 180–192.Google Scholar
  2. Barnard, P. 1974. Little evidence for Palaeozoic arthropod and plant interaction.In B. Cox. 1974. Nature249: 615–616.Google Scholar
  3. Baxendale, R. W. 1979. Plant-bearing coprolites from North American coal balls. Palaeontology22: 537–548.Google Scholar
  4. Blackith, R. E. andR. M. Blackith. 1975. Zoogeographical and ecological determinants of collembolan distribution. Proc. Roy. Irish Acad.75: 345–368.Google Scholar
  5. Blower, J. G. 1955. Millipedes and centipedes as soil animals. Pages 138–151in D. K. McE. Kevan (ed.). Soil animals. Witherby. H. F. and G. Ltd., London.Google Scholar
  6. -. 1974. Myriapoda. Symp. Zool. Soc. London32: 712 p.Google Scholar
  7. Brues, C. T. 1946. Insect dietary. Harvard Univ. Press, Cambridge, Massachusetts.Google Scholar
  8. Burges, A. andF. Raw (eds.). 1967. Soil biology. Academic Press, New York.Google Scholar
  9. Carpenter, F. M. 1971. Adaptation among Palaeozoic insects. Proc. North Amer. Paleont. Convention, Chicago 1969,1, 1236–1251.Google Scholar
  10. — andE. S. Richardson. 1976. Structure and relationships of the Upper Carboniferous insectEucaenus ovalis (Protorthoptera: Eucaenidae). Psyche83: 223–243.Google Scholar
  11. Carroll, R. L. 1967. Labyrinthodonts from the Joggins Formation. J. Paleontol.41: 111–142.Google Scholar
  12. Chaloner, W. G. 1976. The evolution of the adaptive features in fossil exines. Pages 1–14in I. K. Ferguson and J. Muller (eds.). Evolutionary significance of the exine. Academic Press, New York.Google Scholar
  13. Chotko, E. I. 1977. The role of some species of diplopods in leaf litter decomposition. Ecol. Bull. (Stockholm)25: 548–550.Google Scholar
  14. Christiansen, K. 1964. Bionomics of Collembola. Ann. Rev. Ent.9: 147–178.CrossRefGoogle Scholar
  15. Cichan, M. A. andT. N. Taylor. 1982. Wood-borings in Premnoxylon: Plant-animal interactions in the Carboniferous. Paleogeogr. Palaeoclimatol. Palaeoecol.39: 123–127.CrossRefGoogle Scholar
  16. Cloudsley-Thompson, J. L. 1958. Spiders, scorpions, centipedes and mites. Pergamon Press Inc., New York.Google Scholar
  17. Cohen, A. D. andW. Spackman. 1977. Phytogenic organic sediments and sedimentary environments in the Everglades-Mangrove Complex. Part II. Origin, description and classification of the peats of southern Florida. Palaeontographica162B: 71–114.Google Scholar
  18. Cooper-Driver, G. A. 1976. Chemotaxonomy and phytochemical ecology of bracken. Bot. J. Linnean Soc.73: 35–46.CrossRefGoogle Scholar
  19. —. 1978. Insect-fern associations. Ent. Exp. and Appl.24: 110–116. (Proc. 4th Insect/ Host Plant Symp.)CrossRefGoogle Scholar
  20. Cox, B. 1974. Little evidence for Palaeozoic arthropod and plant interaction. Report Linnaean Society meeting on the Interrelationships of Palaeozoic terrestrial arthropods and plants. Nature (London)249: 615–616.CrossRefGoogle Scholar
  21. Crepet, W. L. 1979. Insect pollination: A paleontological perspective. BioScience29: 102–108.CrossRefGoogle Scholar
  22. Crossley, D. A. 1977a. The roles of terrestrial saprophagous arthropods in forest soils: Current status of concepts. Pages 50–56in W. J. Mattson (ed.). The role of arthropods in forest ecosystems. Springer-Verlag, New York.Google Scholar
  23. —. 1977b. Oribatid mites and nutrient cycling. Pages 71–85in D. L. Dindal (ed.). Biology of Oribatid mites. State Univ. New York.Google Scholar
  24. Crowson, R. A. 1974. The evolutionary history of Coleoptera as documented by fossil and comparative evidence. Atti. Cong. naz, ital. Ent. 10th Sassari, 47–90.Google Scholar
  25. —,J. Smart andR. J. Wootton. 1967. Insecta. Pages 508–528in W. B. Harland et al. (eds.). The fossil record. Geol. Soc. London.Google Scholar
  26. Daly, H. V., J. T. Doyen andP. R. Ehrlich. 1978. Introduction to insect biology and diversity. McGraw-Hill Book Co., New York.Google Scholar
  27. Edwards, P. J. andS. D. Wratten. 1980. Ecology of insect-plant interactions. Inst. Biol. Studies in Biology, 121. Edward Arnold, London.Google Scholar
  28. Elton, C. S. 1973. The structure of invertebrate populations inside a neotropical rain forest. J. Animal Ecol.42: 55–104.CrossRefGoogle Scholar
  29. Feeny, P. 1975. Biochemical coevolution between plants and their insect herbivores. Pages 3–19in L. E. Gilbert and P. H. Raven (eds.). Coevolution of plants and animals. Univ. Texas Press, Austin.Google Scholar
  30. Fisher, D. C. 1979. Evidence for subaerial activity ofEuproops danae (Merostomata, Xiphosurida). Pages 379–448in M. H. Nitecki (ed.). Mazon Creek Fossils. Academic Press, New York.Google Scholar
  31. Ghilarov, M. S. 1977. Why so many species and so many individuals can co-exist in the soil. Ecol. Bull. (Stockholm)25: 593–597.Google Scholar
  32. Gilbert, L. E. 1979. Development of theory in the analysis of insect plant interactions. Pages 117–154in D. J. Horn, G. R. Stairs and R. D. Mitchell (eds.). Analysis of ecological systems. Ohio State University Press, Columbus, Ohio.Google Scholar
  33. Haarløv, N. 1955. Vertical distribution of mites and Collembola in relation to soil structures. Pages 167–179in D. K. McE. Kevan (ed.). Soil animals. Witherby. H. F. & G. Ltd., London.Google Scholar
  34. Hale, W. G. 1967. Collembola. Pages 397–411in A. Burges and F. Raw (eds.). Soil biology. Academic Press, London.Google Scholar
  35. Hamilton, W. D. 1978. Evolution and diversity under bark. Pages 154–175in L. A. Mound and N. Waloff (eds.). Diversity of insect faunas. Symp. Roy. Ent. Soc. London, 9. Blackwell, England.Google Scholar
  36. Harborne, J. B. (ed.). 1978. Biochemical aspects of plant and animal co-evolution. Ann. Proc. Phytochem. Soc. Europe 15. Academic Press, London.Google Scholar
  37. Hatcher, P. G., P. C. Lyons, C. L. Thompson, F. W. Brown andG. E. Maciel. 1982. Organic matter in a coal ball: Peat or coal? Science217: 83–833.CrossRefGoogle Scholar
  38. Hayes, A. J. 1963. Studies on the feeding preferences of some phthiracarid mites (Acari: Oribatidae). Ent. Exp. and Appl.6: 241–256.CrossRefGoogle Scholar
  39. Hendrix, S. D. 1980. An evolutionary and ecological perspective of the insect fauna of ferns. Amer. Naturalist115: 171–196.CrossRefGoogle Scholar
  40. Holden, H. S. 1910. Note on woundedMyeloxylon. New Phytol.9: 253–257.CrossRefGoogle Scholar
  41. Horn, D. J. 1976. Biology of insects. W. B. Saunders Co., Philadelphia.Google Scholar
  42. —,G. R. Stairs andR. D. Mitchell (eds.). 1979. Analysis of ecological systems. Ohio State University Press, Columbus, Ohio.Google Scholar
  43. Hughes, N. F. andJ. Smart. 1967. Plant-insect relationships in Palaeozoic and later time. Pages 107–117in W. B. Harland, C. H. Holland, M. R. House, N. F. Hughes, A. B. Reynolds, M. J. S. Rudwick, G. E. Satterthwaite, L. B. H. Tarlo and E. C. Willey (eds.). The fossil record. Geol. Soc. London.Google Scholar
  44. Jacot, A. P. 1939. Reduction of spruce and fir litter by minute animals. J. Forestry37: 858–860.Google Scholar
  45. Janzen, D. H. 1978. The ecology and evolutionary biology of seed chemistry as relates to seed predation. Pages 163–206in J. B. Harborne (ed.). Biochemical aspects of plant and animal co-evolution. Ann. Proc. Phytochem. Soc. Europe 15. Academic Press, London.Google Scholar
  46. Kaczmarek, M. 1977. Comparison of the role of Collembola in different habitats. Ecol. Bull. (Stockholm)25: 64–74.Google Scholar
  47. Kevan, D. K. McE. 1968. Soil animals. London. H. F. and G. Ltd., Witherby.Google Scholar
  48. Kevan, P. G., W. G. Chaloner andD. B. O. Savile. 1975. Interrelationships of early terrestrial arthropods and plants. Palaeontology18: 391–417.Google Scholar
  49. Kraus, O. 1974. On the morphology of Palaeozoic diplopods. Symp. Zool. Soc. London32: 13–22.Google Scholar
  50. Krivolutzky, D. A. andA. D. Pokarzhevsky. 1977. The role of soil animals in nutrient cycling in forest and steppe. Ecol. Bull. (Stockholm)25: 253–260.Google Scholar
  51. Kubiena, W. I. 1955. Animal activity in soils as a decisive factor in establishment of humus forms. Pages 73–82in D. K. McE. Kevan (ed.). Soil animals. Witherby. H. F. and G. Ltd., London.Google Scholar
  52. Kühnelt, W. 1976. Soil biology. 2nd ed. Mich. State Univ. Press, East Lansing, Michigan.Google Scholar
  53. Lasebikan, B. A. 1977. The arthropod fauna of a decaying log of an oil palm tree (Elaeis guineensis Jacq.) in Nigeria. Ecol. Bull. (Stockholm)25: 530–533.Google Scholar
  54. Lawton, J. H. 1978. Host-plant influences on insect diversity: The effects of space and time. Pages 105–125in L. A. Mound and N. Waloff (eds.). Diversity of insect faunas. Symp. Roy. Ent. Soc. London, 9. Blackwell, England.Google Scholar
  55. Levin, D. A. 1973. The role of trichomes in plant defense. Quart. Rev. Biol.48: 3–15.CrossRefGoogle Scholar
  56. Lewis, J. G. E. 1974. The ecology of centipedes and millipedes in northern Nigeria. Symp. Zool. Soc. London32: 423–431.Google Scholar
  57. Luxton, M. 1972. Studies on the oribatid mites of a Danish beech wood soil. Pedobiologia12: 434–463.Google Scholar
  58. Mattson, W. J. (ed.) 1977. The role of arthropods in forest ecosystems. Springer-Verlag, New York.Google Scholar
  59. Miller, P. F. 1974. Competition betweenOphyiulus pilosus (Newport) andLulus scandinavius Latzed. Symp. Zool. Soc. London32: 553–574.Google Scholar
  60. Milner, A. R. 1980. The tetrapod assemblage from Nyrany, Czechoslovakia. Pages 439–496in A. L. Panchen (ed.). The terrestrial environment and origin of land vertebrates. Academic Press, London.Google Scholar
  61. Mound, L. A. andN. Waloff (eds.). 1978. Diversity of insect faunas. Symp. Roy. Ent. Soc. London, 9. Blackwell, England.Google Scholar
  62. Murphy, D. H. 1955. Long-term changes in collembolan populations with special reference to woodland soils. Pages 157–166in D. K. McE. Kevan (ed.). Soil animals. Witherby. H. F. and G. Ltd., London.Google Scholar
  63. North, F. J. 1931. Insect-life in the coal forests, with special reference to South Wales. Trans. Cardiff Naturalists’ Soc.62: 16–44.Google Scholar
  64. Olson, E. C. 1976. The exploitation of land by early tetrapods. Linn. Soc. Symp. Ser.3: 1–30.Google Scholar
  65. Paulusse, J. H. M. andC. Y. Jeanson. 1977. Structuration du Sol parles diplopodes ètude experimentale et microscopique. Ecol. Bull. (Stockholm)25: 484–488.Google Scholar
  66. Phillips, T. L. 1981. Stratigraphic occurrences and vegetational patterns of Pennsylvanian pteridosperms in Euramerican coal swamps. Rev. Palaeobot. Palynol.32: 5–26.CrossRefGoogle Scholar
  67. — andW. A. DiMichele. 1981. Paleoecology of Middle Pennsylvanian age coal swamps in the southern Illinois/Herrin Coal Member at Sahara Mine No. 6.In K. Niklas (ed.). Paleobotany, paleoecology and evolution. Praeger Press, New York1: 231–284.Google Scholar
  68. Rathcke, B. J. 1976. Competition and coexistence within a guild of herbivorous insects. Ecology57: 76–87.CrossRefGoogle Scholar
  69. Raw, F. 1967. Arthropods (except Acari and Collembola). Pages 323–362in A. Burges and F. Raw (eds.). Soil biology. Academic Press, London.Google Scholar
  70. Reihman, M. A. andJ. T. Schabilion. 1976. Cuticles of two species ofAlethopteris. Amer. J. Bot.63: 1039–1046.CrossRefGoogle Scholar
  71. Richardson, E. S. 1956. Pennsylvanian invertebrates of the Mazon Creek area, Illinois. Fieldiana Geology12: 1–76.Google Scholar
  72. —. 1980. Life at Mazon Creek. Pages 217–224in R. L. Langenheim, Jr. and C. J. Mann (eds.). Middle and Late Pennsylvanian strata on margin of Illinois Basin. 10th Ann. Field Con. Great Lakes Sect. S.E.P.M. Univ. Illinois.Google Scholar
  73. Robaux, P., C. Y. Jeanson andD. Barbier. 1977. Microstructures construites par un acarienTyrophagus putrescentiae dans une argile. Etude experimentale et Microscopique. Ecol. Bull. (Stockholm)25: 489–493.Google Scholar
  74. Rolfe, W. D. I. 1980. Early invertebrate terrestrial faunas. Pages 117–157in A. L. Panchen (ed.). The terrestrial environment and origin of land vertebrates. Syst. Symp. Spec. Vol. 15, Academic Press, London.Google Scholar
  75. —. 1982. Ancient air breathers. Field Mus. Nat. Hist. Bull.53: 12–16.Google Scholar
  76. -. (in press) Aspects of the Carboniferous terrestrial arthropod community. C.R. 9th Int. Carb. Strat. Geol. Cong.Google Scholar
  77. — andJ. K. Ingham. 1967. Limb structure, affinity and diet of the Carboniferous “ centipede”Arthropleura. Scot. J. Geol.3: 118–124.CrossRefGoogle Scholar
  78. Rothschild, M. 1975. Carotenoids in the evolution of signals. Pages 20–50in L. E. Gilbert and P. H. Raven (eds.). Coevolution of animals and plants. Univ. Texas Press, Austin.Google Scholar
  79. Rothwell, G. W. andA. C. Scott. 1983. Coprolites within marattiaceous fern stems (Psaronius magnificus) from the Upper Pennsylvanian of the Appalachian Basin. Palaeogeog. Palaeoclimatol. Palaeoecol.41: 227–232.CrossRefGoogle Scholar
  80. Sakwa, W. N. 1974. A consideration of the chemical basis of food preference in millipedes. Symp. Zool. Soc. London32: 329–346.Google Scholar
  81. Scott, A. C. 1977. Coprolites containing plant material from the Carboniferous of Britain. Palaeontology20: 59–68.Google Scholar
  82. —. 1979. The ecology of Coal Measure floras. Proc. Geol. Assoc. Canada90: 97–116.CrossRefGoogle Scholar
  83. -. 1980. The ecology of some Palaeozoic floras from northern Britain. Pages 87–115in A. L. Panchen (ed.). The terrestrial environment and origin of land vertebrates. Syst. Assoc. Symposium Spec. Vol. 15.Google Scholar
  84. -. 1982. The development of life on land. Pages 374–380in D. G. Smith (ed.). Cambridge encyclopaedia of earth sciences. London.Google Scholar
  85. — andM. E. Collinson. 1978. Organic sedimentary particles: Results from scanning electron microscope studies of fragmentary plant material. Pages 137–167in W. B. Whalley (ed.). Scanning electron microscopy in the study of sediments. Geoabstracts, Norwich, England.Google Scholar
  86. Seward, A. C. 1898. Fossil plants. Vol. 1. Cambridge Univ. Press, Cambridge, England.Google Scholar
  87. —. 1935. Forests of Coal Age. Abbott Memorial Lecture 1935, University of Nottingham. London, England.Google Scholar
  88. Sharov, A. G. 1971. Phylogeny of the Orthopteroidea. Israel Prog. Sci. Trans.Google Scholar
  89. —. 1973. Morphological features and way of life of Palaeodictyoptera (in Russian). Chteniya Pamyati Nikolaya Aleksahdrovicha Kholodkovskogo. Doklady23: 49–63.Google Scholar
  90. Singh, J. S. andS. R. Gupta. 1977. Plant decomposition and soil respiration in terrestrial ecosystems. Bot. Rev.43: 449–528.CrossRefGoogle Scholar
  91. Smart, J. andN. F. Hughes. 1973. The insect and the plant: Progressive palaeoecological integration. Pages 143–155in H. F. Van Emden (ed.). Insect/plant relationships. Symp. Roy. Ent. Soc. London, 6. Blackwell, London, England.Google Scholar
  92. Smith, C. C. 1975. The coevolution of plants and seed predators. Pages 51–77in L. E. Gilbert and P. H. Raven (eds.). Coevolution of animals and plants. Univ. Texas Press, Austin.Google Scholar
  93. Southwood, T. R. E. 1973. The insect/plant relationship—an evolutionary perspective. Pages 3–30in H. F. Van Emden (ed.). Insect/plant relationships. Symp. Roy. Ent. Soc. London, 6. Blackwell, London, England.Google Scholar
  94. Stopes, M. C. 1907. A note on woundedCalamites. Ann. Bot.21: 277–280.Google Scholar
  95. Swain, T. 1976. The effect of plant secondary products on insect plant co-evolution. Proc. 15 Int. Cong. Ent. Washington 1976. 249–256.Google Scholar
  96. —. 1978. Plant-animal co-evolution: A synoptic view of the Palaeozoic and Mesozoic. Pages 3–19in J. B. Harborne (ed.). Biochemical aspects of plant and animal co-evolution. Ann. Proc. Phytochem. Soc. Europe 15. Academic Press, London.Google Scholar
  97. Swift, M. J. 1977. The roles of fungi and animals in the immobilisation and release of nutrient elements from decomposing branch wood. Ecol. Bull. (Stockholm)25: 193–202.Google Scholar
  98. Taylor, T. N. 1977. Towards an understanding of the reproductive biology of fossil plants. Pages 77–93in R. C. Romans (ed.). Geobotany. Plenum Press, New York.Google Scholar
  99. —. 1978. The ultrastructure and reproductive significanceof Monoletes (Pteridospermales) pollen. Canad. J. Bot.56: 3105–3118.CrossRefGoogle Scholar
  100. — andM. A. Millay. 1979. Pollination biology and reproduction in early seed plants. Rev. Palaeobot. Palynol.27: 329–355.CrossRefGoogle Scholar
  101. Uvarov, B. 1966. Grasshoppers and locusts. A handbook of general acridology. Vol. 1. Anatomy, physiology and development, phase polymorphism, introduction to taxonomy. Cambridge Univ. Press.Google Scholar
  102. Van Amerom, H. J. W. 1966.Phagophytichnus ekowskii nov Ichnogen & Ichnosp. eine Missbildung infolge von Insecktenfrass, ausdem Spanischen Stephanien (Provinzleon). Leid. geol. Meded.38: 181–184.Google Scholar
  103. — andM. Boersma. 1971. A new find of the IchnofossilPhagophytichnus ekowskii Van Amerom. Geologie. Mijnb.50: 667–670.Google Scholar
  104. Van Emden, H. F. (ed.). 1973. Insect/plant relationships. Symp. Roy. Ent. Soc. London, 6. Blackwell, London, England.Google Scholar
  105. — andM. J. Way. 1973. Host plants in the population dynamics of insects. Pages 181–199in H. F. Van Emden (ed.). Insect/plant relationships. Symp. Roy. Ent. Soc. London, 6. Blackwell, London, England.Google Scholar
  106. Verhoef, H. A. 1977. Soil moisture and the population dynamics of co-existing Collembola. Ecol. Bull. (Stockholm)25: 480–482.Google Scholar
  107. Wallwork, J. A. 1967. Acari. Pages 363–395in A. Burges and F. Raw (eds.). Soil biology. Academic Press, London.Google Scholar
  108. —. 1970. Ecology of soil animals. McGraw-Hill, London.Google Scholar
  109. —. 1976. The distribution and diversity of soil fauna. Academic Press, London.Google Scholar
  110. Webb, D. P. 1977. Regulation of deciduous forest litter decomposition by soil arthropod feces. Pages 57–69in W. J. Mattson (ed.). The role of arthropods in forest ecosystems. Springer-Verlag, New York.Google Scholar
  111. Wigglesworth, V. B. 1976. The evolution of insect flight.In R. C. Rainey (ed.). Insect flight. Symp. Roy. Ent. Soc.7: 255–269.Google Scholar
  112. Wilkinson, M. 1930. Note on a wounded lepidodendroid axis. Mem. & Proc. Manchester Lit. Soc.73: 75–82.Google Scholar
  113. Wootton, R. J. 1976. The fossil record and insect flight.In R. C. Rainey (ed.). Insect flight. Symp. Roy. Ent. Soc.7: 235–254.Google Scholar
  114. —. 1981. Palaeozoic insects. Ann. Rev. Ent.26: 319–344.CrossRefGoogle Scholar
  115. Wright, P. 1981. Stratigraphy and sedimentology of the Llanelly Formation between Penderyn and Blorenge, South Wales. Ph.D. Thesis, Univ. of Wales.Google Scholar

Copyright information

© The New York Botanical Garden 1983

Authors and Affiliations

  • Andrew C. Scott
    • 1
  • Thomas N. Taylor
    • 2
  1. 1.Department of Geology, Chelsea CollegeUniversity of LondonEngland
  2. 2.Department of BotanyThe Ohio State UniversityColumbus

Personalised recommendations