Advertisement

The Botanical Review

, Volume 52, Issue 4, pp 321–431 | Cite as

Seed plant phylogeny and the origin of angiosperms: An experimental cladistic approach

  • James A. Doyle
  • Michael J. Donoghue
Article

Abstract

We present a numerical cladistic (parsimony) analysis of seed plants plus progymnosperms, using characters from all parts of the plant body, outgroup comparison, and a method of character coding that avoids biases for or against alternative morphological theories. The robustness of the results was tested by construction of alternative trees and analysis of subsets of the data. These experiments show that although some clades are strongly supported, they can often be related to each other in very different but nearly equally parsimonious ways, apparently because of extensive homoplasy. Our results support Rothwell’s idea that coniferopsids are derived fromCallistophyton- like platyspermic seed ferns with saccate pollen, but the hypothesis that they evolved fromArchaeopteris- like progymnosperms and the seed arose twice is nearly as parsimonious. Meyen’s division of seed plants into radiospermic and primarily and secondarily platyspermic lines is highly unparsimonious, but his suggestion that ginkgos are related to peltasperms deserves attention. Angiosperms belong among the platyspermic groups, as the sister group of Bennettitales,Pentoxylon, and Gnetales, and this “anthophyte” clade is best related toCaytonia and glossopterids, although relationships with other combinations of Mesozoic seed fern taxa are nearly as parsimonious. These results imply that the angiosperm carpel can be interpreted as a modified pinnate sporophyll bearing anatropous cupules (=bitegmic ovules), while gnetalian strobili are best interpreted as aggregations of highly reduced bennettitalian flowers, as anticipated by Arber and Parkin and Crane. Our most parsimonious trees imply that the angiosperm line (though not necessarily all its modern features) extended back to the Triassic, but a later derivation of angiosperms from some species ofCaytonia or Bennettitales, which would be nearly as parsimonious, should also be considered. These results raise the possibility that many features considered key adaptations in the origin and rise of angiosperms (insectpollinated flowers, rapid reproduction, drought tolerance) were actually inherited from their gymnospermous precursors. The explosive diversification of angiosperms may instead have been a consequence of carpel closure, resulting in increased speciation rates due to potential for stigmatic isolating mechanisms and/or new means of dispersal. DNA sequencing of extant plants and better information on anatomy, chemistry, sporophyll morphology, and embryology of Bennettitales and Caytoniales and the morphological diversity of Mesozoic anthophytes could provide critical tests of relationships.

Keywords

Pollen Tube Botanical Review Secondary Xylem Outer Integument Leaf Trace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Nous présentons une analyse cladistique numérique (de parcimonie, ou économie d’hypothèses) des Spermatophytes plus Progymnospermes, utilisant des caractères de tous les organes du corps végétal, la comparaison extra-groupe, et une méthode de codification de caractères qui évite des prédispositions en faveur de ou contre les théories morphologiques alternatives. La solidité des résultats a été testé par la construction d’arbres phylétiques alternatifs et l’analyse de sous-ensembles des données. Selon ces expériences, certains phylums sont bien appuyés, mais ils peuvent être reliés de façons très différentes mais presque également économiques, apparemment à cause d’homoplasie répandue. Nos résultats confirment le concept de Rothwell, selon lequel les Coniféropsides sont dérivées de Ptéridospermes platyspermiques à pollen saccate proches deCallistophyton, mais l’hypothèse d’une dérivation de Progymnospermes proches d’Archaeopteris et d’une origine diphylétique de la graine est presque aussi économique. La division de Meyen des Spermatophytes en lignées radiospermiques et primairement et secondairement platyspermiques est très peu économique, mais son concept d’une affinité entre les Ginkgoales et les Peltaspermes mérite de l’attention. Les Angiospermes se situent parmi les groupes platyspermiques, comme groupe-frère des Bennettitales,Pentoxylon, et Gnetales, et le phylum ainsi constitué (“Anthophytes”) est le mieux lié àCaytonia et aux Glossoptérides, bien que des rapports avec d’autres combinaisons de taxons de Ptéridospermes mésozoïques soient presque aussi économiques. Ces résultats indiquent que le carpelle des Angiospermes peut être interprété comme une sporophylle pennée modifiée portant des cupules anatropes (=ovules bitégumentés), puisque les strobiles des Gnetales sont le mieux interprétés comme des agglomérations de fleurs bennettitaliennes fort réduites, comme l’a proposé Arber et Parkin et Crane. Nos arbres phylétiques les plus économiques supposent que la lignée des Angiospermes (mais pas forcément tous ses traits modernes) s’étend jusqu’au Trias, mais une origine plus récente à partir de quelque espèce deCaytonia ou de Bennettitales, hypothèses presque aussi économiques, doit aussi être considérée. Ces résultats suggèrent que plusieurs traits considérés comme des adaptationsclés dans l’origine ou l’expansion des Angiospermes (fleurs entomophiles, rapidité de reproduction, tolérance de sécheresse) étaient en fait hérités de leurs ancêtres gymnospermiques. La diversification explosive des Angiospermes pourrait plutôt être une conséquence de la clôture du carpelle, conduisant à un taux de spéciation élevé dû au potential pour des mécanismes d’isolement stigmatiques et/ou de nouveaux moyens de dispersion. L’étude de séquences d’ADN des végétaux actuels et de meilleurs renseignements sur l’anatomie, la phytochimie, la morphologie des sporophylles, et l’embryologie des Bennettitales et Caytoniales pourraient fournir des testes critiques de rapports phylétiques.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Andrews, H. N., P. G. Gensel &W. H. Forbes. 1974. An apparently heterosporous plant from the Middle Devonian of New Brunswick. Palaeontology17: 387–408.Google Scholar
  2. Arber, E. A. N. &J. Parkin. 1907. On the origin of angiosperms. J. Linn. Soc, Bot.38: 29–80.Google Scholar
  3. ——. 1908. Studies on the evolution of the angiosperms. The relationship of the angiosperms to the Gnetales. Ann. Bot. (London)22: 489–515.Google Scholar
  4. Archangelsky, S. 1965. Fossil Ginkgoales from the Ticó Flora, Santa Cruz Province, Argentina. Bull. Brit. Mus. (Nat. Hist.), Geol.10: 121–137Google Scholar
  5. — 1968. Studies on Triassic fossil plants from Argentina. IV. The leaf genusDicroidium and its possible relation toRhexoxylon stems. Palaeontology11: 500–515.Google Scholar
  6. — &D. W. Brett. 1961. Studies on Triassic fossil plants from Argentina. I.Rhexoxylon from the Ischigualasto Formation. Philos. Trans., Ser. B244: 1–19.CrossRefGoogle Scholar
  7. ——. 1963. Studies on Triassic fossil plants from Argentina. II.Michelilloa waltonii nov. gen. et spec. from the Ischigualasto Formation. Ann. Bot. (London)27: 147–154.Google Scholar
  8. Arnold, C. A. 1948. Classification of gymnosperms from the viewpoint of paleobotany. Bot. Gaz.110: 2–12.CrossRefGoogle Scholar
  9. Ash, S. R. 1972. Late Triassic plants from the Chinle Formation in northeastern Arizona. Palaeontology15: 598–618.Google Scholar
  10. Axelrod, D. I. 1952. A theory of angiosperm evolution. Evolution6: 29–60.CrossRefGoogle Scholar
  11. —. 1970. Mesozoic paleogeography and early angiosperm history. Bot. Rev.36: 277–319.CrossRefGoogle Scholar
  12. Bailey, I. W. 1944. The development of vessels in angiosperms and its significance in morphological research. Amer. J. Bot.31: 421–428.CrossRefGoogle Scholar
  13. —. 1956. Nodal anatomy in restrospect. J. Arnold Arbor.37: 269–287.Google Scholar
  14. Bancroft, N. 1913.Rhexoxylon africanum, a new Medullosean stem. Trans. Linn. Soc. London, Bot.8: 87–103.Google Scholar
  15. Banks, H. P. 1968. The early history of land plants. Pages 73–107in E. T. Drake (ed.), Evolution and environment. Yale University Press, New Haven.Google Scholar
  16. Basinger, J. F., G. W. Rothwell &W. N. Stewart. 1974. Cauline vasculature and leaf trace production in medullosan pteridosperms. Amer. J. Bot.61: 1002–1015.CrossRefGoogle Scholar
  17. Beck, C. B. 1957.Tetraxylopteris schmidtii gen. et sp. nov., a probable pteridosperm precursor from the Devonian of New York. Amer. J. Bot.44: 350–367.CrossRefGoogle Scholar
  18. —. 1960. The identity ofArchaeopteris andCallixylon. Brittonia12: 351–368.CrossRefGoogle Scholar
  19. —. 1966. On the origin of gymnosperms. Taxon15: 337–339.CrossRefGoogle Scholar
  20. —. 1967.Eddya sullivanensis, gen. et sp. nov., a plant of gymnospermic morphology from the Upper Devonian of New York. Palaeontographica, Abt. B121: 1–22.Google Scholar
  21. —. 1970. The appearance of gymnospermous structure. Biol. Rev.45: 379–400.CrossRefGoogle Scholar
  22. —. 1971. On the anatomy and morphology of lateral branch systems ofArchaeopteris. Amer. J. Bot.58: 758–784.CrossRefGoogle Scholar
  23. —. 1976. Current status of the Progymnospermopsida. Rev. Palaeobot. Palynol.21: 5–23.CrossRefGoogle Scholar
  24. —. 1979. The primary vascular system ofCallixylon. Rev. Palaeobot. Palynol.28: 103–115.CrossRefGoogle Scholar
  25. —. 1981.Archaeopteris and its role in vascular plant evolution. Pages 193–230in K. J. Niklas (ed.), Paleobotany, paleoecology, and evolution. Vol. I. Praeger, New York.Google Scholar
  26. —. 1985. Gymnosperm phylogeny—A commentary on the views of S.V. Meyen. Bot. Rev.51: 273–294.Google Scholar
  27. —,R. Schmid &G. W. Rothwell. 1982. Stelar morphology and the primary vascular system of seed plants. Bot. Rev.48: 691–815.CrossRefGoogle Scholar
  28. Beeston, J. W. 1972. A specimen ofAraucarioxylon arberi (Seward) Beeston comb. nov. from Queensland. Geol. Surv. Queensland Publ.352: 17–20.Google Scholar
  29. Behnke, H. D. 1974. Sieve-element plastids of Gymnospermae: Their ultrastructure in relation to systematics. Pl. Syst. Evol.123: 1–12.CrossRefGoogle Scholar
  30. Benzing, D. H. 1967. Developmental patterns in stem primary xylem of woody Ranales. II. Species with trilacunar and multilacunar nodes. Amer. J. Bot.54: 813–820.CrossRefGoogle Scholar
  31. Berry, E. W. 1939 The fossil plants from Huallanca, Peru. Johns Hopkins Univ. Stud. Geol.13: 73–93Google Scholar
  32. Bierhorst, D. W. 1971 Morphology of vascular plants. Macmillan, New York.Google Scholar
  33. Blanc-Louvel, C. 1966 Etude anatomique comparée des tiges et des pétioles d’une Ptéridospermale du Carbonifère du genreLyginopteris Potonié. Mém. Mus. Natl. Hist. Nat., Sér. C18: 1–103.Google Scholar
  34. Bose, M. N. 1953.Bucklandia sahnii sp. nov. from the Jurassic of the Rajmahal Hills, Bihar. Palaeobotanist2: 41–50.Google Scholar
  35. Bremer, K. 1985. Summary of green plant phylogeny and classification. Cladistics1: 369–385.CrossRefGoogle Scholar
  36. — &H.-E. Wanntorp. 1981. A cladistic classification of green plants. Nord. J. Bot.1: 1–3.Google Scholar
  37. Brenchley, W. E. 1913. On branching specimens ofLyginodendron oldhamium. J. Linn. Soc, Bot.41: 349–356.Google Scholar
  38. Brenner, G. J. 1976. Middle Cretaceous floral provinces and early migrations of angiosperms. Pages 23–47in C. B. Beck (ed.), Origin and early evolution of angiosperms. Columbia University Press, New York.Google Scholar
  39. Brooks, D. R. 1984. Quantitative parsimony. Pages 119–132in T. Duncan and T. F. Stuessy (eds.), Cladistics: Perspectives on the reconstruction of evolutionary history. Columbia University Press, New York.Google Scholar
  40. Burger, W. C. 1977. The Piperales and the monocots. Alternative hypotheses for the origin of monocotyledonous flowers. Bot. Rev.43: 345–393.CrossRefGoogle Scholar
  41. —. 1981a. Heresy revived: The monocot theory of angiosperm origin. Evol. Theory5: 189–225.Google Scholar
  42. —. 1981b. Why are there so many kinds of flowering plants? BioScience31: 572, 577–581.CrossRefGoogle Scholar
  43. Cantino, P. D. 1985. Phylogenetic inference from nonuniversal derived character states. Syst. Bot.10: 119–122.CrossRefGoogle Scholar
  44. Carlquist, S. 1975. Ecological strategies of xylem evolution. University of California Press, Berkeley.Google Scholar
  45. Chamberlain, C. J. 1935. Gymnosperms: Structure and evolution. University of Chicago Press, Chicago (republished by Dover, New York).Google Scholar
  46. Cornet, B. 1977. Angiosperm-like pollen with tectate-columellate wall structure from the Upper Triassic (and Jurassic) of the Newark Supergroup, USA. Amer. Assoc. Strat. Palynol. 10th Annual Meeting, Tulsa, Abstr. 8–9.Google Scholar
  47. Crane, P. R. 1985a. Phylogenetic analysis of seed plants and the origin of angiosperms. Ann. Missouri Bot. Gard.72: 716–793.CrossRefGoogle Scholar
  48. —. 1985b. Phylogenetic relationships in seed plants. Cladistics1: 329–348.Google Scholar
  49. -. (In press). Vegetational consequences of the angiosperm diversification.In E. M. Friis, W. G. Chaloner & P. R. Crane (eds.), The origin of angiosperms and their biological consequences. Cambridge University Press, Cambridge.Google Scholar
  50. Cronquist, A. 1968. The evolution and classification of flowering plants. Houghton Mifflin, Boston.Google Scholar
  51. Delevoryas, T. 1968. Some aspects of cycadeoid evolution. J. Linn. Soc, Bot.61: 137–146.Google Scholar
  52. Dilcher, D. L. 1979. Early angiosperm reproduction: An introductory report. Rev. Palaeobot. Palynol.27: 291–328.CrossRefGoogle Scholar
  53. Douglas, J. G. 1969. The Mesozoic floras of Victoria. Parts 1 and 2. Mem. Geol. Surv. Victoria28: 1–310.Google Scholar
  54. Doyle, J. A. 1969. Cretaceous angiosperm pollen of the Atlantic Coastal Plain and its evolutionary significance. J. Arnold Arbor.50: 1–35.Google Scholar
  55. —. 1978. Origin of angiosperms. Annual Rev. Ecol. Syst.9: 365–392.CrossRefGoogle Scholar
  56. —. 1984. Evolutionary, geographic, and ecological aspects of the rise of angiosperms. Proc. 27th Int. Geol. Congr. (Moscow, 1984), vol. 2, VNU Science Press, Utrecht, 23–33.Google Scholar
  57. —,P. Biens, A. Doerenkamp &S. Jardiné. 1977. Angiosperm pollen from the pre-Albian Cretaceous of Equatorial Africa. Bull. Centres Rech. Explor.-Prod. Elf-Aquitaine1:451–473.Google Scholar
  58. — &M. J. Donoghue. 1986. Relationships of angiosperms and Gnetales: A numerical cladistic analysis. Pages 177–198in B. A. Thomas & R. A. Spicer (eds.), Systematic and taxonomic approaches in palaeobotany, Syst. Assoc. Spec. Vol. 31. Oxford University Press, Oxford.Google Scholar
  59. -& -. (In press a). The origin of angiosperms: A cladistic approach.In E. M. Friis, W. G. Chaloner & P. R. Crane (eds.), The origin of angiosperms and their biological consequences. Cambridge University Press, Cambridge.Google Scholar
  60. -& -. (In press b). The importance of fossils in elucidating seed plant phylogeny and macroevolution. Rev. Palaeobot. Palynol.Google Scholar
  61. — &L. J. Hickey. 1976. Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. Pages 139–206in C. B. Beck (ed.), Origin and early evolution of angiosperms. Columbia University Press, New York.Google Scholar
  62. —,S. Jardiné &A. Doerenkamp. 1982.Afropollis, a new genus of early angiosperm pollen, with notes on the Cretaceous palynostratigraphy and paleoenvironments of Northern Gondwana. Bull. Centres Rech. Explor.-Prod. Elf-Aquitaine6: 39–117.Google Scholar
  63. —,M. Van Campo &B. Lugardon. 1975. Observations on exine structure ofEucommiidites and Lower Cretaceous angiosperm pollen. Pollen & Spores17: 429–486.Google Scholar
  64. Drinnan, A. N. &T. C. Chambers. 1985. A reassessment ofTaeniopteris daintreei from the Victorian Early Cretaceous: A member of the Pentoxylales and a significant Gondwanaland plant. Austral. J. Bot.33: 89–100.CrossRefGoogle Scholar
  65. Eames, A. J. 1952. Relationships of the Ephedrales. Phytomorphology2: 79–100.Google Scholar
  66. Ehrendorfer, F. 1976. Evolutionary significance of chromosomal differentiation patterns in gymnosperms and primitive angiosperms. Pages 220–240in C. B. Beck (ed.), Origin and early evolution of angiosperms. Columbia University Press, New York.Google Scholar
  67. Eldredge, N. 1979. Cladism and common sense. Pages 165–198in J. Cracraft&N. Eldredge (eds.), Phylogenetic analysis and paleontology. Columbia University Press, New York.Google Scholar
  68. — &J. Cracraft. 1980. Phylogenetic patterns and the evolutionary process. Columbia University Press, New York.Google Scholar
  69. Esau, K. 1969. The phloem. Encyclopedia of plant anatomy5(2): 1–505. Borntraeger, Berlin.Google Scholar
  70. Farris, J. S. 1970. Methods for computing Wagner trees. Syst. Zool.19: 83–92.CrossRefGoogle Scholar
  71. —. 1983. The logical basis of phylogenetic analysis. Pages 7–36in N. I. Platnick & V. A. Funk (eds.), Advances in cladistics. Vol. 2. Columbia University Press, New York.Google Scholar
  72. Felsenstein, J. 1978. The number of evolutionary trees. Syst. Zool.27: 27–33.CrossRefGoogle Scholar
  73. —. 1983. Parsimony in systematics: Biological and statistical issues. Annual Rev. Ecol. Syst.14:313–333.CrossRefGoogle Scholar
  74. —. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution39: 783–791.CrossRefGoogle Scholar
  75. Fisher, D. C. 1980. The role of stratigraphic data in phylogenetic inference. Geol. Soc. Amer. Abstr. with Programs12: 426.Google Scholar
  76. —. 1981. The role of functional analysis in phylogenetic inference: Examples from the history of the Xiphosura. Amer. Zool.21: 47–62.Google Scholar
  77. Florin, R. 1931. Untersuchungen zur Stammesgeschichte der Coniferales und Cordaitales. Erster Teil: Morphologie und Epidermisstruktur der Assimilationsorgane bei der rezenten Koniferen. Kongl. Svenska Vetenskapsakad. Handl., Ser. 310: 1–588.Google Scholar
  78. —. 1949. The morphology ofTrichopitys heteromorpha Saporta, a seed-plant of Palaeozoic age, and the evolution of the female flowers in the Ginkgoinae. Acta Horti Berg.15: 79–109.Google Scholar
  79. —. 1951. Evolution in cordaites and conifers. Acta Horti Berg.15: 285–388.Google Scholar
  80. Galtier, J. &J. C. Holmes. 1982. New observations on the branching of Carboniferous ferns and pteridosperms. Ann. Bot. (London)49: 737–746.Google Scholar
  81. Gaussen, H. 1946. Les Gymnospermes, actuelles et fossiles. Trav. Lab. Forest. Toulouse, tome II, vol. 1.Google Scholar
  82. Gensel, P. G. 1984. A new Lower Devonian plant and the early evolution of leaves. Nature309: 785–787.CrossRefGoogle Scholar
  83. Gibbs, R. D. 1957. The Mäule reaction, lignin, and the relationships between woody plants. Pages 269–312in K. V. Thimann (ed.), The physiology of forest trees. Ronald Press, New York.Google Scholar
  84. Gordon, W. T. 1935. The genusPitys, Witham, emend. Trans. Roy. Soc. Edinburgh58: 279–311.Google Scholar
  85. Gottlieb, O. R. &K. Kubitzki. 1984. Chemosystematics of the Gnetatae and the chemical evolution of seed plants. Pl. Med.1984: 380–385.Google Scholar
  86. Gould, R. E. 1971.Lyssoxylon grigsbyi, a cycad trunk from the Upper Triassic of Arizona and New Mexico. Amer. J. Bot.58: 239–248.CrossRefGoogle Scholar
  87. —. 1975. A preliminary report on petrified axes ofVertebraria from the Permian of eastern Australia. Pages 109–115in K. S. W. Campbell (ed.), Gondwana geology. Australian National University Press, Canberra.Google Scholar
  88. — &T. Delevoryas. 1977. The biology ofGlossopteris: Evidence from petrified seedbearing and pollen-bearing organs. Alcheringa1: 387–399.Google Scholar
  89. Gould, S. J. 1977. Ontogeny and phylogeny. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  90. — &N. Eldredge. 1977. Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology3: 115–151.Google Scholar
  91. Halle, T. G. 1929. Some seed-bearing pteridosperms from the Permian of China. Kongl. Svenska Vetenskapsakad. Handl., Ser. 36(8): 1–24.Google Scholar
  92. Harris, T. M. 1932a. The fossil flora of Scoresby Sound East Greenland. Part 2: Description of seed plantsincertae sedis together with a discussion of certain cycadophyte cuticles. Meddel. Grønland85(3): 1–112.Google Scholar
  93. —. 1932b. The fossil flora of Scoresby Sound East Greenland. Part 3: Caytoniales and Bennettitales. Meddel. Grønland85(5): 1–133.Google Scholar
  94. —. 1940.Caytonia. Ann Bot. (London)4: 713–734.Google Scholar
  95. —. 1951. The relationships of the Caytoniales. Phytomorphology1: 29–39.Google Scholar
  96. —. 1954. Mesozoic seed cuticles. Svensk Bot. Tidskr.48: 281–291.Google Scholar
  97. —. 1958. The seed ofCaytonia. Palaeobotanist7: 93–106.Google Scholar
  98. —. 1962. The occurrence of the fructificationCarnoconites in New Zealand. Trans. Roy. Soc. New Zealand, Geol.1: 17–27.Google Scholar
  99. -. 1964. The Yorkshire Jurassic flora. II. Caytoniales, Cycadales & pteridosperms. Brit. Mus. (Nat. Hist.), London.Google Scholar
  100. -. 1969. The Yorkshire Jurassic flora. III. Bennettitales. Brit. Mus. (Nat. Hist.), London.Google Scholar
  101. —. 1971. The stem ofCaytonia. Geophytology1: 23–29.Google Scholar
  102. —. 1976. The Mesozoic gymnosperms. Rev. Palaeobot. Palynol.21: 119–134.CrossRefGoogle Scholar
  103. Hennig, W. 1966. Phylogenetic systematics. University of Illinois Press, Urbana.Google Scholar
  104. Hill, C. R. &P. R. Crane. 1982. Evolutionary cladistics and the origin of angiosperms. Pages 269–361in K. A. Joysey & A. E. Friday (eds.), Problems of phylogenetic reconstruction. Syst. Assoc. Spec. Vol. 21. Academic Press, London.Google Scholar
  105. Hoskins, J. H. &A. T. Cross. 1946. Studies in the Trigonocarpales. Part I.Pachytesta vera, a new species from the Des Moines Series of Iowa. Amer. Midl. Naturalist36: 207–250.CrossRefGoogle Scholar
  106. Hughes, N. F. 1976. Palaeobiology of angiosperm origins. Cambridge University Press, Cambridge.Google Scholar
  107. Iltis, H. H. 1983. From teosinte to maize: The catastrophic sexual transmutation. Science222: 886–894.PubMedCrossRefGoogle Scholar
  108. Jablonski, D. 1986. Background and mass extinctions: The alternation of macroevolutionary regimes. Science222: 886–894.Google Scholar
  109. —,K. W. Flessa &J. W. Valentine. 1985. Biogeography and paleobiology. Paleobiology11: 75–90.Google Scholar
  110. Janzen, D. H. 1970. Herbivores and the number of tree species in tropical forests. Amer. Naturalist104: 501–528.CrossRefGoogle Scholar
  111. Jennings, J. R. 1976. The morphology and relationships ofRhodea, Telangium, Telangiopsis, andHeterangium. Amer. J. Bot.63: 1119–1133.CrossRefGoogle Scholar
  112. Kaplan, D. R. 1984. The concept of homology and its central role in the elucidation of plant systematic relationships. Pages 51–70in T. Duncan & T. F. Stuessy (eds.), Cladistics: Perspectives on the reconstruction of evolutionary history. Columbia University Press, New York.Google Scholar
  113. Kluge, A. G. &J. S. Farris. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool.18: 1–32.CrossRefGoogle Scholar
  114. Knoll, A. H. 1984. Patterns of extinction in the fossil record of vascular plants. Pages 21–68in M. H. Nitecki (ed.), Extinctions. University of Chicago Press, Chicago.Google Scholar
  115. Krassilov, V. A. 1977. The origin of angiosperms. Bot. Rev.43: 143–176.CrossRefGoogle Scholar
  116. Le Thomas, A. 1980-81. Ultrastructural characters of the pollen grains of African Annonaceae and their significance for the phylogeny of primitive angiosperms. Pollen & Spores22: 267–342,23: 5–36.Google Scholar
  117. Long, A. G. 1961.Tristichia ovensi gen. et sp. nov., a protostelic Lower Carboniferous pteridosperm from Berwickshire and East Lothian, with an account of some associated seeds and cupules. Trans. Roy. Soc. Edinburgh64: 477–489.Google Scholar
  118. —. 1963. Some specimens ofLyginorachis papilio Kidston associated with stems ofPitys. Trans. Roy. Soc. Edinburgh65: 211–224.Google Scholar
  119. —. 1975. Further observations on some Lower Carboniferous seeds and cupules. Trans. Roy. Soc. Edinburgh69: 267–293.Google Scholar
  120. —. 1979. Observations on the Lower Carboniferous genusPitus Witham. Trans. Roy. Soc. Edinburgh70: 111–127.Google Scholar
  121. Maddison, W. P., M. J. Donoghue &D. R. Maddison. 1984. Outgroup analysis and parsimony. Syst. Zool.33: 83–103.CrossRefGoogle Scholar
  122. Maheshwari, H. K. 1972. Permian wood from Antarctica and revision of some Lower Gondwana wood taxa. Palaeontographica, Abt.B 138: 1–43.Google Scholar
  123. Maheshwari, P. 1950. An introduction to the embryology of angiosperms. McGraw-Hill, New York.Google Scholar
  124. — &H. Singh. 1967. The female gametophyte of gymnosperms. Biol. Rev.42: 88–130.CrossRefGoogle Scholar
  125. — &V. Vasil. 1961. The stomata ofGnetum. Ann. Bot. (London)25: 313–319.Google Scholar
  126. Mamay, S. H. 1976. Paleozoic origin of the cycads. U.S. Geol. Surv. Profess. Pap.934: 1–48.Google Scholar
  127. Mapes, G. &G. W. Rothwell. 1980.Quaestora amplecta gen. et sp. n., a structurally simple medullosan stem from the Upper Mississippian of Arkansas. Amer. J. Bot.67: 636–647.CrossRefGoogle Scholar
  128. ——. 1984. Permineralized ovulate cones ofLebachia from late Palaeozoic limestones of Kansas. Palaeontology27: 69–94.Google Scholar
  129. Martens, P. 1971. Les Gnétophytes. Encyclopedia of plant anatomy12(2): 1–295. Borntraeger, Berlin.Google Scholar
  130. Meeuse, A. D. J. 1963. From ovule to ovary: A contribution to the phylogeny of the megasporangium. Acta Biotheor.16: 127–182.CrossRefGoogle Scholar
  131. —. 1972a. Facts and fiction in floral morphology with special reference to the Polycarpicae. Acta Bot. Neerl.21: 113–127, 235–-252, 351–365.Google Scholar
  132. —. 1972b. Sixty-five years of theories of the multiaxial flower. Acta Biotheor.21: 167–202.CrossRefGoogle Scholar
  133. Meyen, S. V. 1984. Basic features of gymnosperm systematics and phylogeny as evidenced by the fossil record. Bot. Rev.50: 1–112.CrossRefGoogle Scholar
  134. Mickevich, M. F. & J. S. Farris. 1982. Phylogenetic analysis system (PHYSYS) (FORTRAN V software system of cladistic and phenetic algorithms).Google Scholar
  135. Millay, M. A. &D. A. Eggert. 1974. Microgametophyte development in the Paleozoic seed fern family Callistophytaceae. Amer. J. Bot.61: 1067–1075.CrossRefGoogle Scholar
  136. —— &R. L. Dennis. 1978. Morphology and ultrastructure of four Pennsylvanian prepollen types. Micropaleontology24: 305–315.CrossRefGoogle Scholar
  137. — &T. N. Taylor. 1976. Evolutionary trends in fossil gymnosperm pollen. Rev. Palaeobot. Palynol.21: 65–91.CrossRefGoogle Scholar
  138. Miller, C. N. 1985. A critical review of S. V. Meyen’s “Basic features of gymnosperm systematics and phylogeny as evidenced by the fossil record.” Bot. Rev.51: 295–318.Google Scholar
  139. Mishler, B. D. &S. P. Churchill. 1984. A cladistic approach to the phylogeny of the “bryophytes.” Brittonia36: 406–424.CrossRefGoogle Scholar
  140. Muhammad, A. F. &R. Sattler. 1982. Vessel structure ofGnetum and the origin of angiosperms. Amer. J. Bot.69: 1004–1021.CrossRefGoogle Scholar
  141. Mulcahy, D. L. 1979. The rise of angiosperms: A genecological factor. Science206: 20–23.PubMedCrossRefGoogle Scholar
  142. Muller, J. 1970. Palynological evidence on early differentiation of angiosperms. Biol. Rev.45:417–450.CrossRefGoogle Scholar
  143. —. 1981. Fossil pollen records of extant angiosperms. Bot. Rev.47: 1–142.CrossRefGoogle Scholar
  144. Nautiyal, D. D., S. Singh &D. D. Pant. 1976. Epidermal structure and ontogeny of stomata inGnetum gnemon, G. montanum andG. ula. Phytomorphology26: 282–296.Google Scholar
  145. Nishida, M. 1969. A petrified trunk ofBucklandia choshiensis sp. nov. from the Cretaceous of Choshi, Chiba Prefecture, Japan. Phytomorphology19: 28–34.Google Scholar
  146. Oestry-Stidd, L. L. &B. M. Stidd. 1976. Paracytic (syndetocheilic) stomata in Carboniferous seed ferns. Science193: 156–157.CrossRefGoogle Scholar
  147. Pant, D. D. 1977. The plant ofGlossopteris. J. Indian Bot. Soc.56: 1–23.Google Scholar
  148. — &D. D. Nautiyal. 1960. Some seeds and sporangia ofGlossopteris flora from Raniganj Coalfield, India. Palaeontographica, Abt.B 107: 41–64.Google Scholar
  149. ——. 1967. On the structure ofBuriadia heterophylla (Feistmantel) Seward & Sahni and its fructification. Philos. Trans., Ser. B252: 27–48.CrossRefGoogle Scholar
  150. ——. 1984. On the morphology and structure ofOttokaria zeilleri sp. nov. — A female fructification ofGlossopteris. Palaeontographica, Abt. B193: 127–152.Google Scholar
  151. — &R. S. Singh. 1974. On the stem and attachment ofGlossopteris andGangamopteris leaves. Part II — Structural features. Palaeontographica, Abt. B147: 42–73.Google Scholar
  152. Parenti, L. R. 1980. A phylogenetic analysis of the land plants. Biol. J. Linn. Soc.13: 225–242.CrossRefGoogle Scholar
  153. Payne, W. W. 1979. Stomatal patterns in embryophytes: Their evolution, ontogeny and interpretation. Taxon28: 117–132.CrossRefGoogle Scholar
  154. Pettitt, J. M. 1966. Exine structure in some fossil and Recent spores and pollen as revealed by light and electron microscopy. Bull. Brit. Mus. (Nat. Hist.), Geol.13: 223–257.Google Scholar
  155. —. 1969. Pteridophytic features in some Lower Carboniferous seed megaspores. Bot. J. Linn. Soc.62: 233–239.Google Scholar
  156. Pray, T. R. 1955. Foliar venation of angiosperms. II. Histogenesis of the venation ofLiriodendron. Amer. J. Bot.42: 18–27.CrossRefGoogle Scholar
  157. Rasmussen, F. N. 1983. On “apomorphic tendencies” and phylogenetic inference. Syst. Bot.8: 334–337.Google Scholar
  158. Regal, P. J. 1977. Ecology and evolution of flowering plant dominance. Science196: 622–629.PubMedCrossRefGoogle Scholar
  159. Reihman, M. A. &J. T. Schabilion. 1976. Cuticles of two species ofAlethopteris. Amer. J. Bot.63: 1039–1046.CrossRefGoogle Scholar
  160. ——. 1978. A reconsideration of the stomatal structure ofAlethopteris sullivantii. Bot. Soc. Amer. Misc. Ser. Publ.156: 33.Google Scholar
  161. Retallack, G. J. 1985. Reconstructions of Scottish, Early Carboniferous, seed ferns. Amer. J. Bot.72: 898.Google Scholar
  162. — &D. L. Dilcher. 1981. Arguments for a glossopterid ancestry of angiosperms. Paleobiology7: 54–67.Google Scholar
  163. Reymanówna, M. 1974. On anatomy and morphology ofCaytonia. Birbal Sahni Inst. Palaeobot. Spec. Publ.2: 50–57.Google Scholar
  164. Rodin, R. J. 1967. Ontogeny of foliage leaves inGnetum. Phytomorphology17: 118–128.Google Scholar
  165. Rothwell, G. W. 1972. Evidence of pollen tubes in Paleozoic pteridosperms. Science175: 772–774.PubMedCrossRefGoogle Scholar
  166. —. 1975. The Callistophytaceae (Pteridospermopsida): I. Vegetative structures. Palaeontographica, Abt. B151: 171–196.Google Scholar
  167. —. 1981. The Callistophytales (Pteridospermopsida): Reproductively sophisticated Paleozoic gymnosperms. Rev. Palaeobot. Palynol.32: 103–121.CrossRefGoogle Scholar
  168. —. 1982. New interpretations of the earliest conifers. Rev. Palaeobot. Palynol.37: 7–28.CrossRefGoogle Scholar
  169. —. 1985. The role of comparative morphology and anatomy in interpreting the systematics of fossil gymnosperms. Bot. Rev.51: 318–327.Google Scholar
  170. — &D. M. Erwin. 1986. Characterizing the most ancient gymnosperms. Amer. J. Bot.73: 710.Google Scholar
  171. Sahni, B. 1932. A petrifiedWilliamsonia (W. sewardiana, sp. nov.) from the Rajmahal Hills, India. Mem. Geol. Surv. India, Palaeontologia Indica, n. s.,20(Mem. No. 3): 1–19.Google Scholar
  172. —. 1948. The Pentoxyleae: A new group of Jurassic gymnosperms from the Rajmahal Hills of India. Bot. Gaz.110: 47–80.CrossRefGoogle Scholar
  173. Schabilion, J. T. &N. C. Brotzman. 1979. A tetrahedral megaspore arrangement in a seed fern ovule of Pennsylvanian age. Amer. J. Bot.66: 744–745.CrossRefGoogle Scholar
  174. Scheckler, S. E. 1974. Systematic characters in Devonian ferns. Ann. Missouri Bot. Gard.61: 462–473.CrossRefGoogle Scholar
  175. —. 1978. Ontogeny of progymnosperms. II. Shoots of Upper Devonian Archaeopteridales. Canad. J. Bot.56: 3136–3170.CrossRefGoogle Scholar
  176. — &H. P. Banks. 1971a. Anatomy and relationships of some Devonian progymnosperms from New York. Amer. J. Bot.58: 737–751.CrossRefGoogle Scholar
  177. ——. 1971b.Proteokalon a new genus of progymnosperms from the Devonian of New York state and its bearing on phylogenetic trends in the group. Amer. J. Bot.58: 874–884.CrossRefGoogle Scholar
  178. Schopf, J. M. 1976. Morphologic interpretation of fertile structures in glossopterid gymnosperms. Rev. Palaeobot. Palynol.21: 25–64.CrossRefGoogle Scholar
  179. Scott, D. H. 1923. Studies in fossil botany, ed. 3, vol. II, Spermophyta. A. & C. Black, London.Google Scholar
  180. Sharma, B. D. 1970. On the structure of the seeds ofWilliamsonia collected from the Middle Jurassic rocks of Amarjola in the Rajmahal Hills, India. Ann. Bot. (London)34: 1071–1078.Google Scholar
  181. —. 1974. Ovule ontogeny inWilliamsonia Carr. Palaeontographica, Abt. B148:137–143.Google Scholar
  182. —. 1977. Indian Williamsonias—An illustrated review. Acta Palaeobot.18: 19–29.Google Scholar
  183. Smiley, C. J. 1970. Later Mesozoic flora from Maran, Pahang, West Malaysia. Geol. Soc. Malaysia Bull.3: 77–113.Google Scholar
  184. Smith, J. D., J. S. Farris & M. F. Mickevich. 1982. Documentation for phylogenetic analysis system (online PHYSYS documentation).Google Scholar
  185. Smoot, E. L., R. K. Jansen &T. N. Taylor. 1981. A phylogenetic analysis of the land plants: A botanical commentary. Taxon30: 65–67.CrossRefGoogle Scholar
  186. Sober, E. 1983. Parsimony in systematics: Philosophical issues. Annual Rev. Ecol. Syst.14: 335–357.CrossRefGoogle Scholar
  187. —. 1985. A likelihood justification of parsimony. Cladistics1: 209–233.Google Scholar
  188. Sporne, K. R. 1965. The morphology of gymnosperms. Hutchinson University Library, London.Google Scholar
  189. Stanley, S. M. 1979. Macroevolution: Pattern and process. W. H. Freeman, San Francisco.Google Scholar
  190. Stebbins, G. L. 1974. Flowering plants: Evolution above the species level. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  191. —. 1981. Why are there so many species of flowering plants? BioScience31: 573–577.CrossRefGoogle Scholar
  192. Sterling, C. 1963. Structure of the male gametophyte in gymnosperms. Biol. Rev.38:167–203.PubMedCrossRefGoogle Scholar
  193. Stewart, W. N. 1983. Paleobotany and the evolution of plants. Cambridge University Press, Cambridge.Google Scholar
  194. Stidd, B. M. 1981 The current status of medullosan seed ferns. Rev. Palaeobot. Palynol.32: 63–101.CrossRefGoogle Scholar
  195. — &K. Cosentino. 1976. Nucellangium: Gametophytic structure and relationship toCordaites. Bot. Gaz.137: 242–249.CrossRefGoogle Scholar
  196. — &J. W. Hall. 1970. The natural affinity of the Carboniferous seed,Callospermarion. Amer. J. Bot.57: 827–836.CrossRefGoogle Scholar
  197. —,M. O. Rischbieter &T. L. Phillips. 1985. A new lyginopterid pollen organ with alveolate pollen exines. Amer. J. Bot.72: 501–508.CrossRefGoogle Scholar
  198. Takaso, T. 1985. A developmental study of the integument in gymnosperms 3.Ephedra distachya L. andE. equisetina Bge. Acta Bot. Neerl.34: 33–48.Google Scholar
  199. Takhtajan, A. L. 1969. Flowering plants: Origin and dispersal. Smithsonian Institution, Washington, D.C.Google Scholar
  200. —. 1976. Neoteny and the origin of flowering plants. Pages 207–219in C. B. Beck (ed.), Origin and early evolution of angiosperms. Columbia University Press, New York.Google Scholar
  201. Taylor, T. N. 1965. Paleozoic seed studies: A monograph of the American species ofPachytesta. Palaeontographica, Abt. B117: 1–46.Google Scholar
  202. —. 1973. A consideration of the morphology, ultrastructure and multicellular microgametophyte ofCycadeoidea dacotensis pollen. Rev. Palaeobot. Palynol.16: 157–164.CrossRefGoogle Scholar
  203. —. 1981. Paleobotany: An introduction to fossil plant biology. McGraw-Hill, New York.Google Scholar
  204. — &S. Archangelsky. 1985. The Cretaceous pteridospermsRuflorinia andKtalenia and implications on cupule and carpel evolution. Amer. J. Bot.72: 1842–1853.CrossRefGoogle Scholar
  205. —,M. A. Cichan &A. M. Baldoni. 1984. The ultrastructure of Mesozoic pollen:Pteruchus dubius (Thomas) Townrow. Rev. Palaeobot. Palynol.41: 319–327.CrossRefGoogle Scholar
  206. — &M. A. Millay. 1981. Morphologic variability of Pennsylvanian lyginopterid seed ferns. Rev. Palaeobot. Palynol.32: 27–62.CrossRefGoogle Scholar
  207. Thomas, H. H. 1925. The Caytoniales, a new group of angiospermous plants from the Jurassic rocks of Yorkshire. Philos. Trans., Ser. B213: 299–363.CrossRefGoogle Scholar
  208. —. 1933. On some pteridospermous plants from the Mesozoic rocks of South Africa. Philos. Trans., Ser. B222: 193–265.CrossRefGoogle Scholar
  209. Thompson, W. P. 1918. Independent evolution of vessels in Gnetales and angiosperms. Bot. Gaz.65: 83–90.CrossRefGoogle Scholar
  210. Tiffney, B. H. 1981. Diversity and major events in the evolution of land plants. Pages 193–230in K. J. Niklas (ed.), Paleobotany, paleoecology and evolution. Vol. 2. Praeger, New York.Google Scholar
  211. Townrow, J. A. 1960 The Peltaspermaceae, a pteridosperm family of Permian and Triassic age. Palaeontology3: 333–361.Google Scholar
  212. — 1962. OnPteruchus a microsporophyll of the Corystospermaceae. Bull. Brit. Mus. (Nat. Hist.), Geol.6: 289–320.Google Scholar
  213. Upchurch, G. R. 1984. Cuticle evolution in Early Cretaceous angiosperms from the Potomac Group of Virginia and Maryland. Ann. Missouri Bot. Gard.71: 522–550.CrossRefGoogle Scholar
  214. — &P. R. Crane. 1985. Probable gnetalean megafossils from the Lower Cretaceous Potomac Group of Virginia. Amer. J. Bot.72: 903.Google Scholar
  215. Vakhrameev, V. A. 1970. Yurskie i rannemelovye flory. Pages 213–281in V. A. Vakhrameev, I. A. Dobruskina, Ye. D. Zaklinskaya & S. V. Meyen (eds.), Paleozoyskie i mezozoyskie flory Yevrazii i fitogeografiya etogo vremeni. Nauka, Moscow.Google Scholar
  216. Varma, Y. S. R. &C. G. K. Ramanujam. 1984. Palynology of some Upper Gondwana deposits of Palar basin, Tamil Nadu, India. Palaeontographica, Abt. B190: 37–86.Google Scholar
  217. Vishnu-Mittre. 1953. A male flower of the Pentoxyleae with remarks on the structure of the female cones of the group. Palaeobotanist2: 75–84.Google Scholar
  218. —. 1957. Studies on the fossil flora of Nipania (Rajmahal Series), India—Pentoxyleae. Palaeobotanist6: 31–46.Google Scholar
  219. Vrba, E. S. 1983. Macroevolutionary trends: New perspectives on the roles of adaptation and incidental effect. Science221: 387–389.PubMedCrossRefGoogle Scholar
  220. — &N. Eldredge. 1984. Individuals, hierarchies and processes: Towards a more complete evolutionary theory. Paleobiology10: 146–171.Google Scholar
  221. Walker, J. W. 1976. Evolutionary significance of the exine in the pollen of primitive angiosperms. Pages 1112–1137in I. K. Ferguson & J. Muller (eds.), The evolutionary significance of the exine. Academic Press, London.Google Scholar
  222. Walton, J. 1953. The evolution of the ovule in the pteridosperms. Advancem. Sci.10: 223–230.Google Scholar
  223. Watrous, L. E. &Q. D. Wheeler. 1981. The out-group comparison method of character analysis. Syst. Zool.30: 1–11.CrossRefGoogle Scholar
  224. Wettstein, R. R. von. 1907. Handbuch der systematischen Botanik, II. Band. Franz Deuticke, Leipzig, Wien.Google Scholar
  225. White, D. 1936. Some features of the early Permian flora of America. Rept. XVI Int. Geol. Congr. (Washington, 1933), vol. 1, 679–689.Google Scholar
  226. Wight, D. C. &C. B. Beck. 1984. Sieve cells in phloem of a Middle Devonian progymnosperm. Science225: 1469–1471.PubMedCrossRefGoogle Scholar
  227. Wilde, M. H. 1944. A new interpretation of coniferous cones: I. Podocarpaceae (Podocarpus). Ann. Bot. (London)8: 1–41.Google Scholar
  228. Young, D. A. 1981. Are the angiosperms primitively vesselless? Syst. Bot.6: 313–330.CrossRefGoogle Scholar
  229. — &P. M. Richardson. 1982. A phylogenetic analysis of extant seed plants: The need to utilize homologous characters. Taxon31: 250–254.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1986

Authors and Affiliations

  • James A. Doyle
    • 1
  • Michael J. Donoghue
    • 2
  1. 1.Department of BotanyUniversity of CaliforniaDavisUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA

Personalised recommendations