The Botanical Review

, Volume 51, Issue 2, pp 163–201

Rise of the grassland biome, central North America

  • Daniel I. Axelrod
Article

Abstract

Fossil floras and mammalian faunas from the Great Plains indicate that as aridity increased during the Miocene and Pliocene, forests and woodlands were confined gradually to moister valleys as grassland spread on the interfluves which were covered earlier with park-like openings. The initial rise of extensive grasslands probably commenced in the Miocene-Pliocene transition (7-5 m.y. ago), the driest part of the Tertiary, which restricted forests and woodlands and encouraged the explosive evolution of grasses and forbs. Following the fluctuation of Pleistocene climatevegetation zones, warm, dry Altithermal climate restricted wooded tracts at the expense of spreading grasslands. The rise of the grassland biome was thus due to occasional periods of increased aridity that restricted forests and woodlands and favored grasses and forbs; to increasing drought west of the 100th meridian which created a flammable source (dry grass); to natural and man-made fires on the relatively flat plains over which fire could spread uninterruptedly; to fire that destroyed relict trees and groves on the flat grasslands, restricting them to rocky ridges removed from fire; and probably also to large browsing mammals (many now extinct) that may have destroyed scattered trees and shrubs on the interfluves during the Altithermal. Youthfulness of the grassland biome agrees with a) the occurrence of most of its species in the bordering forests and woodlands, b) the presence of few endemic plants in it, a relation shown also by insects and birds, c) the relict occurrence of diverse trees over the region, and d) the invasion of grassland by woody vegetation.

Résumé

Des fossiles de la flore et de la faune des Grandes Plaines montrent que quand l’aridité augmenta durant le miocène et le pliocène, les forêts et les bois se transformèrent petit-à-petit en vallées humides, ceci parce que les zones herbeuses se propagèrent à partir des intersections de fleuves qui étaient précedemment déboisées. L’augmentation initiale des zones herbeuses commença probablement lors de la transition entre le miocène et le pliocène (il y a 5 à 7 millions d’années), la période la plus sèche de l’époque tertiaire, laquelle empêcha le développement des forêts et des zones boisées et encouragea l’évolution explosive des zones herbeuses et de forbes. A la suite de la fluctuation des zones de climat-végétation du pleistocène, un climat chaud, sec et altithermal empêcha l’expansion des zones boisées en faveur des prairies. L’apparition du biome des prairies peut donc être attribué à des périodes occasionnelles d’aridité élevée qui empêcha le développement des forêts et des zones boisées et favorisa les zones herbeuses et les forbes; par une sécheresse accrue à l’ouest du 100e méridien, laquelle créa une source flammable (herbe sèche); par des feux naturels et humains dans les plaines relativement plates où le feu pouvait se répandre sans interruption; par des feux qui détruisirent les arbres isolés et les bosquets dans les prairies plates, les limitant seulement aux arêtes rocheuses à l’écart des feux; et probablement par les grands ruminants (beaucoup étant maintenant disparus) qui pouvaient détruire les arbres et buissons éparpillés le long des fleuves durant l’altithermal. La jeunesse du biome des prairies corrobore: a) la présence de la plupart de ces espèces dans les forêts et bois en bordure, b) la présence de quelques plantes endémiques dans ces bois et forêts—cette relation est également démontrée par les insectes et les oiseaux, c) la présence de divers arbres dans la région, et d) l’invasion des prairies par une végétation boisée.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anderson, R. C. 1982. An evolutionary model summarizing roles of fire, climate, and grazing animals in the origin and maintenance of grasslands: An end paper. Pages 297–308in J. R. Estes, R. J. Tyrl and J. N. Brunken (eds.), Grasses and grasslands: Systematics and evolution. Oklahoma University Press, Norman, Oklahoma.Google Scholar
  2. Anderson, R. Y. and D. W. Kirkland. 1969. Paleoecology of an early Pleistocene lake on the High Plains of Texas. Mem. Geol. Soc. Amer.113.Google Scholar
  3. Anonymous. 1942. Record survival made by shelterbelt trees. J. Forestry40(6): 456.Google Scholar
  4. Axelrod, D. I. 1950. Evolution of desert vegetation in western North America. Publ. Carnegie Inst. Wash.590: 217–306.Google Scholar
  5. — 1977. Outline history of California vegetation. Pages 140–193in M. G. Barbour and J. Major (eds.), Terrestrial vegetation of California. John Wiley and Sons, New York.Google Scholar
  6. -. 1979a. Age and origin of Sonoran Desert vegetation. Occas. Papers Calif. Acad. Sci.132.Google Scholar
  7. — 1979b. Desert vegetation, its age and origin. Pages 1–72in J. R. Goodin and D. K. Northington (eds.), Arid land plant resources. Proceedings of the International Arid Lands Conference, Texas Technical University, Lubbock, Texas.Google Scholar
  8. -. 1980. Contributions to the Neogene paleobotany of central California. Univ. Calif. Publ. Geol. Sci.121.Google Scholar
  9. — andH. P. Bailey. 1976. Tertiary vegetation, climate, and altitude of the Rio Grande depression, New Mexico-Colorado. Paleobiology2: 235–254.Google Scholar
  10. Bailey, H. P. 1960. A method of determining the warmth and temperateness of climate. Geogr. Ann.42: 1–16. Svenska Sällsk. Antropol. och Geografi.CrossRefGoogle Scholar
  11. — 1964. Toward a unified concept of the temperate climate. Geogr. Rev. (New York)54: 516–545.CrossRefGoogle Scholar
  12. Baker, R. G. 1979. Late Wisconsinian and Holocene biotic history in Iowa. Palynology3: 278 (Abstract).Google Scholar
  13. —, K. L.Van Zant andJ. J. Dulian. 1980. Three late glacial pollen and plant microfossil assemblages from Iowa. Palynology4: 197–203.Google Scholar
  14. Barkley, T. M. (ed.) 1977. Atlas of the flora of the Great Plains. Iowa State University Press, Ames, Iowa.Google Scholar
  15. Barrell, J. 1975. The Red Hills of Kansas: Crossroads of plant migration. Natural Land Institute, Rockford, Illinois.Google Scholar
  16. Beilmann, A. P. andL. G. Brenner. 1951. The recent intrusion of forests in the Ozarks. Ann. Missouri Bot. Gard.38: 261–282.CrossRefGoogle Scholar
  17. Berry, E. W. 1918. Fossil plants from the late Tertiary of Oklahoma. Proc. U.S. Natl. Mus.54: 627–636.Google Scholar
  18. Blumenstock, D. I. andC. W. Thornthwaite. 1941. Climate and the world pattern. Pages 98–127in Climate and man, Yearbook of Agriculture 1941. Government Printing Office, Washington, D.C.Google Scholar
  19. Borchert, J. R. 1950. The climate of the central North American grassland. Ann. Assoc. Amer. Geogr.40: 1–39.CrossRefGoogle Scholar
  20. Brush, G. S. 1967. Pollen analysis of late glacial and postglacial sediments in Iowa. Pages 99–115in E. J. Cushing and H. E. Wright, Jr. (eds.), Quaternary paleoecology, vol. 7. Proceedings of the VIIth Congress International Association of Quaternary Research, Yale University Press, New Haven, Connecticut.Google Scholar
  21. Bryant, V. M., Jr. 1977. A 16,000 year pollen record of vegetational change in central Texas. Palynology1: 172 (Abstract).Google Scholar
  22. Bryson, R. A., W. N. Irving andJ. A. Larsen. 1965. Radiocarbon and soil evidence of former forest in the southern Canadian tundra. Science147: 46–48.PubMedCrossRefGoogle Scholar
  23. Chaney, R. W. andM. K. Elias. 1936. Late Tertiary floras from the High Plains. Publ. Carnegie Inst. Wash.476: 1–72.Google Scholar
  24. Chavennes, E. 1941. Written records of forest succession. Sci. Monthly53: 76–79.Google Scholar
  25. Christie, M. 1892. Why are the prairies treeless? Proc. Roy. Geogr. Soc. and Monthly Rec. Geogr., n.s.,14: 78–100.CrossRefGoogle Scholar
  26. Clements, F. E. 1916. Plant succession: An analysis of the development of vegetation. Publ. Carnegie Inst. Wash.242: 1–512.Google Scholar
  27. — 1920. Plant indicators. Publ. Carnegie Inst. Wash.290.Google Scholar
  28. — 1936a. Nature and structure of the climax. J. Ecology24: 252–284.CrossRefGoogle Scholar
  29. — 1936b. The origin of the desert climax and climate. Pages 87–140in T. H. Goodspeed (ed.), Essays in geobotany in honor of W. A. Setchell. University of California Press, Berkeley, California.Google Scholar
  30. — andR. W. Chaney. 1936. Environment and life in the Great Plains. Suppl. Publ. Carnegie Inst. Wash.24.Google Scholar
  31. Clisby, K. H. andP. B. Sears. 1956. San Augustin Plains—Pleistocene climatic changes. Science124: 537–538.PubMedCrossRefGoogle Scholar
  32. Cook, O. F. 1908. Change of vegetation on the South Texas prairie. U.S.D.A., Bur. Plant Industr. Circular14: 1–7.Google Scholar
  33. Cooper, C. F. 1960. Changes in vegetation, structure and growth of Southwest pine forests since white settlement. Ecol. Monogr.30(2): 129–164.CrossRefGoogle Scholar
  34. — 1961. The ecology of fire. Sci. Amer.204(4): 150–160.Google Scholar
  35. Critchfield, W. B. andE. L. Little, Jr. 1966. Geographic distribution of the pines of the world. U.S.D.A., Forest Serv. Miscel. Pub.991: 1–97.Google Scholar
  36. Davis, W. S. 1951. Nebraska firebreaks. U.S.D.A., Forest Serv., Forest Control Notes12(1): 40–46.Google Scholar
  37. Dix, R. L. 1964. A history of biotic and climatic changes within the North American grassland. Pages 71–89in D. J. Crisp (ed.), Grazing in terrestrial and marine environments. British Ecological Society, Symposium Number 4, England.Google Scholar
  38. Dort, W., Jr. andJ. Knox Jones, Jr. (eds.) 1970. Pleistocene and Recent environments of the central Great Plains. University of Kansas, Department of Geology Spec. Publ.3. University of Kansas Press, Lawrence, Kansas.Google Scholar
  39. Dyer, M. I., J. K. Detling, D. C. Coleman andD. W. Hubert. 1982. The role of herbivores in grasslands. Pages 255–295in J. R. Estes, R. J. Tyrl, and J. N. Brunken (eds.), Grasses and grasslands: Systematics and ecology. University of Oklahoma Press, Norman, Oklahoma.Google Scholar
  40. Eiseley, L. C. 1954. Man the fire-maker. Sci. Amer.191: 52–57.CrossRefGoogle Scholar
  41. Elias, M. K. 1935. Tertiary grasses and other prairie vegetation from the High Plains of North America. Amer. Jour. Sci., 5th ser.,29: 24–33.CrossRefGoogle Scholar
  42. -. 1942. Tertiary prairie grasses and other herbs from the High Plains. Spec. Paper Geol. Soc. Amer.41.Google Scholar
  43. Flake, R. H., L. Urbatsch andB. L. Turner. 1978. Chemical documentation of allopatric introgression inJuniperus. Syst. Bot.3: 129–144.CrossRefGoogle Scholar
  44. Foreman, F., K. H. Clisby and P. B. Sears. 1959. Pages 117–120in Plio-Pleistocene sediments and climates of the San Angustin Plains, New Mexico. New Mexico Geol. Soc. 10th Field Conf. Guidebook.Google Scholar
  45. Gleason, H. A. 1913. The relation of forest distribution and prairie fires in the Middle West. Torreya13: 173–181.Google Scholar
  46. — 1922. The vegetation history of the Middle West. Ann. Assoc. Amer. Geogr.12: 39–85.CrossRefGoogle Scholar
  47. Grüger, J. 1973. Studies on the Late Quaternary vegetation history of northeast Kansas. Bull. Geol. Soc. Amer.84: 239–250.CrossRefGoogle Scholar
  48. Hafsten, U. 1964. A standard pollen diagram for the southern High Plains, U.S.A., covering the period back to the early Wisconsin glaciation. Pages 407–420in Proceedings of the 6th International Quaternary Congress (Warsaw, 1961) Report 2.Google Scholar
  49. Harbour, J. 1969. Pollen profile of the Rita Bianca lake deposits. Mem. Geol. Soc. Amer.113: 83–95.Google Scholar
  50. Hariston, N. G., D. W. Smith andL. B. Slobodkin. 1960. Community structure, population control, and competition. Amer. Nat.94: 421–425.CrossRefGoogle Scholar
  51. Harvey, L. H. 1908. Floral succession in the prairie-grass formation of southeastern South Dakota. Bot. Gaz.46: 81–108.CrossRefGoogle Scholar
  52. Hesse, C. J. 1936. Lower Pliocene vertebrate fossils from the Ogallala Formation (Laverne Zone) of Beaver County, Oklahoma. Publ. Carnegie Inst. Wash.467: 47–72.Google Scholar
  53. Hibbard, C. W. 1960. An interpretation of Pliocene and Pleistocene climates in North America. 62nd Annual Rept. Mich. Acad. Science, pp. 5–30.Google Scholar
  54. — 1970. Pleistocene mammalian local faunas from the Great Plains and central lowland provinces of the United States. Pages 395–409in W. Dort, Jr. and J. K. Jones, Jr. (eds.). Pleistocene and Recent environments of the Central Plains. Kansas University Press, Lawrence, Kansas.Google Scholar
  55. —,D. E. Ray, D. E. Savage, D. W. Taylor andJ. E. Guilday. 1965. Quaternary mammals of North America. Pages 509–525in H. E. Wright and D. G. Frey (eds.), The Quaternary of the United States. Princeton University Press, Princeton, New Jersey.Google Scholar
  56. Horr, W. H. 1955. A pollen profile study of the Muscotah Marsh. Univ. Kansas Sci. Bull.37: 143–149.Google Scholar
  57. Humphrey, R. R. 1953. The desert grassland, past and present. J. Range Managem.6: 159–164.CrossRefGoogle Scholar
  58. — 1958. The desert grassland: A history of vegetation change and analysis of causes. Bot. Rev.24: 193–252.CrossRefGoogle Scholar
  59. Izett, G. A. 1975. Late Cenozoic sedimentation and deformation in northern Colorado and adjoining areas. Mem. Geol. Soc. Amer.144: 179–209.Google Scholar
  60. Kapp, R. O. 1965. Illinoian and Sangamon vegetation in southwestern Kansas and adjacent Oklahoma. Contr. Univ. Mich. Mus. Paleontol.19(14): 167–225.Google Scholar
  61. King, J. E. 1973. Late Pleistocene palynology and biogeography of the western Ozarks. Ecol. Monogr.43: 539–565.CrossRefGoogle Scholar
  62. Klemmedson, J. O. 1977. Physical effects of herbivores on arid and semi-arid rangeland ecosystems. Pages 187–210in The impact of herbivores on arid and semi-arid rangelands. Proceedings of the 2nd United States/Australian Rangeland Panel, Adelaide, 1972. Australian Rangeland Society, Perth, W. Australia.Google Scholar
  63. Komarek, E. V. 1968. Lightning and lightning fires as an ecological force. Pages 169–197in Proceedings of the 8th Annual Tall Timber Forest Ecology Conference.Google Scholar
  64. Kortlandt, A. In press. Vegetation research and the “Bulldozer Herbivores” in tropical Africa. The tropical rain forest, part II.In Proc. Leeds Philos. Lit. Soc., Scient. Sect., Suppl. (12 pp.)Google Scholar
  65. Küchler, A. W. 1964. Potential natural vegetation of the conterminous United States. Spec. Publ. Amer. Geogr. Soc.36.Google Scholar
  66. LaMotte, R. S. 1952. Catalogue of the Cenozoic plants of North America through 1950. Mem. Geol. Soc. Amer.51.Google Scholar
  67. Lane, G. H. 1931. A preliminary pollen analysis of the East McCulloch peat bed. Ohio Jour. Sci.31: 165–171.Google Scholar
  68. Lanner, R. M. andT. R. Van Devender. 1981. Late Pleistocene piñon pine on the Chihuahuan Desert. Quatern. Res.15(3): 278–290.CrossRefGoogle Scholar
  69. Lea, G. D. 1977. Arid and semiarid ecosystems of the western United States. Pages 1–13in The impact of herbivores on arid and semi-arid rangelands. Proceedings of the 2nd United States/Australian Rangeland Panel, Adelaide, 1972.Google Scholar
  70. Lind, E. M. andM. E. S. Morrison. 1974. East African vegetation. Longman, London.Google Scholar
  71. Little, E. L., Jr. 1971. Atlas of United States trees. Vol. 1. Conifers and important hardwoods. U.S.D.A., Forest Serv. Misc. Publ. 1146.Google Scholar
  72. -. 1976. Atlas of United States trees. Vol. 3. Minor western hardwoods. U.S.D.A., Forest Serv. Misc. Publ. 1314.Google Scholar
  73. Lull, R. S. 1945. Organic evolution. Rev. ed. Macmillan Co., New York.Google Scholar
  74. MacGinitie, H. D. 1962. The Kilgore flora: A late Miocene flora from northern Nebraska. Univ. Calif. Publ. Geol. Sci.35: 67–158.Google Scholar
  75. Marsh, G. P. 1984. Man and nature. C. Scribner & Co., New York.Google Scholar
  76. Martin, P. S. andJ. E. Guilday. 1967. A bestiary for Pleistocene biologists. Pages 1–62in P. S. Martin and H. E. Wright, Jr. (eds.), Pleistocene extinctions, the search for a cause. Proceedings of the VII Congress International Association for Quaternary Research. Yale University Press, New Haven, Connecticut.Google Scholar
  77. — andP. J. Mehringer, Jr. 1965. Pleistocene pollen analysis and biogeography of the Southwest. Pages 433–451in H. E. Wright, Jr. and D. G. Frey (eds.), The Quaternary of the United States. Princeton University Press, Princeton, New Jersey.Google Scholar
  78. Martin, W. C. 1969. Fossil flora of the Rita Bianca lake deposits. Mem. Geol. Soc. Amer.113: 101–106.Google Scholar
  79. McNaughton, S. J., M. B. Coughenour andL. L. Wallace. 1982. Interactive processes in grassland ecosystems. Pages 167–193in J. R. Estes, R. J. Tyrl and J. N. Brunken (eds.), Grasses and grasslands: Systematics and ecology. University of Oklahoma Press, Norman, Oklahoma.Google Scholar
  80. Mehringer, P. J., Jr.,J. E. King andE. H. Lindsay. 1970. A record of Wisconsin-age vegetation and fauna from the Ozarks of western Missouri. Pages 173–183in W. Dort, Jr. and J. Knox Jones, Jr. (eds.), Pleistocene and Recent environments of the Central Great Plains. University of Kansas, Department of Geology Special Publication No. 3. University of Kansas Press, Lawrence, Kansas.Google Scholar
  81. —,C. E. Schwerger, W. R. Wood andR. B. McMillan. 1968. Late Pleistocene boreal forest in the western Ozark Highlands. Ecology49(3): 567–568.CrossRefGoogle Scholar
  82. Mengel, R. M. 1970. The North American Central Plains as an isolating agent in bird speciation. Pages 279–340in W. Dort, Jr. and J. Knox Jones, Jr. (eds.), Pleistocene and Recent environments of the Central Great Plains. University of Kansas, Department of Geology. Special Publication No. 3. University of Kansas Press, Lawrence, Kansas.Google Scholar
  83. Mercer, J. H. 1983. Cenozoic glaciation in the Southern Hemisphere. Ann. Rev. Earth Planet Sci.11: 99–132.CrossRefGoogle Scholar
  84. Moir, D. R. 1957. An occurrence of buried coniferous wood in the Altamont Moraine in North Dakota. Proc. North Dakota Acad. Sci.11: 1–5.Google Scholar
  85. Ogden, J. G., 3d. 1967. Radiocarbon and pollen evidence for a sudden change in climate in the Great Lakes region approximately 10,000 years ago.In E. J. Cushing and H. E. Wright, Jr. (eds.), Quaternary paleoecology, 7: 117–127. Proceedings of the 7th Congress International Association for Quaternary Research.Google Scholar
  86. Osborn, H. F. 1910. Paleontologic evidences of adaptive radiation. Popular Sci. Monthly77: 77–81.Google Scholar
  87. Plummer, F. A. 1912a. Lightning in relation to forest fires. U.S.D.A., Forest Serv. Bull. 111.Google Scholar
  88. -. 1912b. Forest fires: Their causes, extent and effects, with a summary of recorded destruction and loss. U.S.D.A., Forest Serv. Bull. 117.Google Scholar
  89. Ritchie, J. C. 1964. Contributions to the Holocene paleoecology of west-central Canada. 1. The Riding Mountain area. Canad. J. Bot.42: 181–193.Google Scholar
  90. — 1976. The late Quaternary vegetational history of the western interior of Canada. Canad. J. Bot.54(15): 1793–1818.Google Scholar
  91. — andB. de Vries. 1964. Contribution to the Holocene paleoecology of west-central Canada. A late glacial deposit from the Missouri Coteau. Canad. J. Bot.42: 677–692.Google Scholar
  92. — andG. A. Yarranton. 1978. Patterns of change in the late Quaternary vegetation of the western interior of Canada. Canad. J. Bot.56(17): 2177–2183.Google Scholar
  93. Ross, H. H. 1970. The ecological history of the Great Plains: Evidence from grassland insects. Pages 225–240in W. Dort and J. K. Jones (eds.), Pleistocene and Recent environments of the central Great Plains. University of Kansas Department of Geology Special Publication No. 3. University of Kansas Press, Lawrence, Kansas.Google Scholar
  94. Sauer, C. O. 1950. Grassland, climax, fire and man. J. Range Managem.3: 16–22.CrossRefGoogle Scholar
  95. Schmeider, O. 1927. The Pampa. Univ. Calif. Publ. Geogr.2: 255–270.Google Scholar
  96. Sears, P. B. 1961. A pollen profile from the grassland province. Science134: 2038–2039.CrossRefGoogle Scholar
  97. Shantz, H. L. and R. Zon. 1924. Natural vegetation of the United States. Pages 3–28in O. E. Baker (ed.), Atlas of American agriculture, Section 7. U.S. Dept. Agriculture, Washington, D.C.Google Scholar
  98. Shimek, B. 1911. The prairies. Iowa. Stud. Nat. Hist. Iowa Univ.6(2): 169–224. State Univ. Iowa Bull. 35.Google Scholar
  99. Stewart, O. C. 1951. Burning and natural vegetation in the United States. Geogr. Rev.41: 317–320.CrossRefGoogle Scholar
  100. — 1953. Why are the Great Plains treeless? Colorado Quart.2: 40–50.Google Scholar
  101. — 1956. Fires as the first great force employed by Man. Pages 115–133in W. L. Thomas (ed.), Man’s role in changing the face of the earth. University of Chicago Press, Chicago, Illinois.Google Scholar
  102. Stirton, R. A. 1935. A review of Tertiary beavers. Univ. Calif. Publ. Geol. Sci.29: 391–458.Google Scholar
  103. Sstoecheler, J. H. 1945. Narrow shelterbelts for the southern Great Plains. Soil Conservation11(1): 16–20.Google Scholar
  104. Taber, R. D. 1977. Effects of wild herbivores on arid and semi-arid rangeland ecosystems: Management implications. Pages 317–329in The impact of herbivores on arid and semi-arid rangelands. Proceedings of the 2nd United States/Australian Rangeland Panel, Adelaide, 1972.Google Scholar
  105. Taylor, B. 1867. Colorado, a summer trip. C. P. Putman, New York.Google Scholar
  106. Taylor, R. B. 1975. Neogene tectonism in south-central Colorado. Mem. Geol. Soc. Amer.144: 211–226.Google Scholar
  107. Thomasson, J. R. 1979. Late Cenozoic grasses and other angiosperms from Kansas, Nebraska and Colorado: Biostratigraphy and relationships to living taxa. Univ. Kansas Publ., Bull. 218. 68 pp.Google Scholar
  108. — 1983.Carex graceii sp.n.,Cyperocarpus eliasii sp.n.,Cyperocarpus pulcherrima sp.n. (Cyperaceae) from the Miocene of Nebraska. Amer. J. Bot.70: 435–449.CrossRefGoogle Scholar
  109. Tomanek, G. W. andG. K. Hulett. 1970. Effects of historical droughts on grassland vegetation in the central Great Plains. Pages 203–210in W. Dort, Jr. and J. K. Jones, Jr. (eds.), Pleistocene and Recent environments of the central Great Plains. University of Kansas Department of Geology Special Publication No. 3. University of Kansas Press, Lawrence, Kansas.Google Scholar
  110. Tucker, J. M. 1969. Oak leaves of the Rita Bianca lake deposits. Mem. Geol. Soc. Amer.113: 97–99.Google Scholar
  111. Van Devender, T. R. andW. G. Spaulding. 1979. Development of vegetation and climate in the southwestern United States. Science204: 701–710.PubMedCrossRefGoogle Scholar
  112. Van Dyne, G. M., N. R. Brockington, Z. Szco, J. Duek and C. A. Ribic. 1980. Large herbivore ecosystem. Pages 269–537in A. I. Breymeyer and G. M. Van Dyne (eds.), Grasslands, systems analysis and man, International Biology Program, v. 19.Google Scholar
  113. Van Haverbeke, D. F. 1968. A population analysis ofJuniperus in the Missouri River Basin; taxonomic relationships betweenJuniperus scopulorum Sarg. andJ. virginiana L. in the Missouri River Basin. University of Nebraska Studies, n. ser.38: 1–82.Google Scholar
  114. Vogl, R. 1974. Effects of fire on grasslands. Pages 139–194in T. T. Kozlowski and C. E. Alhgren (eds.), Fire and ecosystems. Academic Press, New York.Google Scholar
  115. Watts, W. A. andR. C. Bright. 1968. Late Wisconsin pollen, seed, and mollusk analysis of a sediment core from Pickerel Lake, northeastern South Dakota. Bull. Geol. Soc. Amer.79: 855–876.CrossRefGoogle Scholar
  116. — andH. E. Wright, Jr. 1966. Late Wisconsin pollen and seed analysis from the Nebraska Sandhills. Ecology47: 202–210.CrossRefGoogle Scholar
  117. Weaver, J. E. andF. W. Albertson. 1956. Grasslands of the Great Plains. Johnsen Publ. Co., Lincoln, Nebraska.Google Scholar
  118. — andF. E. Clements. 1938. Plant ecology, 2nd ed. McGraw Hill, Inc., New York.Google Scholar
  119. Wells, P. V. 1965. Scarp woodlands, transported grassland soils, and concept of grassland climate in the Great Plains region. Science148: 246–249.PubMedCrossRefGoogle Scholar
  120. — 1966. Late Pleistocene vegetation and degree of pluvial change in the Chihuahuan Desert. Science153: 970–975.PubMedCrossRefGoogle Scholar
  121. — 1970a. Postglacial vegetation history of the Great Plains. Science167: 1574–1582.PubMedCrossRefGoogle Scholar
  122. — 1970b. Historical factors controlling vegetation patterns and floristic distributions in the Central Plains region of North America. Pages 211–221in W. Dort, Jr. and J. K. Jones (eds.), Pleistocene and Recent environments of the central Great Plains. University of Kansas Department of Geology Special Publication No. 3. University of Kansas Press, Lawrence, Kansas.Google Scholar
  123. — 1978. An equable glaciopluvial in the West: Pleniglacial evidence of increased precipitation on a gradient from the Great Basin to the Sonoran and Chihuahuan Deserts. Quatern. Res.12: 311–325.CrossRefGoogle Scholar
  124. — 1983. Late Quaternary vegetation of the Great Plains. Trans. Nebraska Acad. Sci.11 (Special Issue): 83–89.Google Scholar
  125. Wright, H. E., Jr. 1970. Vegetational history of the Central Plains. Pages 157–172in W. Dort, Jr. and J. K. Jones, Jr. (eds.). Pleistocene and Recent environments of the central Great Plains, University of Kansas Department of Geology Special Publication No. 3. University of Kansas Press, Lawrence, Kansas.Google Scholar
  126. — 1981. Vegetation east of the Rocky Mountains 18,000 years ago. Quatern. Res.15(2): 113–125.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1985

Authors and Affiliations

  • Daniel I. Axelrod
    • 1
  1. 1.Department of BotanyUniversity of CaliforniaDavis

Personalised recommendations