The Botanical Review

, Volume 52, Issue 2, pp 195–219 | Cite as

Late-acting self-incompatibility in angiosperms

  • Steven R. Seavey
  • Kamaljit S. Bawa

Abstract

In most self-incompatible (SI) plants, pollen tube growth in self-pollinated flowers is inhibited on the stigma or in the style. SI systems that operate in the ovary have been assumed to be extremely rare. Evidence from many plant species is presented to show that the SI barriers in the ovary, described here as late-acting SI systems, are quite common. The late-acting SI systems are divided into four categories: (1) ovarian inhibition of incompatible pollen tubes before the ovule is reached; (2) prefertilization inhibition in the ovule; (3) post-zygotic rejection of the embryo, and (4) ovular inhibition for which the cytological details have not been established.

Whether or not post-zygotic incompatibility systems can be distinguished from inbreeding depression depends upon the assumptions underlying the genetic models of self-incompatibility. However, four approaches are outlined that could distinguish between active uniform rejections that are presumably evolved responses to inbreeding depression and the passive, variable failures that are commonly understood to be expressions of typical inbreeding depression.

Possible advantages of late-acting SI include an extended period of time over which pollen genotypes may be evaluated by the maternal parent and greater flexibility in the choice of male parents.

Due to a paucity of data regarding the genetics and physiology of lateacting SI systems, little can be said at this time about the possible diversity of such systems of their evolutionary relationships with classical gametophytic and sporophytic SI.

An hypothesis for the operation of post-zygotic SI is described whereby maternal resources to developing embryos are terminated if the embryo (and/or endosperm) fall below a threshold level of heterosis. This hypothesis is a modification of one first proposed by Westoby and Rice in 1982 to explain variable maternal resource allocation to developing embryos.

Resumé

Pour la majorité des plantes autostériles, la croissance du tube pollinique, lorsque l’autopollinisation a lieu, est inhibée sur le stigmate ou dans le style. Il avait été supposé jusqu’ici que les mécanismes l’autostérilisation opérant dans l’ovaire étaient extrêmement rares. Des exemples provenant de plusieurs espèces végétales sont présentés ici pour montrer que les phénomènes d’autostérilisation au niveau de l’ovaire (désignés dans ce qui suit par l’expression “systèmes d’autostérilisation à action tardive”) sont en fait très communs. Les systèmes d’autostérilisation à action tardive son divisés en quatre catégories: (1) Inhibition ovarienne des tubes polliniques incompatibles avant que l’ovule ne soit atteint; (2) Inhibition dans l’ovule avant la fertilisation; (3) Rejet de l’embryon postzygotique; (4) Inhibition ovulaire (les détails cytologiques n’en ont pas encore été entièrement décrits).

Suivant les hypothèses sur lesquelles sont basés les différents modèles génétiques décrivant l’autostérilité, il est ou n’est pas possible de faire la distinction entre les systèmes d’incompatibilité post-zygotiques et la dégénérescence consanguine. Quatre différentes approches de la question sont proposées ici pour tenter de distinguer les rejets uniformes actifsqui sont présumés être des conséquences évolutionnaires de la dégénérescence consanguine—des défaillances variables passives, habituellement considérées comme l’expression caractéristique de la dégénérescence consanguine.

Deux avantages possibles des systèmes d’autostérilisation à action tardive pourraient être l’extension de la période durant laquelle les génotypes du pollen peuvent être évalués par le parent femelle, et une plus grande flexibilité dans le choix des parents mâles.

Vu la rareté des données génétiques et physiologiques en ce qui concerne les systèmes d’autostérilisation à action tardive, il est difficile d’estimer le degré de diversité de ces systèmes, ou leur corrélation évolutionnaire avec les systèmes classiques gamétophytiques et sporophytiques d’autostérilisation.

Une hypothèse décrivant le fonctionnement de l’autostérilisation postzygotique est exposée: les ressources maternelles cessent d’être fournies à l’embryon si le niveau d’hétérose de ce dernier (et/ou de l’endosperme) tombe en-dessous d’un seuil. Cette hypothèse est une modification de celle qui fut proposée en premier par Westoby et Rice en 1982 pour expliquer la variation dans l’attribution des ressources maternelles à l’embryon.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Arasu, N. T. 1970. Self-incompatibility inRibes. Euphytica19: 373–378.CrossRefGoogle Scholar
  2. Barnes, D. K. &R. W. Cleveland. 1963. Genetic evidence for nonrandom fertilization in alfalfa as influenced by differential pollen tube growth. Crop Sci.3: 295–297.CrossRefGoogle Scholar
  3. Bawa, K. S. &J. H. Beach. 1983. Self-incompatibility systems in the Rubiaceae of a tropical lowland wet forest. Amer. J. Bot.70: 1281–1288.CrossRefGoogle Scholar
  4. —,D. R. Perry &J. H. Beach. 1985. Reproductive biology of tropical lowland rain forest trees. I. Sexual systems and incompatibility mechanisms. Amer. J. Bot.72: 331–345.CrossRefGoogle Scholar
  5. — &C. J. Webb. 1984. Flower, fruit and seed abortion in tropical forest trees: Implications for the evolution of paternal and maternal reproductive patterns. Amer. J. Bot.71: 736–751.CrossRefGoogle Scholar
  6. Beach, J. H. &W. J. Kress. 1980. Sporophyte versus gametophyte: A note on the origin of self-incompatibility in flowering plants. Syst. Bot.5: 1–5.CrossRefGoogle Scholar
  7. Bertin, R. I. 1982. Paternity and fruit production in trumpet creeper (Campsis radicans). Amer. Naturalist119: 694–709.CrossRefGoogle Scholar
  8. Blinkenberg, C., H. Brix, M. Schaffalitzky de Muckadell &H. Vedel. 1958. Controlled pollinations inFagus. Silvae Genet.7: 116–122.Google Scholar
  9. Bookman, S. S. 1984. Evidence for selective fruit production inAsclepias. Evolution38: 72–86.CrossRefGoogle Scholar
  10. Bouharmont, J. 1960. Recherches cytologiques sur la fructification et l’incompatibilité chezTheobroma cacao L. INEAC (Congo). Ser. Sci.89: 1–117.Google Scholar
  11. Brandham, P. E. &S. J. Owens. 1978. The genetic control of self-incompatibility in the genusGasteria (Liliaceae). Heredity40: 165–169.Google Scholar
  12. Brewbaker, J. L. 1957. Pollen cytology and self-incompatibility systems in plants. J. Hered.48: 271–277.Google Scholar
  13. — &D. D. Gorrez. 1967. Genetics of self-incompatibility in the monocot generaAnanas (pineapple) andGasteria. Amer. J. Bot.54: 611–616.CrossRefGoogle Scholar
  14. Brink, R. A. &D. C. Cooper. 1938. Partial self-incompatibility inMedicago sativa. Proc. Nat. Acad. U.S.A.24: 497–499.CrossRefGoogle Scholar
  15. ——. 1939. Somatoplastic sterility inMedicago sativa. Science90: 545–546.PubMedCrossRefGoogle Scholar
  16. Brock, R. D. 1954. Fertility inLilium hybrids. Heredity8: 409–420.Google Scholar
  17. Bubar, J. S. 1958. An association between variability in ovule development within ovaries and self-incompatibility inLotus (Leguminosae). Canad. J. Bot.36: 65–72.Google Scholar
  18. —. 1959. Differences between self-incompatibility and self-sterility. Nature183: 411–412.CrossRefGoogle Scholar
  19. — &R. K. Miri. 1965. Inheritance of self-incompatibility and brown keel tip inLotus corniculatus L. Nature205: 1035–1036.CrossRefGoogle Scholar
  20. Busbice, T. H., R. Y. Gurgis &H. B. Collins. 1975. Eifert of selection for self-fertility and self-sterility in alfalfa and related characters. Crop Sci.15: 471–475.CrossRefGoogle Scholar
  21. Casper, B. B. &D. Wiens. 1981. Fixed rates of random ovule abortion inCryptantha flava (Boraginaceae) and its possible relation to seed dispersal. Ecology62: 866–869.CrossRefGoogle Scholar
  22. Chan, H. T. 1981. Reproductive biology of some Malaysian Dipterocarps III. Breeding systems. Malaysian Forester44: 28–36.Google Scholar
  23. Charlesworth, D. 1985. Distribution of dioecy and self-incompatibility in angiosperms. Pages 237–268in P. J. Greenwood, P. H. Harvey & M. Slatkin (eds.), Evolution: Essays in honour of John Maynard Smith. Cambridge University Press, Cambridge.Google Scholar
  24. Compton, R. H. 1913. Preliminary note on the inheritance of self-sterility inReseda odorata. Proc. Cambridge Philos. Soc.17: 7.Google Scholar
  25. Cooper, D. C. &R. A. Brink. 1940. Partial self-incompatibility and the collapse of fertile ovules as factors affecting seed formation in alfalfa. J. Agric. Res.60: 453–472.Google Scholar
  26. Cope, F. W. 1939. Some factors controlling the yield of young cacao—II. 8th Ann. Rep. Cacao Res. (1938), Trinidad, pages 4–15.Google Scholar
  27. -. 1940. Studies in the mechanism of self-incompatibility in cacao—II. 9th Ann. Rep. Cacao Res. (1939), Trinidad, pages 19–23.Google Scholar
  28. — 1958. Incompatibility inTheobroma cacao. Nature181: 279.CrossRefGoogle Scholar
  29. — 1962a. The mechanism of pollen incompatibility inTheobroma cacao L. Heredity17: 157–182.Google Scholar
  30. — 1962b. The effects of incompatibility and compatibility on genotype proportions in populations ofTheobroma cacao L. Heredity17: 183–195.Google Scholar
  31. Crowe, L. K. 1971. The polygenic control of outbreeding inBorago officinalis. Heredity27: 111–118.Google Scholar
  32. Crumpacker, D. W. 1967. Genetic loads in maize (Zea mays L.) and other cross-fertilized plants and animals. Pages 306–414in T. Dobzhansky, M. K. Hecht & W. C. Steere (eds.), Evolutionary biology. Vol. 1. Appleton-Century-Crofts, New York.Google Scholar
  33. Darwin, C. 1876. Effects of cross and self fertilization in the vegetable kingdom. 2nd ed., 1878. New York, Appleton.Google Scholar
  34. Dobrofsky, S. &W. F. Grant. 1980a. An investigation into the mechanism for reduced seed yield inLotus corniculatus. Theor. Appl. Genet.57: 157–160.CrossRefGoogle Scholar
  35. ——. 1980b. Electrophoretic evidence supporting self-incompatibility inLotus corniculatus. Canad. J. Bot.58: 712–716.Google Scholar
  36. Dobzhansky, T. 1970. Genetics of the evolutionary process. Columbia University Press, New York.Google Scholar
  37. Dulberger, R. 1964. Flower dimorphism and self-incompatibility inNarcissus tazetta L. Evolution18: 361–363.CrossRefGoogle Scholar
  38. Eigsti, O. J. 1937. Pollen tube behavior in self-fertile, self-sterile and interspecific pollinated Resedaceae. Amer. Naturalist71: 520–521.CrossRefGoogle Scholar
  39. Fyfe, J. L. 1957. Relational incompatibility in diploid and tetraploid lucerne. Nature179: 591–592.CrossRefGoogle Scholar
  40. Giles, W. F. 1949. The morphological aspects of self-sterility inLotus corniculatus. Ph.D. Thesis. University of Missouri, Columbia.Google Scholar
  41. Godley, E. J. 1966. Breeding systems in New Zealand plants 4. Self-sterility inPentachondra pumila. New Zealand J. Bot.4: 249–254.Google Scholar
  42. — &D. H. Smith. 1981. Breeding systems in New Zealand plants 5.Pseudowintera colorata (Winteraceae). New Zealand J. Bot.19: 151–156.Google Scholar
  43. Haldane, J. B. S. 1957. The cost of natural selection. J. Genet.55: 511–524.Google Scholar
  44. Jain, S. K. 1978. Breeding system inLimnanthes alba: Several alternative measures. Amer. J. Bot.65: 272–275.CrossRefGoogle Scholar
  45. Janzen, D. H. 1978. Seeding patterns of tropical trees. Pages 83–128in P. B. Tomlinson & M. H. Zimmerman (eds.), Tropical trees as living systems. Cambridge University Press, Cambridge.Google Scholar
  46. Jaynes, R. A. 1968. Self incompatibility and inbreeding depression in three laurel (Kalmia) species. Proc. Amer. Soc. Hort. Sci.93: 618–622.Google Scholar
  47. Kenrick, J., V. Kaui &R. B. Knox. 1984. Self incompatibility and the site of pollen tube arrest in Australian speciesof Acacia. Incompatibility Newsletter16: 3–4.Google Scholar
  48. Knight, R. &H. H. Rogers. 1953. Sterility inTheobroma cacao L. Nature172: 164.PubMedCrossRefGoogle Scholar
  49. ——. 1955. Incompatibility inTheobroma cacao. Heredity9: 69–77.Google Scholar
  50. Kostoff, D. 1930. Ontogeny, genetics, and cytology ofNicotiana hybrids. Genetica12: 33–139.CrossRefGoogle Scholar
  51. Kress, W. J. 1981. Sibling competition and evolution of pollen unit, ovule number, and pollen vector in angiosperms. Syst. Bot.6: 101–112.CrossRefGoogle Scholar
  52. —. 1983. Self-incompatibility in Central AmericanHeliconia. Evolution37: 735–744.CrossRefGoogle Scholar
  53. Larsen, K. 1983. Incompatibility, pseudo-compatibility, and preferential fertilization inBeta vulgaris L.In D. L. Mulcahy & E. Ottaviano (eds.), Pollen: Biology and implications for plant breeding. Elsevier Biomédical, New York.Google Scholar
  54. Lewis, D. 1979. Sexual incompatibility in plants. Studies in Biology No. 110. Edward Arnold, London.Google Scholar
  55. Linskens, H. F. 1959. Biochemical aspects of incompatibility. Recent Adv. Bot.2: 1500–1503.Google Scholar
  56. Lloyd, D. G. 1980. Sexual strategies in plants. I. An hypothesis of serial adjustment of maternal investment during one reproductive session. New Phytol.86: 69–79.CrossRefGoogle Scholar
  57. —,C. J. Webb &R. B. Primack. 1980. Sexual strategies in plants. II. Data on the temporal determination of maternal investment. New Phytol.86: 81–92.CrossRefGoogle Scholar
  58. Lundqvist, A. 1975. Complex self-incompatibility systems in angiosperms. Proc. Roy. Soc. London, Ser. B, Biol. Sci.188: 235–245.Google Scholar
  59. Mather, K. 1950. Genetical control of incompatibility in angiosperms and fungi. Pages 118–128in C. D. Darlington & K. Mather (eds.), Genes, plants, and people. George Allen & Unwin Ltd., London.Google Scholar
  60. McKay, J. W. 1942. Self-sterility in the Chinese chestnut (Castanea mollissima). Amer. Soc. Hort. Sci. Proc.41: 156–160.Google Scholar
  61. Meinke, D. W. 1982. Embryo-lethal mutants ofArabidopsis thaliana: Evidence for gametophytic expression of the mutant genes. Theor. Appl. Genet.63: 381–386.CrossRefGoogle Scholar
  62. — &I. M. Sussex. 1979. Embryo-lethal mutants ofArabidopsis thaliana: A model system for genetic analysis of plant embryo development. Developm. Biol.72: 50–61.CrossRefGoogle Scholar
  63. Miri, R. K. &J. S. Bubar. 1966. Self-incompatibility as an outcrossing mechanism in birdsfoot trefoil (Lotus corniculatus). Canad. J. Plant Sci.46: 411–418.CrossRefGoogle Scholar
  64. Mulcahy, D. L. &G. B. Mulcahy. 1983. Gametophytic self-incompatibility reexamined. Science220: 1247–1251.PubMedCrossRefGoogle Scholar
  65. de Nettancourt, D. 1972. Self-incompatibility in basic and applied researches with higher plants. Genet. Agrar.26: 163–216.Google Scholar
  66. —. 1977. Incompatibility in angiosperms. Monographs on Theoretical and Applied Genetics 3. Springer-Verlag, New York.Google Scholar
  67. Osterbye, U. 1975. Self-incompatibility inRanunculus acris L., genetic interpretation and evolutionary aspects. Hereditas80: 91–112.CrossRefGoogle Scholar
  68. Pandey, K. K. 1959. Mutations of the self-incompatibility gene (S) and pseudo-compatibility in angiosperms. Lloydia22: 222–234.Google Scholar
  69. Philipp, M. &O. Schou. 1983. An unusual heteromorphic incompatibility system: Distyly, self-incompatibility, pollen load and fecundity inAnchusa officinalis (Boraginaceae). New Phytol.89: 693–703.CrossRefGoogle Scholar
  70. Price, M. V. &N. M. Waser. 1979. Pollen dispersal and optimal outcrossing inDelphinium nelsoni. Nature277: 294–297.CrossRefGoogle Scholar
  71. Rao, C. V. 1952. The embryology ofMuntingia calabura L. J. Indian Bot. Soc.31: 87–101.Google Scholar
  72. Sayers, E. R. &R. P. Murphy. 1966. Seed set in alfalfa as related to pollen tube growth, fertilization frequency, and post-fertilization ovule abortion. Crop Sci.6: 365–368.CrossRefGoogle Scholar
  73. Schemske, D. W. 1983. Breeding system and habitat effects on fitness components in three neotropicalCostus (Zingiberaceae). Evolution37: 523–539.CrossRefGoogle Scholar
  74. Schmitt, D. &T. O. Perry. 1964. Self-sterility in sweetgum. Forest Sci.10: 302–305.Google Scholar
  75. Schon, O. &M. Philipp. 1983. An unusual heteromorphic incompatibility system. II. Pollen tube growth and seed sets following compatible and incompatible crossing withinAnchusa officinalis L. Pages 219–227in D. L. Mulcahy & E. Ottaviano (eds.), Pollen: Biology and implications for plant breeding. Elsevier Biomedical, New York.Google Scholar
  76. Sears, E. R. 1937. Cytological phenomena connected with self-sterility in the flowering plants. Genetics22: 130–181.PubMedGoogle Scholar
  77. Sheridan, W. F. &M. G. Neuffer. 1982. Maize developmental mutants, embryos unable to form leaf primordia. J. Heredity73: 318–329.Google Scholar
  78. Sorenson, F. 1969. Embryonic genetic load in coastal Douglas-fir,Pseudotsuga menziesii var.menziesii. Amer. Naturalist103: 389–398.CrossRefGoogle Scholar
  79. Sparnaaij, L. D., Y. O. Kho &J. Baer. 1968. Investigations on seed production in tetraploid freesias. Euphytica17: 289–297.Google Scholar
  80. Sparrow, F. K. &N. L. Pearson. 1948. Pollen compatibility inAsclepias syriaca. J. Agric. Res.77: 187–199.Google Scholar
  81. Spiss, L. 1969. Laboratory methods of determining compatibility in birdsfoot trefoil (Lotus corniculatus). Genet. Polon.10: 114–116.Google Scholar
  82. — &D. J. Paolillo, Jr. 1969. Semi-vitro methods in the study of compatibility in birdsfoot trefoil (Lotus corniculatus L.). Crop Sci.9: 173–176.CrossRefGoogle Scholar
  83. Stephenson, A. G. 1981. Flower and fruit abortion: Proximate causes and ultimate functions. Annual Rev. Ecol. Syst.12: 253–279.CrossRefGoogle Scholar
  84. -& R. I. Bertin. 1983. Male competition, female choice, and sexual selection in plants. Pages 109–149in L. Real (ed.), Pollination biology. Academic Press.Google Scholar
  85. Stout, A. B. &C. Chandler. 1933. Pollen-tube behavior inHemerocallis with special reference to incompatibilities. Bull. Torrey Bot. Club60: 397–416.CrossRefGoogle Scholar
  86. Straley, C. &B. Melton. 1970. Effect of temperature on self-fertility andin vitro pollen growth characteristics of selected alfalfa clones. Crop Sci.10: 326–329.CrossRefGoogle Scholar
  87. Taroda, N. &P. E. Gibbs. 1982. Floral biology and breeding system ofSterculia chicha St. Hil. (Sterculiaceae). New Phytol.90: 735–743.CrossRefGoogle Scholar
  88. Wallace, B. 1970. Genetic load, its biological and conceptual aspects. Prentice-Hall, Inc., New Jersey.Google Scholar
  89. Westoby, M. &B. Rice. 1982. Evolution of the seed plants and inclusive fitness of plant tissues. Evolution36: 713–724.CrossRefGoogle Scholar
  90. Williams, E. G., V. Kaul, J. L. Rouse &R. B. Knox. 1984. Apparent self-incompatibility inRhododendron ellipticum, R. championae andR. amamiense: A post-zygotic mechanism. Incompatibility Newsletter16: 10–11.Google Scholar
  91. —,R. B. Knox &J. L. Rouse. 1982. Pollination sub-systems distinguished by pollen tube arrest after incompatible interspecific crosses inRhododendron (Ericaceae). J. Cell Sci.53: 255–277.Google Scholar
  92. Willson, M. F. 1982. Sexual selection and dicliny in angiosperms. Amer. Naturalist119: 579–583.CrossRefGoogle Scholar
  93. — &N. Barley. 1983. Mate choice in plants: Tactics, mechanisms, and consequences. Princeton University Press, Princeton, New Jersey.Google Scholar
  94. Wojciechowska, B. 1963. Embryological studies in the genusLotus. Part I. Fertilization and seed development following openxand self-pollination ofLotus corniculatus L. Genet. Polon.4: 53–63.Google Scholar
  95. Wright, S. 1977. Evolution and the genetics of populations. Vol. III. Experimental results and evolutionary deductions. University of Chicago Press, Chicago.Google Scholar

Copyright information

© The New York Botanical Garden 1986

Authors and Affiliations

  • Steven R. Seavey
    • 1
  • Kamaljit S. Bawa
    • 2
  1. 1.Department of BiologyLewis & Clark CollegePortland
  2. 2.Department of BiologyUniversity of MassachusettsBoston

Personalised recommendations