Economic Botany

, Volume 44, Issue 1, pp 50–60 | Cite as

Novel Phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae)

  • R. L. Koenig
  • S. P. Singh
  • P. Gepts


Forty-one wild types and 41 cultivars of common bean (Phaseolus vulgaris) from Meso-and South America were screened for variability of phaseolin seed protein using one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS/PAGE) and two-dimensional isoelectric focusing SDS/PAGE. Wild accessions from the Andean region showed phaseolin types which had not been previously identified in wild material from that region. Other wild accessions from Argentina exhibited novel phaseolin patterns collectively designated as ‘J’ (‘Jujuy’) phaseolin types, and one accession from northern Peru exhibited a novel phaseolin type, the ‘I’ (‘Inca’) type. The ‘H’ and ‘C’ phaseolins, previously identified only in cultivars, were observed in several wild accessions from Argentina. Among cultivars, two minor variants of the ‘S’ phaseolin type were identified. The ‘Sb’ (‘S Brazil’) was characteristic of a limited number of cultivars from Brazil whereas the ‘Sd’ (‘S Durango 222’) predominated in cultivars of the Mexican central highlands. The distribution of the previously described ‘B’ phaseolin appeared to be larger than formerly known as it extended not only in Colombia but also in Central America. It is possible to correlate the ‘Sb’, ‘Sd’, and ‘B’ phaseolin types with certain agronomic traits.


Argentina Common Bean Economic Botany Colombia Seed Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nuevos tipos de faseolina en fríjoles (Phaseolus vulgaris, Fabaceae) silvestres y cultivados


La variabilidad de faseolina, la proteina principal de la semilla, fue analizada en una muestra de 41 formas silvestres y 41 formas cultivadas del fríjol común (Phaseolus vulgaris) de Meso- y Suramérica mediante electroforesis a una y dos dimensiones en gelos de poliacrilamida con dodecil sulfato de sodio (SDS/ PAGE). Las formas silvestres de la región andina enseñaron tipos de faseolina que no habían sido identificados anteriormente en material silvestre de esta región. Formas silvestres de Argentina mostraron varios tipos nuevos de faseolina que fueron llamados tipos ‘J’ (‘Jujuy’) y una accesión silvestre del norte de Peru mostró un tipo nuevo que fué llamado el tipo ‘I’ (‘Inca’). Dentro de las formas cultivadas, dos formas variantes de la faseolina ‘S’ fueron identificadas. El tipo ‘Sb’ (‘S Brazil’) fué característico de un núméro limitado de variedades de Brasil, mientras el tipo ‘Sd’ (‘S Durango 222’) predominaba en variedades del altiplano central de México. La distribución de la faseolina ‘B’ descrita previamente parece ser más amplia que lo que se había determinado anteriormente ya que se encuentra no solamente en Colombia pero también en América Central. Es posible correlacionar los tipos de faseolina ‘Sb’, ‘Sd’, y ‘B’ con ciertos rasgos agronómicos.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allard, R. W. 1975. The mating system and microevolution. Genetics 79:115–126.PubMedGoogle Scholar
  2. Brown, J. W. S., Y. Ma, F. A. Bliss, and T. C. Hall. 1981a. Genetic variation in the subunits of globulin-1 storage protein of French bean. Theor. Appl. Genet. 59:83–88.PubMedGoogle Scholar
  3. —, F. A. Bliss, and T. C. Hall. 1981b. Linkage relationships between genes controlling seed proteins in French beans. Theor. Appl. Genet. 60:251–259.CrossRefPubMedGoogle Scholar
  4. —, J. R. McFerson, F. A. Bliss, and T. C. Hall. 1982. Genetic divergence among commercial classes ofPhaseolus vulgaris in relation to phaseolin pattern. HortScience 17:752–754.Google Scholar
  5. Brücher, H. 1988. The wild ancestor ofPhaseolus vulgaris in South America. Pages 185-214in P. Gepts, ed., Genetic resources ofPhaseolus beans. Kluwer, Dordrecht, The Netherlands.Google Scholar
  6. Delgado Salinas, A. O. 1985. Systematics of the genusPhaseolus (Leguminosae) in North and Central America. Ph.D. thesis, Univ. Texas, Austin.Google Scholar
  7. Gentry, H. S. 1969. Origin of the common bean,Phaseolus vulgaris. Econ. Bot. 23:55–69.CrossRefGoogle Scholar
  8. Gepts, P. 1988. A Middle American and an Andean common bean gene pool. Pages 375-390in P. Gepts, ed., Genetic resources ofPhaseolus beans. Kluwer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  9. —, and F. A. Bliss. 1986. Phaseolin variability among wild and cultivated common beans (Phaseolus vulgaris) from Colombia. Econ. Bot. 40:469–478.CrossRefGoogle Scholar
  10. —, T. C. Osborn, K. Rashka, and F. A. Bliss. 1986. Phaseolin seed protein variability in wild forms and landraces of the common bean,Phaseolus vulgaris: evidence for multiple centers of domestication. Econ. Bot. 40:451–468.CrossRefGoogle Scholar
  11. —, and F. A. Bliss. 1985. F1, hybrid weakness in the common bean. J. Heredity 76:447–450.Google Scholar
  12. Glaszmann, J. C. 1987. Isozymes and classification of Asian varieties. Theor. Appl. Genet. 74:21–30.CrossRefPubMedGoogle Scholar
  13. Hamrick, J. L., and R. W. Allard. 1972. Microgeographical variation in allozyme frequencies inAvena barbata. Proc. Natl. Acad. U.S.A. 69:2100–2104.CrossRefGoogle Scholar
  14. Hartana, A. 1983. Genetic variability in seed protein levels associated with two phaseolin protein types in common bean (Phaseolus vulgaris L.). M.S. thesis, Univ. Wisconsin, Madison.Google Scholar
  15. — 1986. Components of variability for seed protein of common bean (Phaseolus vulgaris L.). Ph.D. thesis, Univ. Wisconsin, Madison.Google Scholar
  16. Hedrick, U. P. 1931. The vegetables of New York: the beans of New York. New York Agric. Exp. Sta. Rept. 1(2): 1–110.Google Scholar
  17. Johnson, B. L. 1967. Tetraploid wheats: seed protein electrophoresis of the Emmer and Timopheevii groups. Science 158:131–132.CrossRefPubMedGoogle Scholar
  18. —, and O. Hall. 1966. Electrophoretic studies of species relationships inTriticum. Acta Agric. Scand. Suppl. 16:222–224.Google Scholar
  19. —, D. Barnhardt, and O. Hall. 1967. Analysis of genome and species relationships in the polyploid wheats by protein electrophoresis. Amer. J. Bot. 52:506–513.CrossRefGoogle Scholar
  20. Kesseli, R. V., and R. W. Michelmore. 1986. Genetic variation and phylogenies detected from isozyme markers in species ofLactuca. J. Heredity 77:324–331.Google Scholar
  21. Ladizinsky, G. 1983. Study of evolutionary problems by means of seed protein electrophoresis. Pages 481-498in W. K. Gottschalk and H. P. Müller, eds., Seed proteins: biochemistry, genetics, and nutritive values. Nijhoff/Junk, The Hague, The Netherlands.Google Scholar
  22. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.CrossRefPubMedGoogle Scholar
  23. Loveless, M. D., and J. L. Hamrick. 1984. Ecological determinants of genetic structure of plant populations. Annual Rev. Ecol. Syst. 15:65–95.CrossRefGoogle Scholar
  24. Ma, Y., and F. A. Bliss. 1978. Seed proteins of common bean. Crop Sci. 18:431–437.CrossRefGoogle Scholar
  25. Maréchal, R., J.-M. Mascherpa, and F. Stainier. 1978. Etude taxonomique d’un groupe complexe d’espèces des genresPhaseolus etVigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l’analyse informatique. Boissiera 28:1–273.Google Scholar
  26. Nevo, E., A. Beiles, and D. Zohary. 1986. Genetic resources of wild barley in the Near East: structure, evolution, and application to breeding. Biol. J. Linn. Soc. 27:355–380.CrossRefGoogle Scholar
  27. Rick, C. M., and J. F. Fobes. 1975. Allozyme variation in the cultivated tomato and closely related species. Bull. Torrey Bot. Club 102:375–384.CrossRefGoogle Scholar
  28. —, J. F. Fobes, and M. Holle. 1977. Genetic variation inLycopersicon pimpinellifolium — evidence of evolutionary change in mating system. Plant Syst. Ecol. 127:139–170.Google Scholar
  29. Second, G. 1982. Origin of the genic diversity of cultivated rice (Oryza sp.): study of the polymorphism scored at 40 isozyme loci. Jap. J. Genet. 57:25–57.CrossRefGoogle Scholar
  30. Silvertown, J. 1982. Plant population ecology. Longman, London.Google Scholar
  31. Singh, S. P. 1982. A key for identification of different growth habits ofPhaseolus vulgaris L. Annual Rept. Bean Improv. Coop. 25:92–95.Google Scholar
  32. — 1988. Gene pools in cultivated dry bean. Annual Rept. Bean Improv. Coop. 31:180–182.Google Scholar
  33. Sullivan, J. G., and G. Freytag. 1986. Predicting interspecific compatibilities in beans (Phaseolus) by seed protein electrophoresis. Euphytica 35:201–209.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1990

Authors and Affiliations

  • R. L. Koenig
    • 1
  • S. P. Singh
    • 1
  • P. Gepts
    • 1
  1. 1.Department of Agronomy and Range ScienceUniversity of CaliforniaDavis

Personalised recommendations