The Botanical Review

, Volume 52, Issue 3, pp 260–299 | Cite as

On the adaptive value of large seeds for tropical moist forest trees: A review and synthesis

  • Susan A. Foster
Interpreting Botanical Progress

Abstract

In moist temperate and tropical environments species that typically become established in closed, shaded habitats tend to have larger seeds than those that regenerate in open, secondary habitats. Despite this common pattern and the frequency with which benefits of small seed size for early successional species (large number, enhanced dispersal potential) have been discussed, little attention has focused on the advantages of large seeds for species that regenerate in closed, late successional associations.

It is generally considered that large seeds enhance seedling survivorship at low light intensities. However, light intensity is only one of several factors that differ between shaded and sunlit habitats. This review examines microclimatic and biotic differences between shaded subcanopy habitats in mature tropical forests and those in sunlit, light gap habitats in which the early stages of tropical forest succession occur. Each factor is examined as a possible selective agent responsible for maintaining seed size differences between two guilds of tropical rainforest trees; the pioneer species that have small seeds and typically become established in large, sunlit gaps in the forest canopy and the persistent, relatively shade-tolerant species that have larger seeds and produce seedlings that survive for variable periods of time in the shade beneath the forest canopy.

Three microclimatic factors that differ in subcanopy and gap habitats are examined; temperature, moisture, and light intensity. It is unlikely that temperature has been an important selective agent in maintaining the differences in seed sizes observed between the pioneer and persistent tree guilds. However, greater desiccation stress in light gaps might prevent successful regeneration of larger seeds in this habitat and thus might impose the smaller mean seed sizes of pioneer species. Reduced light intensities in subcanopy habitats also could favor larger seeds in the persistent guild because large seed reserves might 1) enhance the abilities of seeds to persist until suitable light (or moisture) conditions arise by providing for metabolic requirements of seeds during quiescent periods, 2) provide secondary compounds for defense of persistent seedlings against pathogens and predators during periods of low energy availability, 3) provide energy for construction of large amounts of photosynthetic tissue needed to maintain a positive net energy balance when light conditions are just above the leaf light compensation point of the plant, 4) provide energy for growth into higher light intensity strata, and 5) provide nutrients for replacement of lost or damaged tissues in persistent seedlings.

Differences between soils in light gaps and subcanopy habitats are considered briefly. It is concluded that too little is known for predictions to be made regarding the probable effects of soil differences on the sizes of seeds able to survive in each habitat. Finally, differences between the two habitats in four biotic factors (competition, predation, pathogens, and mycorrhizal availability) are considered. Of these, greater competition for nutrients in the subcanopy habitat, and competition among co-germinating seedlings for light could have been important in favoring large seeds in the guild of persistent species. Pathogens are known to be more effective in shaded habitats, but data on seedling resistance to pathogens do not provide support for a role of seed size in enhancing resistance. Although differences in predation intensity and in mycorrhizal abundance in the two habitats have not been evaluated in the field, potential roles of these two factors in maintaining the seed size differential between these two guilds of forest trees are discussed.

Despite the existence of numerous potential benefits of large seed reserves, seed sizes often must reflect compromises between conflicting selective pressures. Environmental conditions (e.g., moisture availability) can impose upper limits on seed size. Enhanced dispersal potential and greater total propagule numbers from maternal energy reserves are benefits of small seed size that can counterbalance selection for large seed reserves. The interactions between selective forces in molding seed sizes are discussed in a final section.

Zusammenfassung

In feuchten, gemaessigten und tropischen Gebieten neigen die Pflanzenarten, die gewoehnlich geschlossene, schattige Habitate besiedeln, groessere Samen zu bilden als jene Arten, die in offenen, zerstoerten Habitaten wachsen. Obwohl dieses Muster haeufig zu finden ist, und der Vorteil von kleiner Samengroesse fuer frueh nachwachsende Arten diskutiert worden ist (grosse Anzahl, verbesserte Verbreitungsmoeglichkeit), wurde nur wenig darauf geachtet, welchen Vorteil grosse Samen einer Art geben koennen, die sich in einem geschlossenen, spaet nachwachsenden Verband regeneriert.

Es wird i.a. angenommen, dass bei geringer Lichtintensitaet grosse Samen das Ueberleben eines Saemlings verbessern. Lichtintensitaet ist jedoch nur einer von mehreren Faktoren, in denen sich schattige und sonnige Habitate unterscheiden. Dieser Uebersichtsartikel untersucht mikroklimatische und biotische Unterschiede zwischen schattigen, Habitaten im ausgewachsenen tropischen Urwald und sonnenreichen Habitaten in den fruehen Stadien der Wiederbewaldung. Jeder Faktor wird daraufhin untersucht, ob er eine moegliche Selektionskraft ist, die die Unterschiede in der Samengroesse zwischen den beiden Gruppen von tropischen Regenwaldbaeumen aufrechterhaelt: 1) die Pionier-Arten; sie haben kleine Samen und wachsen charakteristischer weise in grosseren lichten Partien des Waldes; 2) die sich hartnaeckig haltenden (persistenten), relativ viel Schatten tolerierenden Arten; sie haben die groesseren Samen und produzieren Saemlinge, die langere Zeitperioden im Schatten unterhalb der Baumkronen ueberleben.

Es werden die folgenden drei mikroklimatische Faktoren untersucht, die sich in Schattigen und lichtreichen Habitaten unterscheiden: Temperatur, Feuchtigkeit und Lichtintensitaet. Es ist unwahrscheinlich, dass Temperatur eine wichtige selektive Kraft ist, die die Unterschiede in der Samengroesse zwischen den Pionier-Arten und den persistenten Arten alfrechterhaelt. Austrocknungsstress koennte jedoch eine obere Grenze fuer die Groesse von Samen setzen, die in sonnenreichen Habitaten keimen. Somit koennte Austrocknungsstress die kleine Groesse der Samen bei Pionierpflanzen beeinflussen. Geringere Lichtintensitaet in Schattigen Habitaten koennte grosse Samen in der persistenten Baumgruppe favorisieren, da grosse Samenreserven 1) dem Samen ermoeglichen auszuharren, bis bessere Lichtverhaeltnisse (oder Feuchtigkeitsverhaeltnisse) entstehen, indem sie dem ruhenden Saemling die metabolischen Erfordernisse liefern; 2) sekundaeren Inhaltsstotte zur Verteidigung von Saemlingen gegen Pathogene und Pflanzenfresser in Perioden liefern, in denen wenig Energie zur Verfuegung steht; 3) Energie zur Herstellung grosser Mengen von photosynthetischem Gewebe liefern, das fuer ein positives Energiegleichgewicht notwendig ist; 4) Energie liefern, um in die hoeheren, lichtintensiveren Bereiche zu gelangen; 5) Naehrstoffe liefern, um zerstoertes oder verlorengegangenes Gewebe zu ersetzen.

Es werden hier kurz die Unterschiede zwischen den Boeden in lichten und schattigen Habitaten betrachtet. Es ergibt sich, dass zu wenig bekannt ist, um Voraussagen machen zu koennen, ob die verschiedenen Boeden in den unterschiedlichen Habitaten einen Einfluss auf die Groesse und die Ueberlebensfaehigkeit von Samen haben. Zum Schluss werden die Unterschiede zwischen den beiden Habitaten bez. vier biotischer Faktoren (Konkurrenz, Pflanzenfresser Pathogene und Pilzsymbiosen) betrachtet. Von diesen Faktoren koennte die Konkurrenz um Naehrstoffe in schattigen Habitaten und die Konkurrenz um Licht zwischen gleichzeitig keimenden Saemlingen wesentlich sein, dass in der Gruppe der persistenten Arten grosse Samen favorisiert werden. Bekanntlich sind Pathogene wirkungsvoller in schattigen Habitaten. Untersuchungen ueber die Widerstandskraft von Saemlingen gegen Pathogene zeigen aber nicht, dass die Samengroesse den Widerstand gegen Pathogene verbessert. Bis jetzt wurde im Freiland nicht untersucht, ob sich beide Habitate in der Häufigkeit von Pflanzenfressern und dem Vorkommen von Pilzsymbionten unterscheiden. Es werden hier die potentiellen Moeglichkeiten dieser beiden Faktoren zur Erhaltung der Unterschiede in der Samengroesse zwischen den beiden Gruppen von Baeumen diskutiert.

Obwohl eine Anzahl von moeglichen Vorteilen fuer eine grosse Samengroesse existiert, spiegelt die Groesse des Samens einen Kompromiss zwischen gegensaetzlich wirkenden Selektionskraeften wider. So koennen Bedingungen der Umgebung (z.B. Verfuegbarkeit von Wasser) die obere Grenze der Samengroesse bestimmen. Die Selektion fuer verbesserte Verbreitungsmoeglichkeit und die Selektion fuer eine groessere Anzahl von Nachkommen bevorzugen dagegen eine kleine Samengroesse. Sie koennen somit der Selektion fuer grosse Samengroesse entgegenwirken. Abschliessend wird diskutiert in welcher Art und Weise sich die verschiedenen Selektionskraefte bei der Bildung der Samengroesse gegenseitig beeinflussen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ashton, P. S. 1978. Crown characteristics of tropical trees. Pages 591–615in P. B. Tom-linson & M. H. Zimmerman (eds.), Tropical trees as living systems. Cambridge Uni-versity Press, New York.Google Scholar
  2. Augspurger, C. K. 1983a. Seed dispersal by the tropical treePlatypodium elegans, and the escape of its seedlings from fungal pathogens. J. Ecol.71: 759–771.Google Scholar
  3. —. 1983b. Offspring recruitment around tropical trees: Changes in cohort distance with time. Oikos40: 189–196.Google Scholar
  4. —. 1984. Seedling survival of tropical tree species: Interactions of dispersal distance, light-gaps, and pathogens. Ecology65: 1705–1712.Google Scholar
  5. — &C. K. Kelly. 1984. Pathogen mortality of tropical tree seedlings: Experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oeco-logia61: 211–217.Google Scholar
  6. Baker, H. G. 1972. Seed weight in relation to environmental conditions in California. Ecology53: 997–1010.Google Scholar
  7. Barnard, R. C. 1956. Recruitment, survival and growth of timber tree seedlings in natural tropical rainforest. Malayan Forest.19: 156–161.Google Scholar
  8. Baylis, G. T. S. 1959. Effect of vesicular-arbuscular mycorrhiza on the growth ofGriselinia littoralis (Cornaceae). New Phytol.58: 274–280.Google Scholar
  9. —. 1967. Experiments on the ecological significance of phycomycetous mycorrhizas. New Phytol.66: 231–243.Google Scholar
  10. —. 1971. Endogenous mycorrhizae synthesized inLeptospermum (Myrtaceae). New Zealand J. Bot.9: 293–296.Google Scholar
  11. —. 1975. The magnolioid mycorrhiza and myctotrophy in root systems derived from it. Pages 373–389in F. E. Sanders, B. Mosse & P. B. Tinker (eds.), Endomycorrhizas. Academic Press, London.Google Scholar
  12. Bazzaz, F. A. &S. T. A. Pickett. 1980. Physiological ecology of tropical succession: A comparative review. Ann. Rev. Ecol. Syst.11: 287–310.Google Scholar
  13. Becker, P. &M. Wong. 1985. Seed dispersal, seed prédation and juvenile mortality ofAglaia sp. (Meliaceae) in a lowland dipterocarp rainforest. Biotropica17: 230–237.Google Scholar
  14. Beard, J. S. 1946.Mora forests of Trinidad, British West Indies. J. Ecol.33: 173–192.Google Scholar
  15. Bell, T. I.W. 1972. Manejo de los bosques deMora en Trinidad con especial referenda a la reserva forestal de Matura. Bol. Inst. Forest. Latino Amer. Invest.41–42: 3–46.Google Scholar
  16. Bewley, J. K. &M. Black. 1978. Physiology and biochemistry of seeds in relation to germination, 1. Springer-Verlag, New York.Google Scholar
  17. ——. 1982. Physiology and biochemistry of seeds in relation to germination, 2. Springer-Verlag, New York.Google Scholar
  18. Bieleski, R. L. 1959. Factors affecting growth and distribution of kauri (Agathis australis Salisb.) I. Effect of light on establishment of kauri and ofPhyllocladus trichomanoides D. Don, II. Effect of light intensity on seedling growth, III. Effects of temperature and soil conditions. Austral. J. Bot.7: 252–294.Google Scholar
  19. Bjorkmann, O. &M. M. Ludlow. 1972. Characterization of the light climate on the floor of a Queensland rainforest. Carnegie Inst. Wash. Year Book71: 85–94.Google Scholar
  20. Black, J. N. 1956. The influence of seed size and depth of sowing on pre-emergence and early vegetative growth of subterranean clover (Trifolium subterraneum L.). Austral. J. Agric. Res.7: 98–109.Google Scholar
  21. —. 1957. The early vegetative growth of three strains of subterranean clover in relation to size of seed. Austral. J. Agric. Res.8: 1–14.Google Scholar
  22. —. 1958. Competition between plants of different initial seed size in swards of sub-terranean clover (Trifolium subterraneum L.) with particular reference to leaf area and the light microclimate. Austral. J. Agric. Res.9: 299–318.Google Scholar
  23. —. 1959. Seed size in herbage legumes. Herbage Abstr.29: 235–241.Google Scholar
  24. — &G. N. Wilkinson. 1963. The role of time of emergence in determining the growth of individual plants in swards of subterranean clover (Trifolium subterraneum L.). Austral. J. Agric. Res.14: 628–638.Google Scholar
  25. Brokaw, N. V. L. 1985. Gap-phase regeneration in a tropical forest. Ecology66: 682–687.Google Scholar
  26. Brown, W. H. &D. M. Mathews. 1914. Philippine dipterocarp forests. Philipp. J. Sci.9: 413–516.Google Scholar
  27. Burgess, P. F. 1970. An approach towards a silvicultural system for the hill forests of the Malay Peninsula. Malayan Forester33: 126–134.Google Scholar
  28. Chazdon, R. L. &N. Fetcher. 1984. Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. J. Ecol.72: 553–564.Google Scholar
  29. Cheke, A. S., W. Nanakorn &C. Yankoses. 1979. Dormancy and dispersal of seeds of secondary forest species under the canopy of a primary tropical rain forest in northern Thailand. Biotropica11: 88–95.Google Scholar
  30. Coley, P. D. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol. Monogr.53: 209–233.Google Scholar
  31. Connell, J. H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rainforest trees. Pages 298–312in P. J. den Boer & G. Gradwell (eds.), Dynamics of populations. Proc. Adv. Study Inst., Oosterbeek, 1970. Cen. Ag. Publ. and Doc. Wageningen.Google Scholar
  32. Cooper, K. M. 1975. Growth responses to the formation of endotrophic mycorrhizas inSolanum, Leptospermum and New Zealand ferns. Pages 391–407in F. E. Sanders, B. Mosse & P. B. Tinker (eds.), Endomycorrhizas. Academic Press, London.Google Scholar
  33. Denslow, J. S. 1980a. Gap partitioning among tropical rainforest trees. Biotropica (suppl.)12: 47–55.Google Scholar
  34. —. 1980b. Notes on the seedling ecology of large seeded species of Bombacaceae. Biotropica12: 220–222.Google Scholar
  35. — &T. C. Moermond. 1982. The effect of accessibility on rates of fruit removal from tropical shrubs: An experimental study. Oecologia54: 170–176.Google Scholar
  36. Evans, G. C. 1939. Ecological studies on the rain forest of southern Nigeria II. The atmospheric environment conditions. J. Ecol.27: 432–482.Google Scholar
  37. —,T. C. Whitmore &Y. K. Wong. 1960. The distribution of light reaching the ground vegetation in a tropical rain forest. J. Ecol.48: 193–204.Google Scholar
  38. Feeney, P. P. 1975. Biochemical coevolution between plants and their insect herbivores. Pages 3–19in L. E. Gilbert & P. H. Raven (eds.), Coevolution of animals and plants. University of Texas Press, Austin.Google Scholar
  39. Fetcher, N., B. R. Strain &S. F. Oberbauer. 1983. Effects of light regime on the growth, leaf morphology, and water relations of seedlings of two species of tropical trees. Oeco-logia58: 314–319.Google Scholar
  40. Foster, S. A. &C. H. Janson. 1985. The relationship between seed size and establishment conditions in tropical woody plants. Ecology66: 773–780.Google Scholar
  41. Freeland, W. J. &D. H. Janzen. 1974. Strategies in herbivory by mammals: The role of plant secondary compounds. Amer. Naturalist108: 269–289.Google Scholar
  42. Garrard, A. 1955. The germination and longevity of seeds in an equatorial climate. Gard. Bull. Singapore14: 534–535.Google Scholar
  43. Garwood, N. C. 1983. Seed germination in a seasonal tropical forest in Panama: A com-munity study. Ecol. Monogr.53: 159–181.Google Scholar
  44. Gerdemann, J. W. 1965. Vesicular-arbuscular mycorrhiza formed on maize and tulip tree byEndogone fasciculata. Mycologia57: 562–575.Google Scholar
  45. Gillespie, J. H. 1977. Natural selection for variances in offspring numbers: A new evo-lutionary principle. Amer. Naturalist110: 1010–1014.Google Scholar
  46. Grime, J. P. 1966. Shade avoidance and tolerance in flowering plants. Pages 281–301in R. Bainbridge, G. C. Evans & O. Rackham (eds.), Light as an ecological factor. Blackwell, Oxford.Google Scholar
  47. —. 1979. Plant strategies and vegetation processes. John Wiley & Sons, Chichester.Google Scholar
  48. — &D. W. Jeffrey. 1965. Seedling establishment in vertical gradients of sunlight. J. Ecol.53: 621–642.Google Scholar
  49. Grubb, P. J. &T. C. Whitmore. 1966. A comparison of montane and lowland rainforest in Ecuador. II. The climate and its effects on the distribution and physiognomy of the forests. J. Ecol.543: 303–333.Google Scholar
  50. Guevara, S. &A. Gomez-Pompa. 1972. Seeds from surface soils in a tropical region of Veracruz. J. Arnold Arb.53: 312–335.Google Scholar
  51. Hall, J. B. &M. D. Swaine. 1980. Seed stocks in Ghanaian forest soils. Biotropica12: 256–263.Google Scholar
  52. -. 1981. Distribution and ecology of vascular plants in a tropical rainforest. Geo-botany 1. Dr. W. Junk, The Hague.Google Scholar
  53. Hamilton, W. D. 1964a. The genetical evolution of social behaviour I. J. Theor. Biol.7: 1–16.PubMedGoogle Scholar
  54. —. 1964b. The genetical evolution of social behaviour II. J. Theor. Biol.7: 17–52.PubMedGoogle Scholar
  55. — &R. M. May. 1977. Dispersal in stable habitats. Nature269: 578–581.Google Scholar
  56. Harper, J. L. 1977. Population biology of plants. Academic Press, London.Google Scholar
  57. — &R. A. Benton. 1966. The behaviour of seeds in soil, part 2. The germination of seeds on the surface of a water supplying substrate. J. Ecol.54: 151–166.Google Scholar
  58. — &J. N. Clatworthy. 1963. The comparative biology of closely related species. VI. Analysis of the growth ofTrifolium repens andT. fragiferum in pure and mixed pop-ulations. J. Exp. Bot.14: 172–190.Google Scholar
  59. —,P. H. Lovell &K. G. Moore. 1970. The shapes and sizes of seeds. Annual Rev. Ecol. Syst.1: 327–356.Google Scholar
  60. — &M. Obeid. 1967. Influence of seed size and depth of sowing on the establishment and growth of varieties of fiber and oil seed flax. Crop. Sci.7: 527–532.Google Scholar
  61. Harrington, J. F. 1972. Seed storage and longevity. Pages 145–246in T. T. Kozlowski (ed.), Seed biology. Academic Press, New York.Google Scholar
  62. Hartshorn, G. S. 1978. Treefalls and tropical forest dynamics. Pages 617–638in P. B. Tomlinson & M. H. Zimmermann (eds.), Tropical trees as living systems. Cambridge University Press, Cambridge.Google Scholar
  63. —. 1980. Neotropical forest dynamics. Biotropica12(suppl.): 23–30.Google Scholar
  64. Havel, J. J. 1965. Plantation establishment of Klinki pine (Araucaria hunsteinii) in New Guinea. Empire Forest. Rev.44: 172–187.Google Scholar
  65. Hermann, R. K. &W. W. Chilcote. 1965. Effect of seedbeds on germination and survival of Douglas-fir. Res. Pap. (Forest. Mgmt. Res.) Oregon Forest. Res. Lab.4: 1–28.Google Scholar
  66. Higgens, M. L. 1979. Intensity of seed predation onBrosimum utile by mealy parrots. Biotropica11: 80.Google Scholar
  67. Hladik, C. M. &A. Hladik. 1967. Observations sur le rôle des primates dans la disse-mination des végétaux de la forét gavonaise. Biol. Gabon.3: 43–58.Google Scholar
  68. Hopkins, M. S. &A. W. Graham. 1983. The species composition of soil seed banks beneath lowland tropical rainforests in North Queensland, Australia. Biotropica15: 90–99.Google Scholar
  69. Horn, H. S. 1971. The adaptive geometry of trees. Princeton University Press, Princeton.Google Scholar
  70. Howe, H. F. &W. M. Richter. 1982. Effects of seed size on seedling size inVirola surinamensis; a within and between tree analysis. Oecologia53: 347–351.Google Scholar
  71. —,E. W. Schupp &L. C. Westley. 1985. Early consequences of seed dispersal for a neotropical tree (Virola surinamensis). Ecology66: 781–791.Google Scholar
  72. — &J. Smallwood. 1982. Ecology of seed dispersal. Annual Rev. Ecol. Syst.13: 201–228.Google Scholar
  73. — &G. A. Vande Kerckhove. 1980. Nutmeg dispersal by tropical birds. Science210: 925–927.PubMedGoogle Scholar
  74. ——. 1981. Removal of wild nutmeg (Virola surinamensis) crops by birds. Ecology62: 1093–1106.Google Scholar
  75. Jackson, J. F. 1981. Seed size as a correlate of temporal and spatial patterns of seed fall in a Neotropical forest. Biotropica13: 121–130.Google Scholar
  76. Janos, D. P. 1975a. Vesicular-arbuscular mycorrhizal fungi and plant growth in a Costa Rican lowland rainforest. Ph.D. Dissertation. The University of Michigan, Ann Arbor. 172 pp.Google Scholar
  77. —. 1975b. Effects of vesicular-arbuscular mycorrhizae on lowland tropical rainforest trees. Pages 437–446in F. E. Sanders, B. Mosse & P. B. Tinker (eds.), Endomycorrhizas. Academic Press, London.Google Scholar
  78. —. 1977. Vesicular-arbuscular mycorrhizae affect the growth ofBactris gasipaes. Principes21: 12–18.Google Scholar
  79. —. 1980. Mycorrhizae influence tropical succession. Biotropica12 (suppl.): 56–64.Google Scholar
  80. Janse, J. M. 1896. Les endophytes radicaux de quelques plantes Javanaises. Ann. Jard. Bot. Buitenzorg14: 53–212.Google Scholar
  81. Janson, C. H. 1983. Adaptation of fruit morphology to dispersal agents in a neotropical forest. Science219: 187–189.PubMedGoogle Scholar
  82. Janzen, D. H. 1969. Seed-eaters versus seed size, number, toxicity and dispersal. Evolution23: 1–27.Google Scholar
  83. —. 1970. Herbivores and the number of tree species in tropical forests. Amer. Nat-uralist104: 501–528.Google Scholar
  84. —. 1971. Seed predation by animals. Annual Rev. Ecol. Syst.2: 465–483.Google Scholar
  85. —. 1974. Tropical blackwater rivers, animals, and mast fruiting by the Dipterocar-paceae. Biotropica6: 69–103.Google Scholar
  86. —. 1978. The ecology and evolutionary biology of seed chemistry as relates to seed predation. Pages 163–206in J. B. Harborne (ed.), Biochemical aspects of plant and animal coevolution. Academic Press, New York.Google Scholar
  87. —. 1982a. Fruit traits, and seed consumption by rodents, ofCrescentia alata (Big-noniaceae) in Santa Rosa National Park, Costa Rica. Amer. J. Bot.69: 1258–1268.Google Scholar
  88. — 1982b. Removal of seeds from horse dung by tropical rodents: Influence of habitat and amount of dung. Ecology63: 1887–1900.Google Scholar
  89. —. 1982c. Seeds in tapir dung in Santa Rosa National Park, Costa Rica. Brenesia19/ 20: 129–135.Google Scholar
  90. —. 1982d. Seed removal from fallen guanacaste fruits (Enterolobium cyclocarpum) by spiny pocket mice (Liomys salvini). Brenesia19/20: 425–429.Google Scholar
  91. — 1983. Food webs: Who eats what, why, how, and with what effects in a tropical forest? Pages 167–182in F. B. Golley (ed.), Tropical rain forest ecosystems. Elsevier, Amsterdam.Google Scholar
  92. Johnston, A. 1949. Vesicular-arbuscular mycorrhiza in Sea island cotton and other tropical plants. Trop. Agric. (Trinidad)26: 118–121.Google Scholar
  93. Jordano, P. 1983. Fig seed predation and dispersal by birds. Biotropica15: 38–41.Google Scholar
  94. Kaufman, J. H. 1962. Ecology and social behavior of the coatiNasau nasau on Barro Colorado Island, Panama. Univ. Calif. Publ. Zool.60: 95–222.Google Scholar
  95. Keay, R. W. J. 1960. Seeds in forest soil. Nigerian Forest. Inf. Bull.4: 1–4.Google Scholar
  96. Keever, C. 1973. Distribution of major forest species in south-eastern Pennsylvania. Ecol. Monogr.43: 303–327.Google Scholar
  97. Kiew, R. 1982. Germination and seedling survival in kemenyan,Stryax benzoin. Malayan Forest.45: 69–80.Google Scholar
  98. Kiltie, R. A. 1981. Distribution of palm fruits on a rain forest floor: Why white-lipped peccaries forage near objects. Biotropica13: 141–145.Google Scholar
  99. Kira, T. 1978. Community architecture and organic matter dynamics in tropical lowland rainforests of Southeast Asia with special reference to Pasoh forest, West Malaysia. Pages 561–590in P. B. Tomlinson & M. H. Zimmermann (eds.), Tropical trees as living systems. Cambridge University Press, Cambridge.Google Scholar
  100. Kleinschmidt, G. D. &J. W. Gerdeman. 1972. Stunting of citrus seedlings in fumigated nursery soils related to the absence of endophytes. Phytopathology62: 1447–1453.Google Scholar
  101. Koebernik, J. 1971. Germination of palm seed. Principes15: 134–137.Google Scholar
  102. Koroleff, A. 1954. Leaf litter as a killer. J. Forest.52: 178–182.Google Scholar
  103. Kozlowski, T. T. 1971. Growth and development of trees. Vol. I. Academic Press, New York.Google Scholar
  104. Kramer, F. 1933. De Natuurlijke verjonging in het Goenoeng-Gedehcomplex. Tectonia26: 156–185.Google Scholar
  105. Lawson, G. W., K. O. Armstrong-Mensah &J. B. Hall. 1970. A catena in tropical moist semi-deciduous forest near Kade, Ghana. J. Ecol.58: 371–398.Google Scholar
  106. Lebron, M. L. 1979. An autecological study ofPalicouria riparia Bentham as related to rain forest disturbance in Puerto Rico. Oecologia42: 31–46.Google Scholar
  107. Levin, D. A. 1971. Plant phenolics: An ecological perspective. Amer. Naturalist105: 157–182.Google Scholar
  108. Liew, T. C. 1973. Occurrence of seeds in virgin forest top soil with special reference to secondary species in Sabah. Malayan Forest.36: 185–193.Google Scholar
  109. — &F. O. Wong. 1973. Density, recruitment, mortality and growth of dipterocarp seedlings in virgin and logged over forest in Sabah. Malayan Forest.36: 3–15.Google Scholar
  110. Longman, K. A. &J. Jenik. 1974. Tropical forest and its environment. Longman, London.Google Scholar
  111. Lopez, Q. M. M. &C. Vazquez-Yanes. 1976. Estudio sobre germination de semillas en condiciones naturales controlades. Pages 250–262in A. Gomez-Pompa, S. del Amo R., C. Vazquez-Yanes & A. Butanda C. (eds.), Regeneration de selvas. Inst. Investi-gaciones sobre Recursos Bioticos, Cia. Editorial Continental, S.A. Mexico.Google Scholar
  112. Marrero, J. 1943. A seed storage study of some tropical hardwoods. Caribb. For.4: 99–106.Google Scholar
  113. Maury-Lechon, G., A. M. Hassan &D. R. Bravo. 1981. Seed storage ofShorea parviflora andDipterocarpus humeratus. Malayan Forest.44: 267–280.Google Scholar
  114. Mayer, A. M. &A. Poljakoff-Mayber. 1982. The germination of seeds. Pergamon Press, New York.Google Scholar
  115. McKey, D. 1975. The ecology of coevolved seed dispersal systems. Pages 159–191in L. E. Gilbert & P. H. Raven (eds.), Coevolution of animals and plants. University of Texas Press, Austin.Google Scholar
  116. —. 1978. Soils, vegetation and seed eating by black colobus monkeys. Pages 423–437in G. G. Montgomery (ed.), The ecology of arboreal folivores. Smithsonian Institution Press, Washington, D.C.Google Scholar
  117. Meijer, W. 1970. Regeneration of tropical lowland forest in Sabah, Malaysia, forty years after logging. Malayan Forest.33: 204–229.Google Scholar
  118. Michod, R. E. &W. D. Hamilton. 1980. Coefficients of relatedness in sociobiology. Nature288: 694–697.Google Scholar
  119. Morris, D. 1962. The behavior of green acouchi (Myoprocta pratti) with special reference to scatter hoarding. Proc. Zool. Soc. Lond.139: 701–732.Google Scholar
  120. Mosse, B. 1973. Advances in the study of vesicular-arbuscular mycorrhizae. Annual Rev. Phytopathol.11: 171–196.Google Scholar
  121. Ng, F. S. P. 1973. Germination of fresh seeds of Malaysian trees L. Malayan Forest.36: 54–65.Google Scholar
  122. —. 1975. The fruits, seeds and seedlings of Malayan trees II. Malayan Forest.38: 33–99.Google Scholar
  123. —. 1978. Strategies of establishment in Malayan forest trees. Pages 129–162in P.B. Tomlinson & M. H. Zimmermann (eds.), Tropical trees as living systems. Cambridge University Press, Cambridge.Google Scholar
  124. —. 1980. Germination ecology of Malaysian woody plants. Malayan Forest.43: 406–437.Google Scholar
  125. Nienstadt, H. &J. S. Olson. 1961. Effects of photoperiod and source on seedling growth of Eastern Hemlock. Forest. Sci.7: 81–96.Google Scholar
  126. Odum, H. T., G. Drewry &J. R. Kline. 1970. Climate at El Verde, 1963–1966. Pages B 347–418in H. T. Odum & R. F. Pigeon (eds.), A tropical rain forest. U.S. Atomic Energy Commission, Oak Ridge, Tennessee.Google Scholar
  127. Orians, G. H. &D. H. Janzen. 1974. Why are embryos so tasty? Amer. Naturalist108: 581–592.Google Scholar
  128. Poore, M. E. D. 1968. Studies in Malaysian rainforests. I. The forest on Triassic sediments in Jengka Forest Reserve. J. Ecol.56: 143–196.Google Scholar
  129. Putz, F. E. 1983. Treefall pits and mounds, buried seeds, and the importance of soil disturbance to pioneer trees on Barro Colorado Island, Panama. Ecology64: 1069–1074.Google Scholar
  130. —,P. D. Coley, K. Lu, A. Montalvo &A. Aiello. 1983. Uprooting and snapping of trees: Structural determinants and ecological consequences. Canad. J. Forest. Res.13: 1011–1020.Google Scholar
  131. Queller, D. C. 1983. Kin selection and conflict in seed maturation. J. Theor. Biol.100: 153–172.Google Scholar
  132. Redhead, J. F. 1968. Mycorrhizal associations in some Nigerian forest trees. Trans. Brit. Mycol. Soc.51: 485–492.Google Scholar
  133. Rhoades, K. F. &R. G. Cates. 1976. Toward a general theory of plant antiherbivore chemistry. Pages 168–213in J. W. Wallace & R. L. Mansell (eds.), Biochemical inter-actions between plants and insects. Plenum, New York.Google Scholar
  134. Richards, P. W. 1952. The tropical rainforest. Cambridge University Press, Cambridge.Google Scholar
  135. Rockwood, L. L. 1984. Seed weight as a function of life form, elevation and life zone in neotropical forests. Biotropica17: 32–39.Google Scholar
  136. Roff, D. A. 1975. Population stability and the evolution of dispersal in a heterogenous environment. Oecologia19: 219–237.Google Scholar
  137. Rosensweig, M. L. &P. W. Sterner. 1970. Population ecology of desert rodent commu-nities: Body size and seed husking as bases for heteromyid coexistences. Ecology51: 217–224.Google Scholar
  138. Roth, L. F. &A. J. Ricker. 1943. Influence of temperature, moisture, and soil reaction on the damping-off of red pine seedlings byPythium andRhizoctonia. J. Agric. Res.67: 273–293.Google Scholar
  139. Salisbury, E. J. 1942. The reproductive capacity of plants. G. Bell and Sons, London.Google Scholar
  140. Salisbury, F. B. &C. Ross. 1969. Plant physiology. Wadsworth, Belmont, California.Google Scholar
  141. Salisbury, S. E. 1974. Seed size and mass in relation to environment. Proc. Royal Soc. Lond.B186: 83–88.Google Scholar
  142. Saski, S. &T. Mori. 1981. Growth responses of dipterocarp seedlings to light. Malayan Forest.44: 319–345.Google Scholar
  143. Schulz, J. P. 1960. Ecological studies on the rainforest in northern Suriname. Verh. Kon. Ned. Akad. Wetensch. Afd. natuurk. Tweede Sect.53: 1–267.Google Scholar
  144. Silvertown, J. W. 1981. Seed size, lifespan, and germination date as coadapted features of plant life history. Amer. Naturalist118: 860–864.Google Scholar
  145. Smith, A. J. 1975. Invasion and ecesis of bird disseminated woody plants in a temperate forest sere. Ecology56: 19–34.Google Scholar
  146. Smythe, N. 1970. Relationships between fruiting seasons and seed dispersal methods in a neotropical forest. Amer. Naturalist104: 25–35.Google Scholar
  147. Stebbins, G. L. 1974. Flowering plants: Evolution above the species level. Arnold, London.Google Scholar
  148. Strathman, R. 1974. The spread of sibling larvae of sedentary marine invertebrates. Amer. Naturalist108: 29–44.Google Scholar
  149. Sydes, C. &J. P. Grime. 1981. Effects of tree leaf litter on herbaceous vegetation in deciduous woodland II. An experimental investigation. J. Ecol.69: 249–262.Google Scholar
  150. Tang, H. T. &C. Tamari. 1973. Seed description and storage tests of some dipterocarps. Malayan Forest.36: 38–53.Google Scholar
  151. Vaartaja, O. 1952. Forest humus quality and light conditions as factors influencing damp-ing-off. Phytopathology42: 501–506.Google Scholar
  152. —. 1962. The relationship of fungi to survival of shaded tree seedlings. Ecology43: 547–549.Google Scholar
  153. Vazquez-Yanes, C. 1976. Estudios sobre la ecofisiologia de la germination en una zona calido-humeda de Mexico. Pages279–387in A. Gomez-Pompa, C. Vazquez-Yanes, S. del Arno Rodriquez & A. Butanda Cervera (eds.), Investigaciones sobre la regeneration de selvas altas en Veracruz, Mexico. Cia. Compania Editorial Continental, Mexico.Google Scholar
  154. Voight, G. K. 1971. Mycorrhizae and nutrient mobilization. Pages 122–131in F. Hacskaylo (ed.), Mycorrhizae. U.S.D.A. Forest Serv. Misc. Publ. 1189. U.S. Govt. Printing Office, Washington, D.C.Google Scholar
  155. Westoby, M. &B. Rice. 1982. Evolution of the seed plants and inclusive fitness of plant tissues. Evolution36: 713–724.Google Scholar
  156. Whitmore, T. C. 1975. Tropical rainforests of the Far East. Clarendon Press, Oxford.Google Scholar
  157. —. 1978. Gaps in the forest canopy. Pages 639–655in P. B. Tomlinson & M. H. Zimmermann (eds.), Tropical trees as living systems. Cambridge University Press, Cambridge.Google Scholar
  158. Whittaker, R. H. 1975. Communities and ecosystems, 2nd ed. Macmillan, New York.Google Scholar
  159. Williams, W. A., J. N. Black &C. M. Donald. 1968. Effect of seed weight on the vegetative growth of competing annual trifoliums. Crop Sci.8: 660–663.Google Scholar
  160. Willson, M. F. &N. Burley. 1983. Mate choice in plants: Tactics, mechanisms, and consequences. Princeton University Press, Princeton, New Jersey.Google Scholar
  161. Yap, S. K. 1981. Collection, germination, and storage of dipterocarp seeds. Malayan Forest.44: 281–230.Google Scholar
  162. Yoda, K. 1974. Three dimensional distribution of light intensity in a tropical rainforest of West Malyasia. Jap. J. Ecol.24: 247–254.Google Scholar

Copyright information

© The New York Botanical Garden 1986

Authors and Affiliations

  • Susan A. Foster
    • 1
  1. 1.Department of Zoology NJ-15University of WashingtonSeattleUSA

Personalised recommendations