The Botanical Review

, Volume 45, Issue 3, pp 229–299 | Cite as

Pattern, process, and natural disturbance in vegetation

  • Peter S. White
Article

Abstract

Natural disturbances have been traditionally defined in terms of major catastrophic events originating in the physical environment and, hence, have been regarded as exogenous agents of vegetation change. Problems with this view are: (1) there is a gradient from minor to major events rather than a uniquely definable set of major catastrophes for each kind of disturbance, and (2) some disturbances are initiated or promoted by the biotic component of the system. Floras are rich in disturbance-adapted species. Disturbances have probably exerted selective pressure in the evolution of species strategies.

Heathland cyclic successions and gap-phase dynamics in forests have been viewed as endogenous patterns in vegetation. When death in older individividuals imposes a rhythm on community reproduction, dynamics may indeed be the result of endogenous factors. However, documented cases of senescence in perennial plants are few and many cyclic successions and cases of gap-phase dynamics are initiated by physical factors. Forest dynamics range from those that are the result of individual tree senescence and fall, through those that are the result of blowdown of small groups of healthy trees, to those that are the result of large windstorms which level hectares of forest. The effect of wind ranges from simple pruning of dead plant parts to widespread damage of living trees. Wind speed is probably inversely proportional to occurrence frequency. Disturbances vary continuously. There is a gradient from those community dynamics that are initiated by endogenous factors to those initiated by exogenous factors. Evolution has mediated between species and environment; disturbances are often caused by physical factors but the occurrence and outplay of disturbances may be a function of the state of the community as well.

Natural disturbances in North American vegetation are: fire, windstorm, ice storm, ice push on shores, cryogenic soil movement, temperature fluctuation, precipitation variability, alluvial processes, coastal processes, dune movement, saltwater inundation, landslides, lava flows, karst processes, and biotic disturbances. Disturbances vary regionally and within one landscape as a function of topography and other site variables and are characterized by their frequency, predictability, and magnitude. The landscape level is important in assessing disturbance regime. Disturbances and cyclic successions belong to the same class of events—that of recurrent dynamics in vegetation structure—irrespective of cause. Dynamics may result from periodic, abrupt, and catastrophic environmental factors or they may result from an interaction of the changing susceptability of the community and some regular environmental factor. In any case, the dynamics result in heterogeneous landscapes; the species adapted to this heterogeneity are numerous, suggesting their long time importance.

The importance of disturbance regime as part of the environmental context of vegetation means that allogenic and autogenic models of vegetation are difficult to apply. Species composition can be seen to be a function of disturbance regime, as well as other environmental variables. Competitive replacement in succession occurs, then, only as disturbances cease to operate and can be viewed as allogenic adjustment to a new disturbance-free environment. Competitive divergence, separation of role, and competition avoidance may, in fact, underlie successional patterns traditionally viewed as the competitive replacement of inferior species by superiorly adapted climax species.

The importance of ongoing dynamics is also difficult to reconcile with the concept of climax, founded as it is on the idea of autogenesis within a stable physical environment. Climax composition is relative to disturbance regime. Climax is only arbitrarily distinguished from succession. Climax as an organizing paradigm in plant ecology has obscured the full temporal-spatial dimensions important in understanding the vegetated landscape and the evolution of species which contribute to the landscape patterns.

Whittaker’s coenocline concept is accepted with modifications: (1) natural disturbance gradients and Whittaker’s complex gradient are intimately related, (2) temporal variation in the community should be viewed as an added axis of community pattern, and (3) ongoing dynamics have important effects on specificity of species to site relations and the predictability of vegetation patterns. Recent work has suggested an r-K continuum in species strategy. In general, colonizing ability is seen as a trade-off against specialization. Frequent disruption of the community and the creation of open sites seems to result in mixes of species that are fleeting in time and do not repeat in space. Species in such mixes are often tolerant of wide environmental extremes but are compressed into early successional time if disturbance ceases. The composition of such communities is not predictable from site characteristics. Even communities with low disturbance frequency lack complete environmental determinism, and historical events are important in understanding present composition. Communities vary in level of environmental determinism and species differ in niche breadth and degree of site specificity. Management implications of vegetation dynamics are discussed.

Résumé

Les perturbations naturelles se définissent traditionnellement en fonction des événements catastrophiques majeurs dont l’origine se trouve dans l’environnement physique et que, de ce fait, l’on considère comme des agents exogènes des changements de la végétation. On peut opposer à ce point de vue les arguments suivants: (1) qu’il existe une gradation entre les événements mineurs et les événements majeurs au lieu d’un ensemble définissable de catastrophes majeurs pour chaque type de perturbation et (2) que quelques perturbations sont initiées ou promues par le composant biotique du système. Les flores sont riches en espèces adaptées aux perturbations. Les perturbations ont sans doute exercé une pression sélective sur l’évolution des stratégies que possèdent les espèces.

Les successions cyliques des landes et la dynamique du vide dans les forêts se sont considérées comme des configurations endogènes de végétation. Quand la mort des individus plus anciens impose un rythme sur la reproduction de la communauté, la dynamique peut bien être le résultat des facteurs endogènes. Cependant, il existe peu de cas documentés de la sénescence des plantes vivaces et bien des successions cyliques, et des cas de dynamique du vide sont initiés par des facteurs physiques. Les dynamiques des forêts s’étendent de celles qui résultent de la sénescence et de la chute d’un arbre individuel, à celles qui résultent de l’abattage par le vent de petits groupes d’arbres sains, jusqu’à celles qui résultent de grandes tempêtes qui nivellent des hectares de forêts. L’effet du vent va du simple élagage des parties mortes des plantes jusqu’aux dommages importants aux arbres vivants. Il est probable que la vitesse du vent est en rapport inverse avec sa fréquence. Les perturbations varient sans cesse. Il y a une gradation à partir des dynamiques de communauté initiées par les facteurs endogènes jusqu’à celles initiées par des facteurs exogènes. L’évolution a joué le rôle d’intermédiaire entre les espèces et l’environnement; les perturbations sont souvent dûes aux facteurs physiques mais il se peut bien que les perturbations aient lieu et se terminent en fonction également de l’état de la communauté.

Les perturbations naturelles dans la végétation de l’Amérique du Nord sont les suivantes: le feu, les tempêtes, les tempêtes de glace, la poussée de la glace sur les côtes, le mouvement cryogène des sols, la fluctuation des températures, la variabilité de la précipitation, les procédés alluviaux, les procédés côtiers, le mouvement des dunes, l’inondation par les eaux de mer, les éboulements de terre, le flux de lave, les procédés karstiques, et les perturbations biotiques. Ces perturbations varient suivant la région et à l’intérieur d’un même paysage en fonction de la topographie et d’autres inconstances du site et se caractérisent par leur fréquence, par leur prévisibilité et par leur grandeur. Le niveau du paysage a une importance pour l’évaluation du régime de la perturbation. Leur cause mise à part, les perturbations et les successions cycliques appartiennent à la même catégorie d’évenements—celle de la dynamique périodique dans la structure de la végétation. La dynamique peut être le résultat des facteurs périodiques, brusques et catastrophiques dans l’environnement ou d’une action réciproque entre le susceptibilité changeante de la communauté et un facteur régulier dans l’environnement. En tout cas, des paysages hétérogènes en résultent; les espèces adaptées à cette hétérogéné ité sont nombreuses, ce qui suggère leur signification à long terme.

L’importance du régime de perturbation comme partie du contexte environnant de la végétation signifie qu’il est difficile d’appliquer les modèles allogènes et autogènes de végétation. La composition de l’espèces peut se voir comme une fonction du régime des perturbations, ainsi que d’autres inconstants de l’environnement. Le remplacement compétitif dans la succession n’a donc lieu que lorsque les perturbations cessent d’exister et peut s’interpréter comme l’adaptation allogène à un nouveau environnement exempte de perturbations. La divergence compétitive, la séparation des rôles et le refus de la compétition peuvent, en fait, être à la base des configurations de succession considérées traditionnellement comme le remplacement compétitif d’une espèce inférieure par une espèce ortho-écologique adaptée de façon supérieure.

De plus, l’importance de la dynamique continue est difficile à concilier avec l’idée d’ortho-écologie qui est fondée sur l’idée de l’autogenèse dans un environnement physique stable. La composition ortho-écologique se rapporte au régime des perturbations. L’ortho-écologie ne se distingue qu’arbitrairement de la succession. L’ortho-écologie en tant que paradigme organisateur dans l’écologie des plantes a obscurci l’ensemble des dimensions temporelles et spatiales important à la compréhension du paysage végété et de l’évolution des espèces qui contribuent aux configurations du paysage.

Nous acceptons avec modifications le concept de cénocline (“coenocline”) de Whittaker: (1) les gradations des perturbations naturelles et la gradation complexe de Whittaker sont intimement liées, (2) la variation temporelle dans une communauté doit se voir comme une dimension de plus dans la configuration d’une communauté, et (3) la dynamique continue a des effets importants sur la spécificité des rapports espèces-site et sur la prévisibilité des configurations de végétation. Des travaux récents suggèrent un continuum r-K dans la stratégie des espèces. En général, la capacité de coloniser est interprétée comme un échange contre la spécialisation. La perturbation fréquente de la communauté et la création des sites ouverts paraît avoir comme résultat des mélanges d’espèces qui sont éphémères et qui ne se répètent pas dans l’espace. Les espèces dans de tels mélanges sont souvent très tolérantes de grandes extrèmes dans l’environnement mais se compriment tôt en temps de succession si la perturbation cesse. La composition de telles communautés ne peut pas se prédire suivant les caractéristiques du site. Même les communautés qui subissent une basse fréquence de perturbations manquent le plein déterminisme de l’environnement et les événements historiques sont importants à la compréhension de la composition actuelle. Les communautés varient quant au niveau de déterminisme de l’environnement et les espèces diffèrent quant à l’étendu de la niche et au dégré de spécificité au site. L’importance de la dynamique de végétation pour le management écologique est discutée.

Zusammenfassung

Natürliche Störungen werden traditionsgemäß im Sinne von großen, in der physikalischen Umwelt entstehenden katastrophalen Ereignissen definiert und daher als exogene Erreger von Vegetationsveränderungen angesehen. Problematisch an dieser Auffassung ist folgendes: (1) Es gibt keinen einmalig bestimmbaren Satz von Hauptkatastrophen für jede Störungsart, sondern einen Gradienten von kleinen bis zu großen Ereignissen, und (2) einige Störungen werden von der biotischen Komponente des Systems eingeleitet oder gefördert. Die Floren sind reich an störungsangepaßten Arten. Störungen haben wahrscheinlich einen Selektionsdruck bei der Evolution der Artenstrategien ausgeübt.

Die zyklische Sukzession im Heideland und die Dynamik der Bestandeslückenphase in Wäldern sind als endogene Vegetationsmuster betrachtet worden. Wenn das Absterben von älteren Individuen der Fortpflanzung der Pflanzengesellschaft einen Rhythmus auferlegt, dürfte die Dynamik allerdings das Resultat endogener Einflüsse sein. Die belegten Fälle von Altern in perennierenden Pflanzen sind jedoch wenige, und viele zyklische Sukzessionen und Fälle der Dynamik der Bestandeslückenphase werden durch physikalische Einflüsse hervorgerufen. Die Walddynamik umfaßt die Einflüsse, die sich aus den folgenden Situationen ergeben: Altern und Fall von einzelnen Bäumen, Windbruch von kleinen Gruppen gesunder Bäume und schließlich große Stürme, die Hektare von Wald ebene. Die Wirkung des Windes umfaßt sowohl das einfache Abbrechen von toten Pflanzenteilen als auch ausgedehnte Schäden an lebenden Bäumen. Die Windgeschwindigkeit ist der Auftrittshäufigkeit wohl verkehrt proportional. Störungen variieren kontinuierlich. Es existiert ein Gradient von der von endogenen Einflüssen eingeleiteten zu der von exogenen Einflüssen eingeleiteten Gesellschaftsdynamik. Die Evolution hat zwischen den Arten und der Umwelt vermittelt. Störungen werden oft durch physikalische Einflüsse verursacht, aber das Auftreten und das Abspielen von Störungen dürfte auch von dem Stand der Gesellschaft abhängen.

Natürliche Störungen in der Vegetation Nordamerikas sind Brand, Sturm, Eissturm, Eisschub an Ufern, Tieftemperatur-Bodenbewegung, Temperaturschwankung, Niederschlagsveränderlichkeit, alluviale und Küstenvorgänge, Dünenbewegung, Salzwasserpberflutung, Erdrutsche, Lavaströme, Karstvorgänge und biotische Störungen. Die Störungen variieren regional und innerhalb einer Landschaft in Abhängigkeit von der Oberflächengestaltung und anderen Standortsvariablen und werden durch ihre Häufigkeit, Vorausbestimmbarkeit und Größenordnung gekennzeichnet. Die Höhe des Geländes ist wichtig bei der Bewertung der Störungsbedingungen. Störungen und zyklische Sukzessionen gehören—unabhängig von der Ursache—der gleichen Ereignisklasse an: der wiederkehrenden Dynamik in der Vegetationsstruktur. Die Dynamik mag sich aus periodischen, abrupten und katastrophenartigen Umwelteinflüssen ergeben, oder aber sie mag aus der Wechselwirbung der sich ändernden Anfälligkeit der Gesellschaft und eines regelmäßigen Umweltfaktors resultieren. Auf jeden Fall führt die Dynamik zu heterogenen Landschaften. Die Arten, die sich dieser Heterogenität angepaßt haben, sind zahlreich, was auf ihre langwährende Bedeutung hinweist.

Die Wichtigkeit der Störungsbedingungen im Rahmen der Vegetationsumwelt deutet an, daß allogene und autogene Vegetationsmodelle schwer anzuwenden sind. Die Artenzusammensetzung kann in Abhängigkeit sowohl von Störungsbedingungen als auch von anderen Umweltvariablen betrachtet werden. Eine Konkurrenzersetzung in der Sukzession tritt dann nur auf, wenn die Störungen zu wirken aufhören, und kann als die allogenische Anpassung an eine neue störungsfreie Umwelt verstanden werden. Konkurrenz-Divergenz, Rollentrennung und Konkurrenzvermeidung dürften tatsächlich den Sukzessionsmustern zugrundeliegen, die traditionsgemäß als die Konkurrenzersetzung von unterlegenen Arten durch überlegen angepaßte Klimaxarten verstanden werden.

Es ist auch schwer, die Bedeutung der fortwährenden Dynamik mit dem Begriff des Klimaxes in Einklang zu bringen, da letzterer auf den Begriff der Autogenese innerhalb einer stabilen physikalischen Umwelt begründet ist. Die Klimaxzusammensetzung ist in Bezug auf die Störungsbedingungen relativ. Klimax unterscheidet sich von Sukzession nur arbiträr. Die Klimax als Organisationsparadigma in der Pflanzenökologie hat die vollen zeitlich-räumlichen Dimensionen unklar gemacht, die für ein Verständnis der Vegetationslandschaft und der Evolution der zu den Landschaftsmustern beitragenden Arten wichtig sind.

Der Begriff des “coenocline” von Whittaker wird mit einigen Abänderungen angenommen: (1) Natürliche Störungsgradiente und der komplexe Gradient von Whittaker sind eng miteinander verwandt, (2) eine zeitliche Variation in der Gesellschaft sollte als zusätzliche Achse der Gesellschaftsmuster betrachtet werden und (3) die fortwährende Dynamik hat einen wichtigen auf die Artenspezifität gegenüber den Standortsverhältnissen und auf die Vorausbestimmbarkeit von Vegetationsmustern. Neuere Arbeiten weisen auf ein r-K-Continuum in der Artenstrategie hin. Im allgemeinen nimmt man an, die Fähigkeit zur Koloniebildung existiere auf Kosten der Spezialisierung. Das häufige Auseinanderreißen der Gesellschaft und die Schaffung lichter Standorte resultiert anscheinend in Artmischungen, die kurzfristig auftreten und sich räumlich nicht wiederholen. Die Arten in solchen Mischungen tolerieren oft weite Umweltextreme, werden aber in eine frühe Sukzessionszeit zusammengedrängt, wenn die Störung sich legt. Die Zusammensetzung solcher Gesellschaften kann nicht auf Grund der Standortskenngrößen vorhergesagt werden. Sogar Gesellschaften mit niedriger Störungshäufigkeit fehlt es an einem vollkommenen Umweltdeterminismus, und historische Ereignisse sind für das Verständnis der gegenwärtigen Zusammensetzung wichtig. Gesellschaften unterscheiden sich in dem Grad des Umweltdeterminismus, und Arten unterscheiden sich in der Nischenbreite und in dem Grad der Standortsspezifität. Es wird die Einbeziehung der Vegetationsdynamik in die Forstwirtschaftsführung erörtert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ahlgren, C. E. 1974. Effects of fires on temperate forests: North Central United States. Pages 195–223in T. T. Kozlowski and C. E. Ahlgren (eds.). Fire and ecosystems. Academic Press, New York. 542 pp.Google Scholar
  2. Ahlgren, I. F. andC. E. Algren. 1960. Ecological effects of forest fires. Bot. Rev.46: 304–310.Google Scholar
  3. Aikman, J. M. andA. W. Smelser. 1938. The structure and environment of forest communities in central Iowa. Ecology19: 141–148.CrossRefGoogle Scholar
  4. Albertson, F. W. andG. W. Tomanek. 1965. Vegetation changes during a 30-year period in grassland communities near Hays, Kansas. Ecology46: 714–720.CrossRefGoogle Scholar
  5. ——, andA. Riegel. 1957. Ecology of drought cycles and grazing intensity on grasslands of Great Central Plains. Ecol. Monogr.27: 27–44.CrossRefGoogle Scholar
  6. —— andJ. E. Weaver. 1945. Injury and death or recovery of trees in a prairie climate. Ecol. Monogr.15: 395–433.CrossRefGoogle Scholar
  7. Anderson, D. J. 1967. Studies on the structure in plant communities. IV. Cyclical succession in Dryas communities from northwest Iceland. J. Ecol.55: 629–635.CrossRefGoogle Scholar
  8. —,R. C. Cooke, T. T. Elkington, andD. J. Read. 1966. Studies in structure in plant communities. II. The structure of some dwarf-heath and birch-copse communities in Sjald-Fannardalur, north-west Iceland. J. Ecol.54: 781–793.CrossRefGoogle Scholar
  9. Anderson, G. W. andR. L. Anderson. 1963. The rate of spread of oak wilt in the Lake States. J. For.631: 823–825.Google Scholar
  10. Anderson, R. C. andJ. S. Fralish. 1975. An investigation of palmetto,Paurotis wrightii (Griseb. and Wendl.) Britt., communities in Belize, Central America. Turrialba25: 37–44.Google Scholar
  11. Antonovics, J. 1971. The effects of a heterogeneous environment on the genetics of natural populations. Am. Sci.59: 593–599.PubMedGoogle Scholar
  12. Armson, K. A. andR. J. Fessenden. 1973. Forest windthrows and their influence on soil morphology. Soil Sci. Soc. Am. Proc.37: 781–783.CrossRefGoogle Scholar
  13. Armstrong, R. A. 1976. Fugitive species: experiments with fungi and some theoretical considerations. Ecology57: 953–963.CrossRefGoogle Scholar
  14. Ashe, W. W. 1918. Note on “Ice Storms in the Southern Appalachians” by Verne Rhoades. Mon. Weather Rev.46: 374.CrossRefGoogle Scholar
  15. Ashton, P. S. 1969. Speciation among tropical forest trees: some deductions in the light of recent evidence. Biol. J. Linn. Soc.1: 155–196.CrossRefGoogle Scholar
  16. Aubréville, A. 1971. Regeneration patterns in the closed forest of the Ivory Coast. Pages 41–55in S. R. Eyre (ed.). World vegetation types. Macmillan Press, Ltd., London. 264pp.Google Scholar
  17. Auclair, A. N. 1975. Sprouting response inPrunus serotina Erhr.: multivariate analysis of site, forest structure, and growth rate relationships. Am. Midl. Nat.94: 72–87.CrossRefGoogle Scholar
  18. — andG. Cottam. 1971. Dynamics of black cherry (Prunus serotina Erhr.) in southern Wisconsin oak forests. Ecol. Monogr.41: 153–177.CrossRefGoogle Scholar
  19. Austin, M. P. 1977. Use of ordination and other multivariate descriptive methods to study succession. Vegetatio35: 165–176.CrossRefGoogle Scholar
  20. Bailey, A. W. andC. E. Poulton. 1968. Plant communities and environmental interrelationships in a portion of the Tillamook burn, northwestern Oregon. Ecology49: 1–13.CrossRefGoogle Scholar
  21. Baker, H. G. 1970. Evolution in the tropics. Biotropica2: 101–111.CrossRefGoogle Scholar
  22. Bannister, B. A. 1970. Ecological life cycle ofEnterpe globose. Gaertn. Pages 299–314in H. T. Odum (ed.). A tropical rainforest. U.S. A.E.C., Div. Tech. Inf. Washington, D. C.Google Scholar
  23. Barbour, M. A. andT. M. DeJong. 1977. Response of West Coast beach taxa to salt spray, seawater inundation, and soil salinity. Bull. Torrey Bot. Club104: 29–34.CrossRefGoogle Scholar
  24. Barclay-Estrup, P. 1970. The description and interpretation of cyclical processes in a heath community. II. Changes in biomass and shoot production during theCalluna cycle. J. Ecol.58: 243–249.CrossRefGoogle Scholar
  25. — andC. H. Gimingham. 1969. The description and interpretation of cyclical processes in a heath community. 1. Vegetational change in relation to theCalluna cycle. J. Ecol.57: 737–758.CrossRefGoogle Scholar
  26. Barden, L. S. Tree replacement in small canopy gaps of a southern Appalachian forest. (Unpublished manuscript.)Google Scholar
  27. Batchelder, R. B. 1967. Spatial and temporal patterns of fire in the tropical world. Proc. Annu. Tall Timbers Fire Ecol. Conf.6: 171–707.Google Scholar
  28. Beard, J. S. 1945. Some ecological work in the Caribbean. Emp. For. J.24: 40–46.Google Scholar
  29. —. 1953. The savanna vegetation of northern tropical America. Ecol. Monogr.23: 149–215.CrossRefGoogle Scholar
  30. —. 1955. The classification of tropical American vegetation types. Ecology36: 89–100.CrossRefGoogle Scholar
  31. Beasleigh, W. J. andG. A. Yarranton. 1974. Ecological strategy and tactics ofEquisetum sylvaticum during a postfire succession. Can. J. Bot.52: 2299–2318.CrossRefGoogle Scholar
  32. Behre, C. E. 1921. A study of windfall in the Adirondacks. J. For.19: 632–637.Google Scholar
  33. Bell, D. T. 1974. Tree stratum composition and distribution in a streamside forest. Am. Midl. Nat.92: 35–46.CrossRefGoogle Scholar
  34. — andR. del Moral. 1977. Vegetation gradients in the stream-side forest of Hickory Creek, Will County, Illinois. Bull. Torrey Bot. Club104: 127–135.CrossRefGoogle Scholar
  35. Benninghoff, W. S. 1952. Interaction of vegetation and soil frost phenomena. Arctic5: 34–44.Google Scholar
  36. Bird, R. D. 1930. Biotic communities of the aspen parkland of central Canada. Ecology11: 356–442.CrossRefGoogle Scholar
  37. Bishop, J. W. 1977. Effects of rainstorms on phytoplankton production in Westhampton Lake, Virginia. Abstract in Bull. Ecol. Soc. Am.58(2): 52.Google Scholar
  38. Biswell, H. H. 1974. Effects of fire on chaparral. Pages 321–364in T. T. Kozlowski and C. E. Ahlgren (eds.). Fire and ecosystems. Academic Press, New York. 542 pp.Google Scholar
  39. Blais, J. R. 1954. The recurrence of spruce budworm infestations in the past century in the Lac Seul area of northwestern Ontario. Ecology35: 62–71.CrossRefGoogle Scholar
  40. Blaisdell, R. S., J. Wooten, andR. K. Godfrey. 1973. The role of magnolia and beech in forest processes in the Tallahassee, Florida, Thomasville, Georgia area. Proc. Annu. Tall Timbers Fire Ecol. Conf.13: 363.Google Scholar
  41. Bleakney, J. S. 1972. Ecological implications of annual variation in tidal extremes. Ecology53: 933–938.CrossRefGoogle Scholar
  42. Blydenstein, J. 1968. Burning and tropical American savannas. Proc. Annu. Tall Timbers Fire Ecol. Conf.8: 1–15.Google Scholar
  43. Bogucki, D. J. 1970. Debris slides and related flood damage with the September 1, 1951, cloudburst in the Mt. LeConte-Sugarland Mountain area. Great Smoky Mountains National Park. Ph.D. Thesis, Univ. Tennessee, Knoxville. 165 pp.Google Scholar
  44. —. 1977. Debris slide hazards in the Adirondack Province of New York State. Environ. Geol.1: 317–328.CrossRefGoogle Scholar
  45. Borchert, J. R. 1950. The climate of the central North American grassland. Assoc. Am. Geogr. Ann.40: 1–39.CrossRefGoogle Scholar
  46. Bormann, F. H. andG. E. Likens. 1979. Pattern and process in a forested ecosystem. Springer-Verlag, New York. 253 pp.Google Scholar
  47. Bray, J. R. 1956. Gap phase replacement in a maple-basswood forest. Ecology37: 598–600.CrossRefGoogle Scholar
  48. Brayton, R. D. andG. M. Woodwell. 1966. Effects of ionizing radiation and fire onGaylussacia baccata andVaccinium vaccilans. Am. J. Bot.53: 816–820.CrossRefGoogle Scholar
  49. Brewer, R. andP. G. Merritt. 1978. Windthrow and tree replacement in a climax beechmaple forest. Oikos30: 149–152.CrossRefGoogle Scholar
  50. Brown, J. H. 1960. The role of fire in altering the species composition of forests in Rhode Island. Ecology41: 310–316.CrossRefGoogle Scholar
  51. Brown, W. L. 1961. Mass insect control programs: Four case histories. Psyche68: 75–111.Google Scholar
  52. Budowski, G. 1963. Forest succession in tropical lowlands. Turrialba13: 42–44.Google Scholar
  53. —. 1966. Fire in tropical American lowlands. Proc. Annu. Tall Timbers Fire Ecol. Conf.5: 5–22.Google Scholar
  54. —. 1970. The distinction between old secondary and climax species in tropical Central American lowland forests. Trop. Ecol.11: 44–48.Google Scholar
  55. Buell, M. F. 1956. Spruce-fir, maple-basswood competition in Itasca Park, Minnesota. Ecology37: 606.CrossRefGoogle Scholar
  56. — andH. F. Buell. 1941. Surface level fluctuations in Cedar Creek Bog, Minnesota. Ecology22: 317–321.CrossRefGoogle Scholar
  57. ——. 1975. Moat bogs in the Itasca Park area, Minnesota. Bull. Torrey Bot. Club102: 6–9.CrossRefGoogle Scholar
  58. ——, andW. A. Reiners. 1968. Radial mat growth in Cedar Creek Bog, Minnesota. Ecology49: 1198–1199.CrossRefGoogle Scholar
  59. ——, andJ. A. Small. 1954. Fire in the history of Mettler’s Woods. Bull. Torrey Bot. Club81: 253–255.CrossRefGoogle Scholar
  60. ———, andC. D. Monk. 1961. Drought effect on radial growth of trees in the William L. Hutcheson Memorial Forest. Bull. Torrey Bot. Club88: 176–180.CrossRefGoogle Scholar
  61. — andW. E. Gordon. 1945. Hardwood-conifer contact zone in Itasca Park, Minnesota. Am. Midl. Nat.34: 433–439.CrossRefGoogle Scholar
  62. —,A. N. Langford, D. W. Davidson, andL. F. Ohmann. 1966. The upland forest continuum in northern New Jersey. Ecology47: 416–432.CrossRefGoogle Scholar
  63. — andW. E. Martin. 1961. Competition between maple-basswood and fir-spruce communities in Itasca Park, Minnesota. Ecology42: 428–429.CrossRefGoogle Scholar
  64. — andW. S. Wistendahl. 1955. Flood plain forests of the Raritan River. Bull. Torrey Bot. Club82: 463–472.CrossRefGoogle Scholar
  65. Carvel, K. L., E. H. Tryon, andR. P. True. 1957. Effects of glaze on the development of Appalachian hardwoods. J. For.55: 130–132.Google Scholar
  66. Chabreck, R. H. andA. W. Palmisano. 1973. The effects of Hurricane Camille on the marshes of the Mississippi River delta. Ecology54: 1118–1123.CrossRefGoogle Scholar
  67. Chapman, H. H. 1932. Is the longleaf type a climax? Ecology13: 328–334.CrossRefGoogle Scholar
  68. —. 1947. Natural areas. Ecology28: 193–194.CrossRefGoogle Scholar
  69. Chesapeake Research Consortium, Inc. 1977. The effects of tropical storm Agnes on the Chesapeake Bay estuarine system. John Hopkins Univ. Press, Baltimore. 639 pp.Google Scholar
  70. Christensen, N. L. andC. H. Muller. 1975. Effects of fire on factors controlling plant growth inAdenostoma Chaparral. Ecol. Monogr.45: 29–55.CrossRefGoogle Scholar
  71. Churchill, E. D. andH. C. Hanson. 1958. The concept of climax in arctic and alpine vegetation. Bot. Rev.24: 127–191.Google Scholar
  72. Clark, F. B. 1962. White ash, hackberry, and yellow poplar seed remain viable in the forest litter. Indiana Acad. Sci. Proc.72: 112–114.Google Scholar
  73. Cline, A. C. and S. H. Spurr. 1942. The virgin upland forest of central New England: A study of old growth stands in the Pisgah Mountain section of southwestern New Hampshire. Harv. For. Bull.21. 58 pp.Google Scholar
  74. Cochrane, G. R. and J. S. Rowe. 1969. Fire in the tundra at Rankin Inlet NWT. Proc. Annu. Tall Timbers Fire Ecol. Conf. 292 pp.Google Scholar
  75. Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science199: 1302–1310.PubMedCrossRefGoogle Scholar
  76. — andR. O. Slayter. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat.111: 1119–1144.CrossRefGoogle Scholar
  77. Coombe, D. E. andF. White. 1951. Notes on calcicolous communities and peat formation in Norwegian Lapland. J. Ecol.39: 33–62.CrossRefGoogle Scholar
  78. Cooper, C. F. 1960. Changes in vegetation, structure, and growth of southwestern pine forests since white settlement. Ecol. Monogr.30: 129–164.CrossRefGoogle Scholar
  79. Cooper, W. S. 1913. The climax forest of Isle Royale. Lake Superior, and its development. Bot. Gaz.55: 144; 115–140; 189–235.Google Scholar
  80. —. 1926. The fundamentals of vegetational change. Ecology7: 391–413.CrossRefGoogle Scholar
  81. Coupland, R. T. 1974. Fluctuations in North American grassland vegetation. Pages 235–241in R. Knapp (ed.). Vegetation dynamics. Dr. W. Junk, The Hague.Google Scholar
  82. Cowles, H. C. 1899. The ecological relations of the vegetation on the sand dunes of Lake Michigan. Part I. Geographical relations of the dune floras. Bot. Gaz.27: 95–117; 167–201; 281–308; 361–391.CrossRefGoogle Scholar
  83. Craighead, F. C., Sr. 1971. The trees of South Florida. I. The natural environments and succession. University of Miami Press, Coral Gables, Florida. 212 pp.Google Scholar
  84. Curtis, J. T. 1959. The vegetation of Wisconsin. University of Wisconsin Press, Madison. 657 pp.Google Scholar
  85. Cwynar, L. C. 1978. Recent history of fire and vegetation from laminated sediment of Greenleaf Lake, Algonquin Park, Ontario. Can. J. Bot.56: 10–21.Google Scholar
  86. Dansereau, P. 1946. L’érabliere laurentienne. II. Les successions et leurs indicateurs. Can. J. Res. Sect. C, Bot. Sci.24: 235–291.Google Scholar
  87. —. 1957. Biogeography, an ecological perspective. Ronald Press Co., New York. 394 pp.Google Scholar
  88. —. 1974. Classification of successions and of their terminal stages. Pages 125–135in R. Knapp (ed.). Vegetation dynamics. Dr. W. Junk, The Hague.Google Scholar
  89. Daubenmire, R. F. 1968a. Plant communities: A textbook of plant synecology. Harper and Row, New York. 30 pp.Google Scholar
  90. —. 1968b. Ecology of fire in grasslands. Adv. Ecol. Res.5: 209–266.Google Scholar
  91. Davis, M. B. 1976. Pleistocene biogeography of temperate deciduous forests. Geosci. Man13: 13–26.Google Scholar
  92. Dayton, P. K. 1971. Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr.41: 351–389.CrossRefGoogle Scholar
  93. DeGraaf, R. M. 1978. New life from dead trees. Nat. Wildl. (June 1978): 29–31.Google Scholar
  94. Delcourt, H. R. andP. A. Delcourt. 1977. Presettlement magnolia-beech climax of the Gulf Coastal Plain: Quantitative evidence from the Apalachicola River Bluffs, north-central Florida. Ecology58: 1085–1093.CrossRefGoogle Scholar
  95. Demaree, D. 1932. Submerging experiments with Taxidium. Ecology13: 258–262.CrossRefGoogle Scholar
  96. Denny, C. S. and J. C. Goodlett. 1956. Microrelief resulting from fallen trees.In C. S. Denny (ed.). Surificial geology and geomorphology of Potter County, Pennsylvania. U.S. Geol. Surv. Prof. Pap. 288.Google Scholar
  97. Dittus, W. P. J. 1977. The ecology of a semi-evergreen forest community in Sri Lanka. Biotropica9: 268–286.CrossRefGoogle Scholar
  98. Dix, R. L. 1957. Sugar maple in the climax forests of Washington, DC. Ecology38: 663–665.CrossRefGoogle Scholar
  99. — andJ. M. A. Swan. 1971. The roles of disturbance and succession in upland forest at Candle Lake, Saskatchewan. Can. J. Bot.49: 657–676.Google Scholar
  100. Dolan, R., B. P. Hayden, andG. Soucie. 1978. Environmental dynamics and resource management in the U.S. National Parks. Environ. Manage.2: 249–258.CrossRefGoogle Scholar
  101. Douglas, G. W. 1974. Montane zone vegetation of the Alsek River region, Southwestern Yukon. Can. J. Bot.52: 2505–2532.CrossRefGoogle Scholar
  102. — andT. M. Ballard. 1971. Effects of fire on alpine plant communities in the North Cascades, Washington. Ecology52: 1058–1064.CrossRefGoogle Scholar
  103. Downs, A. A. 1938. Glaze damage in the birch-beech-maple-hemlock type of Pennsylvania and New York. J. For.36: 63–70.Google Scholar
  104. Drury, W. H. andI. C. T. Nisbet. 1971. Inter-relations between developmental models in geomorphology, plant ecology, and animal ecology. Gen. Syst.16: 57–68.Google Scholar
  105. ——. 1973. Succession. J. Arnold Arbor. Harv. Univ.54: 331–368.Google Scholar
  106. Eggler, W. A. 1971. Quantitative studies of vegetation on sixteen young lava flows on the Island of Hawaii. Trop. Ecol.12: 66–100.Google Scholar
  107. Egler, F. E. 1947. Arid Southeast Oahu vegetation, Hawaii. Ecol. Monogr.17: 383–435.CrossRefGoogle Scholar
  108. Ehrlich, P. R., D. E. Breedlove, P. F. Brussard, andM. A. Sharp. 1972. Weather and “ regulation” of subalpine populations. Ecology53: 243–247.CrossRefGoogle Scholar
  109. Fahey, J. J. 1975. Fire in the forests of Maine and New Hampshire. Abstract in Bull. Ecol. Soc. Am.56: 41.Google Scholar
  110. Flaccus, E. 1959. Revegetation of landslides in the White Mountains of New Hampshire. Ecology40: 692–703.CrossRefGoogle Scholar
  111. Foldats, E. andE. Rutkis. 1975. Ecological studies of chapparo (Curatella americana L.) and manteco (Byrsonima crassifolia HBK) in Venezuela. J. Biogeogr.2: 159–178.CrossRefGoogle Scholar
  112. Forcier, L. K. 1975. Reproductive strategies and the co-occurrence of climax tree species. Science189: 808–810.PubMedCrossRefGoogle Scholar
  113. Foster, R. B. 1977.Tachigalia versicolor is a suicidal neotropical tree. Nature268: 624–626.CrossRefGoogle Scholar
  114. Fox, J. F. 1977. Alternation and coexistence of tree species. Am. Nat.111: 69–89.CrossRefGoogle Scholar
  115. Franklin, J. F. andC. T. Dyrness. 1969. Vegetation of Oregon and Washington. U.S.D.A. For. Serv. Res. Pap. PEW80: 1–216.Google Scholar
  116. Franz, E. H. andF. A. Bazzaz. 1977. Simulation of vegetation response to modified hydrologic regimes: A probabilistic model based on niche differentiation in a flood plain forest. Ecology58: 176–183.CrossRefGoogle Scholar
  117. Gams, H. 1918. Principienfragen der Vegetations forschung Viertelsjahrsschr. Naturf. Ges. Zürich67: 132–156.Google Scholar
  118. Gardiner, L. M. 1975. Insect attack and value loss in wind-damaged spruce and jack pine stands in northern Ontario. Can. J. For. Res.5: 387–398.Google Scholar
  119. Garren, K. H. 1943. Effects of fire on vegetation of the southeastern United States. Bot. Rev.9: 617–654.Google Scholar
  120. Gentry, A. H. 1974. Flowering phenology and diversity in tropical Bignoniaceae. Biotropica6: 64–68.CrossRefGoogle Scholar
  121. Ghent, A. W., D. A. Fraser, andJ. B. Thomas. 1957. Studies of regeneration of forest stands devastated by the spruce budworm. I. For. Sci.3: 184–208.Google Scholar
  122. Giesel, J. T. 1976. Reproductive strategies as adaptations to life in temporally heterogeneous environments. Ann. Rev. Ecol. Syst.7: 57–80.CrossRefGoogle Scholar
  123. Gill, A. M. 1977. Plant traits adapted to fires in Mediterranean land ecosystems. Pages 17–26in H. Mooney and C. E. Conrad (eds.). Proceedings of the symposium on the environmental consequences of fire and fuel management in Mediterranean ecosystems. U.S.D.A. For. Serv. Gen. Tech. Rep. WO-3. Washington, D.C.Google Scholar
  124. Gill, D. E. 1975. Spatial patterning of pines and oaks in the New Jersey pine barrens. J. Ecol.63: 291–298.CrossRefGoogle Scholar
  125. Gleason, H. A. 1926. The individualistic concept of the plant association. Bull. Torrey Bot. Club53: 7–26.CrossRefGoogle Scholar
  126. —. 1927. Further views on the succession concept. Ecology8: 299–327.CrossRefGoogle Scholar
  127. Gómez-Pompa, A. 1971. Posible papel de la vegetación secundaria en la evolución de la flora tropical. Biotropica3: 125–135.CrossRefGoogle Scholar
  128. -,S. del Amo R., C. Vazgnez-Yanes, and A. Butando (eds.). 1976. Investigaciones sabre la regeneración de selvas altas en Veracruz, México. Cia. Editorial Continental, SA. Calz. de Tlalpan Núrn, 4620, México 22, D.F. 676 pp.Google Scholar
  129. Goodlett, J. C. 1954. Vegetation adjacent to the border of Wisconsin drift in Potter County, Pennsylvania. Harv. For. Bull.25. 93 pp.Google Scholar
  130. —. 1969. Vegetation and the equilibrium concept of landscape. Pages 33–44in K. N. H. Greenidge (ed.). Essays in plant geography and ecology. Nova Scotia Museum, Halifax.Google Scholar
  131. Grigal, D. F. andL. F. Ohmann. 1975. Classification, description, and dynamics of upland plant communities within a Minnesota wilderness area. Ecol. Monogr.45: 389–407.CrossRefGoogle Scholar
  132. Griggs, R. F. 1936. The vegetation of the Katmai district. Ecology17: 380–417.CrossRefGoogle Scholar
  133. Grime, J. P. 1977. Evidence for the existance of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat.111: 1169–1194.CrossRefGoogle Scholar
  134. — andR. Hunt. 1975. Relative growth-rate: its range and adaptive signicance in a local flora. J. Ecol.63: 393–422.CrossRefGoogle Scholar
  135. Grubb, P. J. 1977. The maintenance of species-richness in plant communities: The importance of the regeneration niche. Biol. Rev.52: 107–145.CrossRefGoogle Scholar
  136. Habeck, J. R. andR. W. Mutch. 1973. Fire-dependent forests in the northern Rocky Mountains. Quat. Res.3: 408–424.CrossRefGoogle Scholar
  137. Hack, J. T. 1960. Interpretation of erosional topography in humid temperate regions. Am. J. Sci.258A: 80–97.Google Scholar
  138. Komarek, E. V. 1974. Effects of fire on temperate forests and related ecosystems: South.Google Scholar
  139. -.and J. C. Goodlett. 1960. Geomorphology and forest ecology of a mountain region in the central Appalachians. U.S. Geol. Surv. Prof. Pap. 347.Google Scholar
  140. Hall, T. F. andG. E. Smith. 1955. Effects of flooding on woody plants, West Sandy Dewatering Project, Kentucky Reservoir. J. For.53: 281–285.Google Scholar
  141. Hanes, T. L. 1971. Succession after fire in the chaparral of southern California. Ecol. Monogr.41: 27–52.CrossRefGoogle Scholar
  142. Hanson, H. C. 1950. Vegetation and soil profiles in some solifluction and mound areas in Alaska. Ecology31: 606–630.CrossRefGoogle Scholar
  143. — andW. Whitman. 1937. Plant succession on solonetz soils in western North Dakota. Ecology18: 516–522.CrossRefGoogle Scholar
  144. Harper, J. L. 1967. A Darwinian approach to plant ecology. J. Ecol.55: 247–270.CrossRefGoogle Scholar
  145. —. 1977. Population biology of plants. Academic Press, New York. 892 pp.Google Scholar
  146. —. andJ. Ogden. 1970. The reproductive strategy of higher plants: I. the concept of strategy with specific reference toSenecio vulgaris L. J. Ecol.58: 681–689.CrossRefGoogle Scholar
  147. — andJ. White. 1974. The demography of plants. Ann. Rev. Ecol. Syst.5: 419–463.CrossRefGoogle Scholar
  148. Harris, S. W. andW. H. Marshall. 1963. Ecology of water-level manipulations on a northern marsh. Ecology44: 331–343.CrossRefGoogle Scholar
  149. Hartshorn, G. 1977. Neotropical forest dynamics. Abstract in Bull. Ecol. Soc. Am.58: 29.Google Scholar
  150. Hayes, G. I. 1942. Difference in fire danger with altitude, aspect, and time of day. J. For.40: 318–323.Google Scholar
  151. Hedrick, P. W., M. E. Ginevan, andE. P. Ewing. 1976. Genetic polymorphism in heterogeneous environments. Ann. Rev. Ecol. Syst.7: 1–32.CrossRefGoogle Scholar
  152. — 1970. Landscape evolution, peatland types, and the environment in the Lake Agassiz Peatlands. Ecol. Monogr.40: 235–261.CrossRefGoogle Scholar
  153. -. 1971. The natural role of fire in northern conifer forests. Pages 61–72in C. W. Slaughter, R. J. Barney, and G. M. Hansen (ed.). Fire in the northern environmenta symposium. Pac. Northwest For. Range Exp. Stn., Portland, Oregon.Google Scholar
  154. —. 1973. Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quat. Res.3: 329–382.CrossRefGoogle Scholar
  155. -Heinselman, M. L. and H. E. Wright, Jr. (eds.). 1973. The ecological role of fire in natural conifer forests of western and northern North America. Quat. Res.3: 317–318.Google Scholar
  156. Henry, J. D. andJ. M. A. Swan. 1974. Reconstructing forest history from live and dead plant material—An approach to the study of forest succession in southwest New Hampshire. Ecology55: 772–783.CrossRefGoogle Scholar
  157. Hett, J. M. andO. L. Loucks. 1976. Age structure models of balsam fir and eastern hemlock. J. Ecol.64: 1029–1044.CrossRefGoogle Scholar
  158. Hewetson, C. E. 1956. A discussion on the “climax” concept in relation to the tropical rain and deciduous forest. Emp. For. Rev.35: 274–291.Google Scholar
  159. Heyward, F. 1939. Relation of fire to stand composition of longleaf pine forests. Ecology20: 287–304.CrossRefGoogle Scholar
  160. Hibbs, D. H., B. C. Fisher, andB. F. Wilson. 1977. The survival strategy of striped maple. Abstract in Bull. Ecol. Soc. Am.58: 47.Google Scholar
  161. Horn, H. S. 1976. Succession. Pages 187–204in R. M. May (ed.). Theoretical ecology: Principles and applications. Blackwell, London.Google Scholar
  162. Horn, H. 1971. The adaptive geometry of trees. Princeton University Press, Princeton, New Jersey. 144 pp.Google Scholar
  163. Hosner, J. F. 1957. Effects of water on seed germination of bottomland trees. For. Sci.3: 67–69.Google Scholar
  164. —. 1960. Relative tolerance to complete inundation of fourteen bottomland tree species. For. Sci.6: 246–251.Google Scholar
  165. — andS. G. Boyce. 1962. Relative tolerance to water saturated soil of various bottomland hardwoods. For. Sci.8: 180–186.Google Scholar
  166. Hough, A. F. andR. D. Forbes. 1943. The ecology and silvics of forests in the high plateaus of Pennsylvania. Ecol. Monogr.13: 299–320.CrossRefGoogle Scholar
  167. Hough, A. F. andR. F. Taylor. 1946. Response of Allegheny northern hardwoods to partial cutting. J. For.44: 30–38.Google Scholar
  168. Houston, D. B. 1973. Wildfires in northern Yellowstone National Park. Ecology54: 1111–1117.CrossRefGoogle Scholar
  169. Humphrey, R. R. 1974. Fire in the deserts and desert grassland of North America. Pages 365–400in T. T. Kozlowski and C. E. Ahlgren (eds.). Fire and ecosystems. Academic Press, New York. 542 pp.Google Scholar
  170. Hutnik, R. J. 1952. Reproduction on windfalls in a northern hardwood stand. J. For.50: 693–694.Google Scholar
  171. Illick, J. S. 1916. A destructive snow and ice storm. For. Leaves15: 103–107.Google Scholar
  172. Ives, R. L. 1942. The beaver-meadow complex. J. Geomorphol.5: 191–203.Google Scholar
  173. Janzen, D. H. 1967. Why mountain passes are higher in the tropics. Am. Nat.101: 233–249.CrossRefGoogle Scholar
  174. —. 1976. Why bamboos wait so long to flower. Ann. Rev. Ecol. Syst.7: 347–392.CrossRefGoogle Scholar
  175. Johnson, A. W., L. A. Viereck, R. E. Johnson, and H. Melchior. 1966. Vegetation and flora.In N. J. Wilimorsky and J. N. Wolfe (eds.). Environment of the Cape Thompson region, Alaska. U.S. A.E.C.Google Scholar
  176. Johnson, E. A. 1975. Buried seed populations in the subarctic forest east of Great Slave Lake, Northwest Territories. Can. J. Bot.53: 2933–2941.Google Scholar
  177. — andJ. S. Rowe. 1975. Fire in the subarctic wintering ground of the Beverley caribou herd. Am. Midl. Nat.94: 1–14.CrossRefGoogle Scholar
  178. Johnson, P. L. andW. D. Billings. 1962. The alpine vegetation of the Beartooth Plateau in relation to Cropedogenic processes and patterns. Ecol. Monogr.32: 102–135.CrossRefGoogle Scholar
  179. Johnson, W. C., R. L. Burgess, andW. R. Keammerer. 1976. Forest overstory vegetation and environment on the Missouri River Floodplain in North Dakota. Ecol. Monogr.46: 59–84.CrossRefGoogle Scholar
  180. Jones, E. W. 1945. The structure and reproduction of the virgin forest of the North Temperate zone. New Phytol.44: 130–148.CrossRefGoogle Scholar
  181. —. 1955. Ecological studies on the rain forest of Southern Nigeria. I. J. Ecol.43: 564–594.Google Scholar
  182. —. 1956. Ecological studies on the rain forest of Southern Nigeria. II. J. Ecol.44: 83–117.CrossRefGoogle Scholar
  183. Keatinge, T. H. 1975. Plant community dynamics in wet heathland. J. Ecol.63: 163–172.CrossRefGoogle Scholar
  184. Keeley, J. E. 1977. Seed production, seed populations in soil, and seedling production after fire for two congeneric pairs of sprouting and nonsprouting chaparral shrubs. Ecology58: 820–829.CrossRefGoogle Scholar
  185. — andP. H. Zedler. 1978. Reproduction of chaparral shrubs after fire: a comparison of sprouting and seeding strategies. Am. Midl. Nat.99: 142–161.CrossRefGoogle Scholar
  186. Kellman, M. 1974. Preliminary seed budgets for two plant communities in coastal British Columbia. J. Biogeogr.1: 123–133.CrossRefGoogle Scholar
  187. Kershaw, K. A. 1960. Cyclic and pattern phenomena as exhibited byAlchemilla alpina. J. Ecol.48: 443–453.CrossRefGoogle Scholar
  188. Kessell, S. R. 1976. Gradient modeling: a new approach to fire modeling and wilderness resource management. Environ. Manage.1: 39–48.CrossRefGoogle Scholar
  189. Kilgore, B. M. 1973. The ecological role of fire in Sierran conifer forests. Quat. Res.3: 496–513.CrossRefGoogle Scholar
  190. Kimmerer, R. W. andT. F. H. Allen. 1978. The role of disturbance in the structure of a riparian bryophyte community. Abstract in Bull. Ecol. Soc. Ann.59: 88.Google Scholar
  191. Knapp, R. (ed.). 1974. Vegetation dynamics. Dr. W. Junk, The Hague. 356 pp.Google Scholar
  192. —. 1974. Cyclic successions and ecosystem approaches in vegetation dynamics. Pages 92–100in R. Knapp (ed.). Vegetation dynamics. Dr. W. Junk, The Hague.Google Scholar
  193. Knight, D. H. 1975. A phytosociological analysis of species-rich tropical forest on Barro Colorado Island, Panama. Ecol. Monogr.45: 259–284.CrossRefGoogle Scholar
  194. Koevenig, J. L. 1976. Effect of climate, soil physiography, and seed germination on the distribution of river birch (Betulu nigra). Rhodora78: 420–437.Google Scholar
  195. Komarek, E. V., Sr. 1966. The meteorological basis for fire ecology. Pages 85–126 in Proc. Annu. Tall Timbers Fire Ecol. Conf.Google Scholar
  196. —. 1968. Lightning and lightning fires as ecological forces. Proc. Annu. Tall Timbers Fire Ecol. Conf.8: 169–197.Google Scholar
  197. Komarek, E. V. 1974. Effects of fire on temperate forests and related ecosystems: South-eastern United States. Pages 251–277in T. T. Kozlowski and C. E. Ahlgren (eds.). Fire and Ecosystems. Academic Press, New York. 542 pp.Google Scholar
  198. Korchagin, A. A. andV. G. Karpov. 1974. Fluctuations in coniferous taiga communities. Pages 227–231in R. Knapp (ed.). Vegetation dynamics. Dr. W. Junk, The Hague.Google Scholar
  199. Kozlowski, T. T. andC. E. Ahlgren (eds.). 1974. Fire and ecosystems. Academic Press, New York. 542 pp.Google Scholar
  200. Krefting, L. W. andC. E. Ahlgren. 1974. Small mammals and vegetation changes after fire in a mixed conifer-hardwood forest. Ecology55: 1391–1398.CrossRefGoogle Scholar
  201. Kucera, C. L. andS. C. Martin. 1957. Vegetation and soil relationships in the glade region of the Southwestern Missouri Ozarks. Ecology38: 285–291.CrossRefGoogle Scholar
  202. Küchler, A. W. 1964. Potential natural vegetation of the conterminous United States. Am. Geogr. Soc. Spec. Publ. 36. 116 pp.Google Scholar
  203. Langenheim, J. H. 1956. Plant succession on a subalpine earthflow in Colorado. Ecology37: 301–317.CrossRefGoogle Scholar
  204. Langford, A. N. andM. F. Buell. 1969. Integration, identity, and stability in the plant association. Adv. Ecol. Res.6: 83–135.CrossRefGoogle Scholar
  205. Larson, F. 1940. The role of the bison in maintaining the short grass plain. Ecology21: 113–121.CrossRefGoogle Scholar
  206. Leak, W. B. 1963. Delayed germination of white ash seeds under forest conditions. J. For.61: 768–772.Google Scholar
  207. Lejeune, R. R. 1955. Population ecology of the larch sawfly. Can. Entomol.87: 111–117.CrossRefGoogle Scholar
  208. Lemon, P. C. 1949. Successional responses of herbs in the longleaf-slash pine forest after fire. Ecology30: 135–145.CrossRefGoogle Scholar
  209. —. 1961. Forest ecology of ice storms. Bull. Torrey Bot. Club88: 21–29.CrossRefGoogle Scholar
  210. —. 1968. Effects of fire on African Plateau grassland. Ecology49: 316–322.CrossRefGoogle Scholar
  211. Levin, S. A. 1976. Population dynamic models in heterogeneous environments. Ann. Rev. Ecol. Syst.7: 287–310.CrossRefGoogle Scholar
  212. -.and R. J. Paine. 1975. The role of disturbance in models of community structure. Pages 56–67in S. A. Levin (ed.). Ecosystem analysis and prediction. Philadelphia, Pennsylvania.Google Scholar
  213. Lewis, F. J. andE. S. Dowding. 1926. The vegetation and retrogressive changes of peat areas (“ muskegs”) in central Alberta. J. Ecol.14: 317–341.CrossRefGoogle Scholar
  214. Lewis, K. P. 1975. Community analysis and the dynamics of establishmentof Acer saccharinum L. (silver maple) on flood plains of the unglaciated Appalachian Plateau. Abstract in Bull. Ecol. Soc. Am.56: 489.Google Scholar
  215. Lichens, G. E. andM. B. Davis. 1975. Post-glacial history of Mirror Lake and its watershed in New Hampshire, USA: An initial report. Verh. Int. Ver. Limnol.19: 982–993.Google Scholar
  216. Lindsey, A. A., R. O. Petty, D. K. Sterling, andW. Van Asdall. 1961. Vegetation and environment along the Wabash and Tippecanoe Rivers. Ecol. Monogr.31: 105–156.CrossRefGoogle Scholar
  217. Little, S. 1946. The effects of forest fires on the stand history of New Jersey’s pine region. Northeast. For. Exp. Stn., For. Manage. Pap.2. 45 pp.Google Scholar
  218. — 1974. Effects of fire on temperate forests: Northeastern United States. Pages 225–250in T. T. Kozlowski and C. E. Ahlgren (eds.). Fire and ecosystems. Academic Press, New York. 542 pp.Google Scholar
  219. Lloyd, L. L. andG. E. Gruell. 1973. The ecological role of fire in the Jackson Hole Area, northwestern Wyoming. Quat. Res.3: 425–443.CrossRefGoogle Scholar
  220. Lorimer, C. G. 1977a. The presettlement forest and natural disturbance cycle of northeastern Maine. Ecology58: 139–148.CrossRefGoogle Scholar
  221. —. 1977b. Stand history and dynamics of a southern Appalachian virgin forest. Ph.D. Thesis, Duke Univ. 200 pp. Univ. Microfilms No. 77-18. 778. Ann Arbor, Michigan.Google Scholar
  222. Loucks, O. L. 1970. Evolution of diversity, efficiency, and community stability. Am. Zool.10: 17–25.PubMedGoogle Scholar
  223. Loya, Y. 1976. Recolonization of red sea corals affected by natural catastrophes and manmade perturbations. Ecology57: 278–289.CrossRefGoogle Scholar
  224. Lugo, A. 1977. Mangroves: succession or steady-state? Abstract in Bull. Ecol. Soc. Am.58: 29.Google Scholar
  225. Lunan, J. S. andJ. R. Habeck. 1973. The effects of fire exclusion on ponderosa pine communities in Glacier National Park, Montana. Can. J. For. Res.3: 574.CrossRefGoogle Scholar
  226. Lutz, H. J. 1940. Disturbance of soil resulting from uprooting of trees. Yale Univ. Sch. For. Bull.45. 37 pp.Google Scholar
  227. — andA. L. McComb. 1935. Origin of white pine in virgin forest stands in north-western Pennsylvania as indicated by stem and basal branch features. Ecology16: 252–256.CrossRefGoogle Scholar
  228. Lyford, W. H. and D. W. MacLean. 1966. Mound and pit microrelief in relation to soil disturbance and tree distribution in New Brunswick, Canada. Harv. For. Pap.15.Google Scholar
  229. Macaloney, H. J. 1966. The impact of insects in the northern hardwoods type. U.S.D.A. For. Serv. Res. Note NC-10. 3 pp.Google Scholar
  230. Madison, M. 1977. A revision of Monstera (Araceae). Contrib. Gray Herb. Harv. Univ.207. 100 pp.Google Scholar
  231. Maissurow, D. K. 1935. Fire as a necessary factor in the perpetuation of white pine. J. For.33: 373–378.Google Scholar
  232. —. 1941. The role of fire in the perpetuation of virgin forests in northern Wisconsin. J. For.39: 201–207.Google Scholar
  233. Major, J. 1974. Kinds and rates of changes in vegetation and chronofunctions. Pages 8–18in R. Knapp (ed.). Vegetation dynamics. Dr. W. Junk, The Hague.Google Scholar
  234. Marks, P. L. 1974. The role of pin cherry (Prunus pensylvanica L.) in the maintenance of stability in northern hardwood ecosystems. Ecol. Monogr.44: 73–88.CrossRefGoogle Scholar
  235. —. 1975. On the relation between extension growth and successional status of deciduous trees of the northeastern United States. Bull. Torrey Bot. Club102: 172–177.CrossRefGoogle Scholar
  236. Marquis, D. A. 1975. Seed storage and germination under northern hardwood forest. Can. J. For. Res.5: 478–484.Google Scholar
  237. Martin, W. E. 1959. The vegetation of Island Beach State Park, New Jersey. Ecol. Monogr.29: 1–46.CrossRefGoogle Scholar
  238. McCleod, K. W. andJ. K. McPherson. 1973. Factors limiting the distribution ofSalix nigra. Bull. Torrey Bot. Club100: 102–110.CrossRefGoogle Scholar
  239. McDermott, R. E. 1954. Effects of saturated soil in seedling growth of some bottomland hardwood species. Ecology35: 36–41.CrossRefGoogle Scholar
  240. McGinty, D. T. andE. J. Christy. 1977. Turkey oak ecology on a Georgia sand hill. Am. Midl. Nat.98: 487–491.CrossRefGoogle Scholar
  241. McIntosh, R. P. 1961. Windfall in forest ecology. Ecology42: 834.CrossRefGoogle Scholar
  242. Monk, C. D. 1961a. The vegetation of the William L. Hutcheson Memorial Forest, New Jersey. Bull. Torrey Bot. Club88: 156–166.CrossRefGoogle Scholar
  243. —. 1961b. Past and present influences on reproduction in the William L. Hutcheson Memorial Forest, New Jersey. Bull. Torrey Bot. Club88: 167–175.CrossRefGoogle Scholar
  244. Mooney, H., J. M. Bonnicksen, N. L. Christensen, J. E. Lotan, and W. A. Reiners (eds.). 1979. Fire regimes and ecosystem properties. U.S.D.A. For. Serv. Gen. Tech. Rept. Washington, D.C. (In press.)Google Scholar
  245. -and C. E. Conrad (eds.). 1977. Proceedings of the symposium on the environmental consequences of fire and fuel management in Mediterranean ecosystems. U.S.D.A. For. Serv. Gen. Tech. Rept. WO-3. Washington, D.C. 498 pp.Google Scholar
  246. Morris, R. F. (ed.). 1963. The dynamics of epidemic spruce budworm dynamics. Entomol. Soc. Can. Mem.31. 352 pp.Google Scholar
  247. Mosquin, T. 1971. Competition for pollinators as a stimulus for the evolution of flowering time. Oikos22: 398–402.CrossRefGoogle Scholar
  248. Mount, A. B. 1969. Eucalypt ecology as related to fire. Proc. Annu. Tall Timbers Fire Ecol. Conf.9: 75–108.Google Scholar
  249. Mueller-Dombois, D. andH. Ellenberg. 1974. Aims and methods of vegetation ecology. John Wiley and Sons, New York. 547 pp.Google Scholar
  250. Muller, C. H. 1952. Plant succession in arctic heath and tundra in northern Scandinavia. Bull. Torrey Bot. Club79: 296–309.CrossRefGoogle Scholar
  251. Munger, T. T. 1940. The cycle from douglas fir to hemlock. Ecology21: 451–459.CrossRefGoogle Scholar
  252. Munro, N. 1966. The fire ecology of Caribbean pine in Nicaragua. Proc. Annu. Tall Timbers Fire Ecol. Conf.5: 67–84.Google Scholar
  253. Mutch, R. W. 1970. Wildland fires and ecosystems—a hypothesis. Ecology51: 1046–1051.CrossRefGoogle Scholar
  254. Nanson, G. C. andH. F. Beach. 1977. Forest succession and sedimentation on a meandering river flood plain, northeast British Columbia, Canada. J. Biogeogr.4: 229–252.CrossRefGoogle Scholar
  255. Newton, M., B. A. elHassan, andJ. Zavitkovski. 1968. Role of red alder in western Oregon forest succession. Pages 73–84in J. M. Trappe, J. F. Franklin, A. F. Tarrant, and G. M. Hansen (eds.). Biology of alder. Pac. Northwest. For. Range Exp. Stn., U.S.D.A. For. Serv. Portland, Oregon.Google Scholar
  256. Nichols, G. E. 1920a. The plant associations of eroding areas along the seacoast. Bull. Torrey Bot. Club47: 89–117.CrossRefGoogle Scholar
  257. —. 1920b. The associations of depositing areas along the seacoast. Bull. Torrey Bot. Club47: 511–548.CrossRefGoogle Scholar
  258. Nixon, E. S., R. L. Willett, andP. W. Cox. 1977. Woody vegetation of a virgin forest in an Eastern Texas river bottom. Castanea42: 227–237.Google Scholar
  259. Noble, R. E. andP. K. Murphy. 1975. Short term effects of prolonged backwater flooding on understory vegetation. Castanea40: 228–238.Google Scholar
  260. Noy-Meir, I. 1973. Desert ecosystems: Environment and producers. Ann. Rev. Ecol. Syst.4: 25–51.CrossRefGoogle Scholar
  261. O’Cinneide, M. S. 1975. Aspect and wind direction as factors in forest stability: The case of Northern Ireland. J. Biogeogr.2: 127–139.CrossRefGoogle Scholar
  262. Odum, E. P. 1971. Fundamentals of Ecology, 3rd ed. Saunders, Philadelphia. 574 pp.Google Scholar
  263. Old, S. M. 1969. Microclimate, fire, and plant production in an Illinois prairie. Ecol. Monogr.39: 355–383.CrossRefGoogle Scholar
  264. Oliver, C. D. andE. P. Stephens. 1977. Reconstruction of a mixed species forest in Central New England. Ecology58: 562–572.CrossRefGoogle Scholar
  265. Olson, J. S. 1958. Rates of succession and soil changes on southern Lake Michigan sand dunes. Bot. Gaz.119: 125–170.CrossRefGoogle Scholar
  266. Oosting, H. J. 1944. The comparative effect of surface and crown fire of a loblolly pine community. Ecology25: 61–69.CrossRefGoogle Scholar
  267. Paine, R. T. 1974. Intertidal community structure. Experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia15: 93–120.CrossRefGoogle Scholar
  268. Peek, J. M. 1974. Initial response of moose to a forest fire in northeastern Minnesota. Am. Midl. Nat.91: 435–438.CrossRefGoogle Scholar
  269. Pethick, J. S. 1974. The distribution of salt pans on tidal salt marshes. J. Biogeogr.1: 57–61.CrossRefGoogle Scholar
  270. Phillips, J. 1974. Effects of fire in forest and savanna ecosystems of Sub-Sahara Africa. Pages 435–481in T. T. Kozlowski and C. E. Ahlgren (eds.). Fire and Ecosystems. Academic Press, New York. 542 pp.Google Scholar
  271. Philpot, C. W. 1977. Vegetative features as determinants of fire frequency and intensity. Pages 12–16in H. Mooney and C. E. Conrad (eds.). Proceedings of the symposium on the environmental consequences of fire and fuel management in Mediterranean ecosystems. U.S.D.A. For. Serv. Gen. Tech. Rept. WO-3. Washington, D.C.Google Scholar
  272. Pickett, S. T. A. 1976. Succession: an evolutionary interpretation. Am. Nat.110: 107–119.CrossRefGoogle Scholar
  273. Place, I. C. M. 1964. Structure of old growth forest stands in eastern Canada. Abstract 10th Int. Bot. Congr. 1964, pp. 273–274.Google Scholar
  274. Platt, W. J. 1975. The colonization and formation of equilibrium plant species associations on badger disturbances in a tall-grass prairie. Ecol. Monogr.45: 285–305.CrossRefGoogle Scholar
  275. — andI. M. Weis. 1977. Resource partitioning and competition within a guild of fugitive prairie plants. Am. Nat.111: 479–513.CrossRefGoogle Scholar
  276. Polunin, N. 1934. The vegetation of Akpatok Island, I. J. Ecol.22: 337–395.CrossRefGoogle Scholar
  277. —. 1935. The vegetation of Akpatok Island, II. J. Ecol.23: 161–209.CrossRefGoogle Scholar
  278. —. 1936. Plant succession in Norwegian Lapland. J. Ecol.24: 372–391.CrossRefGoogle Scholar
  279. Poore, M. E. D. 1968. Studies in Malaysian rain forest, I. The forest on triassic sediments in Jengka Forest Reserve. J. Ecol.56: 143–196.CrossRefGoogle Scholar
  280. Price, L. W. 1971. Vegetation, microtopography, and depth of active layer on different exposures in subarctic alpine tundra. Ecology52: 638–647.CrossRefGoogle Scholar
  281. Quarterman, E. andC. Keever. 1962. Southern mixed hardwood forest: Climax in the southeastern coastal plain, USA. Ecol. Monogr.32: 167–185.CrossRefGoogle Scholar
  282. Rabotnov, T. A. 1974. Differences between fluctuations and successions: examples in grassland phytocoenoses of the U.S.S.R. Pages 20–24in R. Knapp (ed.). Vegetation dynamics. Dr. W. Junk, The Hague.Google Scholar
  283. Raup, H. M. 1941a. Botanical problems in Boreal America. Bot. Rev.7: 147–248.Google Scholar
  284. —. 1941b. An old forest in Stonington, Connecticut. Rhodora43: 67–71.Google Scholar
  285. —. 1951. Vegetation and cryoplanation. Ohio J. Sci.51: 105–116.Google Scholar
  286. —. 1954. Some botanical problems of arctic and subarctic regions. Arctic7: 229–235.Google Scholar
  287. —. 1956.In report of meeting Int. Un. Conserv. Nature, Edinburgh, 1956. Nature178: 175–177.CrossRefGoogle Scholar
  288. —. 1957. Vegetational adjustment to the instability of site. Pages 36–48in Proc., 6th Tech. Meet. 1956, Int. Un. Conserv. Nature Nat. Resources, Edinburgh.Google Scholar
  289. —. 1964. Some problems in ecological theory and their relation to conservation. J. Ecol.52(suppl.): 19–28.CrossRefGoogle Scholar
  290. —. 1967. American forest biology. J. For.65: 800–803.Google Scholar
  291. —. 1975. Species versatility in shore habitats. J. Arnold Arbor. Harv. Univ.55: 126–165.Google Scholar
  292. Reiners, N. M. andW. A. Reiners. 1965. Natural harvesting of trees. William L. Hutcheson Mem. For. Bull.2: 9–17.Google Scholar
  293. Reiners, W. A. and G. E. Lang. 1979. Vegetational patterns and processes in the balsam fir zone, White Mountains, New Hampshire. Ecology (In press.)Google Scholar
  294. Rhoades, R. W. 196I. The distribution of White Spruce,Picea glauca, in New Hampshire. M.S. Thesis, Univ. New Hampshire, Durham. 52 pp.Google Scholar
  295. Richards, P. W. 1952. The tropical rain forest. Cambridge, England. 450 pp.Google Scholar
  296. —. 1955. The secondary succession in the tropical rain forest. Sci. Progr.43(169): 45–57.Google Scholar
  297. Richards, P. andG. B. Williamson. 1975. Treefalls and patterns of understory species in a wet lowland tropical forest. Ecology56: 1226–1229.CrossRefGoogle Scholar
  298. Ricklefs, R. E. 1977. Environmental heterogeneity and plant species diversity: a hypothesis. Am. Nat.111: 376–381.CrossRefGoogle Scholar
  299. Rogers, W. E. 1922. Ice storms and trees. Torreya22: 61–63.Google Scholar
  300. —. 1923. Resistance of trees to ice storm injury. Torreya23: 95–99.Google Scholar
  301. Rothermel, R. C. 1972. A mathematical model for predicting fire spread in midland fuels. USDA For. Serv. Res. Pap. INT-115. 40 pp.Google Scholar
  302. Rowe, J. S. 1961. Critique of some vegetational concepts as applied to forests of north-western Alberta. Can. J. Bot.39: 1007–1017.Google Scholar
  303. — andG. W. Scotter. 1973. Fire in the boreal forest. Quat. Res.3: 444–464.CrossRefGoogle Scholar
  304. Rundel, P. W. 1973. The relationship between basal fire scars and crown damage in giant sequoia. Ecology54: 210–213.CrossRefGoogle Scholar
  305. Runkle, J. R. 1979. Gap phase dynamics in climax mesic forests. Ph.D. Thesis, Cornell Univ. Ithaca, New York. 289 pp.Google Scholar
  306. Sauer, J. D. 1962. Effects of recent tropical cyclones on the coastal vegetation of Mauritius. J. Ecol.50: 275–290.CrossRefGoogle Scholar
  307. Schroeder, P. M., R. Dolan, andB. P. Hayden. 1976. Vegetation changes associated with barrier-dune construction on the Outer Banks of North Carolina. Environ. Manage.1: 105–114.CrossRefGoogle Scholar
  308. Schwintzer, C. R. andG. Williams. 1974. Vegetation changes in a small Michigan bog from 1917 to 1972. Am. Midl. Nat.92: 447–459.CrossRefGoogle Scholar
  309. Scotter, G. W. 1972. Fire as an ecological factor in boreal forest ecosystems of Canada. Pages 15–24in Fire and the Environment, Symp. Proc. USFS. USDA. Denver, Colorado.Google Scholar
  310. Selleck, G. W. 1960. The climax concept. Bot. Rev.26: 534–545.Google Scholar
  311. Shafi, M. I. andG. A. Yarranton. 1973. Diversity,floristic richness, and species evenness during a secondary (post-fire) succession. Ecology54: 897–902.CrossRefGoogle Scholar
  312. Shelford, V. E. andS. Olson. 1935. Sere climax and influent animals with special reference to the transcontinental coniferous forest of North America. Ecology16: 375–402.CrossRefGoogle Scholar
  313. Sherman, R. J. andW. W. Chilcote. 1972. Spatial and chronological patterns ofPurshia tridentata as influenced byPinus ponderosa. Ecology72: 294–298.CrossRefGoogle Scholar
  314. Siccama, T. G., G. Weir, andK. Wallace. 1976. Ice damage in a mixed hardwood forest in Connecticut in relation toVitis infestation. Bull. Torrey Bot. Club103: 180–183.CrossRefGoogle Scholar
  315. Sigafoos, R. S. 1951. Soil instability in tundra vegetation. Ohio J. Sci.51: 281–298.Google Scholar
  316. —. 1952. Frost action as a primary physical factor in tundra plant communities. Ecology33: 480–487.CrossRefGoogle Scholar
  317. Silberbauer-Gottsberger, I., W. Morawetz, andG. Gottsberger. 1977. Frost damage of Cerrado plants in Botucatu, Brazil, as related to the geographical distribution of species. Biotropica9: 253–261.CrossRefGoogle Scholar
  318. Skunk, I. V. 1939. Oxygen requirements for germination of seeds ofNyssa aquatica, tupelo gum. Science90: 565–566.CrossRefGoogle Scholar
  319. Slatkin, M. andR. Lange. 1976. Niche width in a fluctuating environment—density independent model. Am. Nat.110: 31–55.CrossRefGoogle Scholar
  320. Slaughter, C. W., R. J. Barney, and G. M. Hansen (eds.). 1971. Fire in the northern environment—a symposium. Pac. Northwest. For. Range Exp. Stn., For. Serv., USDA, Portland, Oregon. 275 pp.Google Scholar
  321. Smathers, G. A. and D. Mueller-Dombois. 1974. Invasion and recovery of vegetation after a volcanic eruption in Hawaii. National Park Service, Sci. Monogr. Series No. 5.Google Scholar
  322. Smith, D. H. 1946. Storm damage in New England forests. M.S. Thesis, Yale Univ., New Haven, Connecticut. 173 pp.Google Scholar
  323. Snow, D. W. 1965. A possible selective factor in the evolution of fruiting seasons in a tropical forest. Oikos15: 274–281.CrossRefGoogle Scholar
  324. Sobey, D. G. andP. Barkhouse. 1977. The structure and rate of growth of the rhizomes of some forest herbs and dwarf shrubs of the New Brunswick-Nova Scotia border region. Can. Field-Nat.91: 377–383.Google Scholar
  325. Sollers, S. C. 1974. Substrate conditions, community structure, and succession in a portion of the flood plain of Wissahickon Creek. Bartonia42: 24–42.Google Scholar
  326. Sprugel, D. G. 1976. Dynamic structure of wave-generatedAbies balsamea forests in the northeastern United States. J. Ecol.64: 889–912.CrossRefGoogle Scholar
  327. Spurr, S. H. 1956a. Natural restocking of forests following the 1938 hurricane in central New England. Ecology37: 443–451.CrossRefGoogle Scholar
  328. —. 1956b. Forest associations in the Harvard Forest. Ecol. Monogr.26: 245–262.CrossRefGoogle Scholar
  329. Starker, J. T. 1934. Fire resistance in the forest. J. For.32: 462–467.Google Scholar
  330. Stearns, F. W. 1949. Ninety years change in a northern hardwood forest in Wisconsin. Ecology30: 350–358.CrossRefGoogle Scholar
  331. Stelfox, J. G. andH. G. Vriend. 1977. Prairie fires and pronghorn use of cactus. Can. Field-Nat.91: 282–285.Google Scholar
  332. Stephens, E. P. 1955a. The historical-developmental method of determining forest trends. Ph.D. Thesis, Harvard Univ., Cambridge. 36 pp.Google Scholar
  333. —. 1955b. Research in the biological aspects of forest production. J. For.53: 183–186.Google Scholar
  334. —. 1956. The uprooting of trees: a forest process. Proc. Soil Sci. Soc. Am.20: 113–116.CrossRefGoogle Scholar
  335. Stiles, E. H. andL. E. Melchers. 1935. The drought of 1934 and its effect on trees in Kansas. Trans. Kans. Acad. Sci.38: 107–127.CrossRefGoogle Scholar
  336. Stone, E. C. andR. B. Vasey. 1968. Preservation of coast redwood on alluvial flats. Science159: 157–161.PubMedCrossRefGoogle Scholar
  337. Stoneburner, D. L. 1978. Evidence of hurricance influence on Barner Island slash pine forests in the Northern Gulf of Mexico. Am. Midl. Nat.99: 234–238.CrossRefGoogle Scholar
  338. Stout, B. B., J. M. Deschenes, andL. F. Ohmann. 1975. Multispecies model of a deciduous forest. Ecology56: 226–331.CrossRefGoogle Scholar
  339. Strong, D. R., Jr. 1977. Epiphyte loads, tree-falls, and perennial disruption: a mechanism for maintaining higher tree species richness in the tropics without animals. J. Biogeogr.4: 215–218.CrossRefGoogle Scholar
  340. Sutherland, J. P. 1974. Multiple stable points in natural communities. Am. Nat.108: 859–873.CrossRefGoogle Scholar
  341. Swaine, J. M. 1933. The relation of insect activities to forest development as exemplified in the forests of eastern North America. Sci. Agric.14: 8–31.Google Scholar
  342. Swanston, D. N. andF. J. Swanson. 1976. Timber-harvesting, mass erosion, and steep land form geomorphology in the Pacific Northwest. Pages 199–221in D. R. Coats (ed.). Geomorphology and Engineering, Dowden, Hutchinson, and Ross, Inc., Stroudsburg, Pennsylvania.Google Scholar
  343. Tansley, A. G. 1935. The use and abuse of vegetational concepts and terms. Ecology16: 284–308.CrossRefGoogle Scholar
  344. Taylor, B. W. 1963. An outline of the vegetation of Nicaragua. J. Ecol.51: 27–54.CrossRefGoogle Scholar
  345. Taylor, D. L. 1973. Some ecological implications of forest fire control in Yellowstone National Park, Wyoming. Ecology51: 1394–1396.CrossRefGoogle Scholar
  346. Thom, B. G. 1967. Mangrove ecology and deltaic geomorphology: Tabasco, Mexico. J. Ecol.55: 301–343.CrossRefGoogle Scholar
  347. Transeau, E. N. 1935. The prairie peninsula. Ecology16: 423–437.CrossRefGoogle Scholar
  348. Tredici, P. del. 1977. The buried seeds ofComptonia peregrina, the sweet fern. Bull. Torrey Bot. Club104: 270–275.CrossRefGoogle Scholar
  349. Trimble, G. R., Jr. and D. W. Seegrist. 1973. Epicormic branching on hardwood trees boardering forest openings. U.S.D.A. For. Serv. Res. Pap. NE-261. 6 pp.Google Scholar
  350. Turner, L. M. 1935. Catastrophes and pure stands of southern shortleaf pine. Ecology16: 213–215.CrossRefGoogle Scholar
  351. U.S.D.A. 1965. Silvics of forest trees of the United States. For. Serv., USDA Agric. Handb.271. 762 pp.Google Scholar
  352. Van der Valk, A. G. andC. B. Davis. 1978. The role of seed banks in the vegetation dynamics of prairie glacial marshes. Ecology59: 322–335.CrossRefGoogle Scholar
  353. Vankat, J. L., W. H. Blackwell, Jr., andW. E. Hopkins. 1975. The dynamics of Hueston Woods and a review of the question of the successional status of the southern beechmaple forest. Castanea40: 290–308.Google Scholar
  354. Van Steenis, G. G. G. J. 1956. Basic principles of rain forest sociology. Pages 159–163in Study of tropical vegetation. Proc. of the Kandy Symp., UNESCO, Paris.Google Scholar
  355. Veblen, T. T., D. H. Ashton, F. M. Schlegel, andA. T. Veblen. 1977. Plant succession in a timberline depressed by vulcanism in south-central Chile. J. Biogeogr.4: 275–294.CrossRefGoogle Scholar
  356. Veno, P. A. 1976. Successional relationships of five Florida plant communities. Ecology57: 498–508.CrossRefGoogle Scholar
  357. Viereck, L. A. 1966. Plant succession and soil development on gravel outwash of the Muldrow Glacier, Alaska. Ecol. Monogr.36: 181–199.CrossRefGoogle Scholar
  358. —. 1973. Wildfire in the taiga of Alaska. Quat. Res.3: 465–495.CrossRefGoogle Scholar
  359. Visher, S. S. 1949. American dry seasons: their intensity and frequency. Ecology30: 365–370.CrossRefGoogle Scholar
  360. Vogl, R. J. 1974. Effects of fire on grasslands. Pages 139–194in T. T. Kozlowski and C. E. Ahlgren (eds.). Fire and ecosystems. Academic Press, New York. 542 pp.Google Scholar
  361. Wace, N. M. 1961. The vegetation of Gough Island. Ecol. Monogr.31: 337–367.CrossRefGoogle Scholar
  362. Wadsworth, F. H. andG. H. Englerth. 1959. Effects of the 1956 hurricane on forests in Puerto Rico. Caribb. For.20: 38–51.Google Scholar
  363. Wagner, R. H. 1964. The ecology ofUniola paniculata L. in the dune-strand habitat of North Carolina. Ecol. Monogr.34: 79–96.CrossRefGoogle Scholar
  364. Walker, B. H. 1972. Vegetation-site relationships in the Harvard Forest. Vegetatio29: 169–178.CrossRefGoogle Scholar
  365. Ware, G. H. andW. T. Penfound. 1949. The vegetation of the lower levels of the flood plain of the South Canadian River in central Oklahoma. Ecology30: 478–484.CrossRefGoogle Scholar
  366. Watt, A. S. 1923. On the ecology of British beechwoods with special reference to their regeneration. J. Ecol.11: 1–48.CrossRefGoogle Scholar
  367. —. 1947a. Pattern and process in the plant community. J. Ecol.35: 1–22.CrossRefGoogle Scholar
  368. —. 1947b. Contributions to the ecology of bracken. IV. The structure of the community. New Phytol.46: 97–121.CrossRefGoogle Scholar
  369. —. 1955. Bracken versus heather: a study in plant sociology. J. Ecol.43: 490–506.CrossRefGoogle Scholar
  370. —. 1974. Senescence and rejuvenation in ungrazed chalk grassland (grassland B) in Breckland: The significance of litter and of moles. J. Appl. Ecol.11: 1157–1172.CrossRefGoogle Scholar
  371. —,R. M. S. Perrin, andR. G. West. 1966. Patterned ground in Breckland: structure and composition. J. Ecol.64: 239–258.Google Scholar
  372. Weaver, H. 1974. Effects of fire on temperate forests: Western United States. Pages 279–319in T. T. Kozlowski and C. E. Ahlgren (eds.). Fire and ecosystems. Academic Press, New York. 542 pp.Google Scholar
  373. Weaver, J. E. 1950. Stabilization in midwestern grassland. Ecol. Monogr.20: 251–270.CrossRefGoogle Scholar
  374. —. 1958. Summary and interpretation of underground development in natural grassland communities. Ecol. Monogr.28: 55–78.CrossRefGoogle Scholar
  375. —. 1960. Flood plain vegetation of the central Missouri Valley and contacts of woodland with prairie. Ecol. Monogr.30: 37–64.CrossRefGoogle Scholar
  376. —. 1968. Prairie plants and their environment: a 50-year study in the Midwest. Univ. Nebr. Press, Lincoln. 276 pp.Google Scholar
  377. — andF. W. Albertson. 1943. Resurvey of grasses, forbs, and underground plant parts at the end of the great drought. Ecol. Monogr.13: 63–117.CrossRefGoogle Scholar
  378. ——. 1944. Nature and degree of recovery of grassland from the great drought of 1933 to 1940. Ecol. Monogr.14: 393–479.CrossRefGoogle Scholar
  379. — andW. E. Bruner. 1945. A seven-year quantitative study of succession in grassland. Ecol. Monogr.15: 297–319.CrossRefGoogle Scholar
  380. — andF. E. Clements. 1929. Plant ecology, 2nd ed., 1938. McGraw-Hill, New York. 520 pp.Google Scholar
  381. —,L. A. Stoddart, andW. Noll. 1935. Response of the prairie to the Great Drought of 1934. Ecology16: 612–629.CrossRefGoogle Scholar
  382. Webb, L. J. 1958. Cyclones as an ecological factor in tropical lowland rain forest, north Queensland. Aust. J. Bot.6: 220–228.CrossRefGoogle Scholar
  383. —. 1968. Environmental relationships of the structural types of Australian rain forest vegetation. Ecology49: 296–311.CrossRefGoogle Scholar
  384. —,L. G. Tracey, andW. T. Williams. 1972. Regeneration and pattern in the subtropical rain forest. J. Ecol.60: 675–695.CrossRefGoogle Scholar
  385. Wein, R. W. andL. C. Bliss. 1973. Changes in arcticEriophorum tussock communities following fire. Ecology54: 845–852.CrossRefGoogle Scholar
  386. Wells, B. W. 1942. Ecological problems of the southeastern United States coastal plain. Bot. Rev.8: 533–561.CrossRefGoogle Scholar
  387. Wells, H. W. 1961. The fauna of oyster beds, with special reference to the salinity factor. Ecol. Monogr.31: 239–266.CrossRefGoogle Scholar
  388. Wells, P. V. 1965. Scarp woodlands, transported grassland soils, and concept of grassland climate in the Great Plains region. Science148: 246–249.PubMedCrossRefGoogle Scholar
  389. Wendel, G. W. 1972. Longevity of black cherry seed in the forest floor. U.S.D.A. For. Serv. Res. Note NE-149. 4 pp.Google Scholar
  390. West, O. 1971. Fire, man, and wildlife as interacting factors limiting the development of climax vegetation in Rhodesia. Proc. Annu. Tall Timbers Fire Ecol. Conf.11: 121–145.Google Scholar
  391. Westman, W. E. 1968. Invasion of fir forest by sugar maple in Itasca Park, Minnesota. Bull. Torrey Bot. Club95: 172–186.CrossRefGoogle Scholar
  392. White, P. S. 1976. The upland forest vegetation of the Second College Grant, New Hampshire. Ph.D. Thesis, Dartmouth College, Hanover, New Hampshire. 295 pp.Google Scholar
  393. Whitmore, T. C. 1974. Change with time and the role of cyclones in tropical rain forest of Kolombangara, Solomon Islands, Univ. Oxford Commonwealth Forestry Institute, Institute Paper No. 46.Google Scholar
  394. —. 1975. Tropical rain forests of the Far East. Clarendon Press, Oxford. 282 pp.Google Scholar
  395. Whitney, G. G. 1976. The bifurcation ratio as an indicator of adaptive strategy in woody plant species. Bull. Torrey Bot. Club103: 67–72.CrossRefGoogle Scholar
  396. Whittaker, R. H. 1953. A consideraton of climax theory: the climax as a population and pattern. Ecol. Monogr.23: 41–78.CrossRefGoogle Scholar
  397. —. 1972. Evolution and measurement of species diversity. Taxon21: 213–251.CrossRefGoogle Scholar
  398. —. 1974. Climax concepts and recognition. Pages 138–154in R. Knapp (ed.). Vegetation dynamics. Dr. W. Junk, The Hague.Google Scholar
  399. —. 1975. Communities and ecosystems, 2nd ed., Macmillan. New York. 385 pp.Google Scholar
  400. —. 1977. Evolution of species diversity in land communities. Evol. Biol.10: 1–67.Google Scholar
  401. — andD. Goodman. 1979. Classifying species according to their demographic strategy. I. Population fluctuations and environmental heterogeneity. Am. Nat.113: 185–200.CrossRefGoogle Scholar
  402. Wiens, J. A. 1976. Population responses to patchy environments. Ann. Rev. Ecol. Syst.7: 81–120.CrossRefGoogle Scholar
  403. Williamson, G. G. 1975. Pattern and seral composition in an old-growth beech-maple forest. Ecology56: 727–731.CrossRefGoogle Scholar
  404. Wilson, J. W. 1952. Vegetation patterns associated with soil movement on Jan Mayen Island. J. Ecol.40: 249–264.CrossRefGoogle Scholar
  405. Wistendahl, W. A. 1958. The Hood plain of the Raritan River, New Jersey. Ecol. Monogr.28: 129–153.CrossRefGoogle Scholar
  406. Woodin, S. A. 1978. Refuges, disturbance, and community structure: a marine soft-bottom example. Ecology59: 274–284.CrossRefGoogle Scholar
  407. Wright, H. E., Jr. 1974. Landscape development, forest fires, and wilderness management. Science186: 487–495.PubMedCrossRefGoogle Scholar
  408. — andM. L. Heinselman. 1973. The ecological role of fire in natural conifer forests of western and northern North America—Introduction. Quat. Res.3: 319–328.CrossRefGoogle Scholar
  409. Yarranton, M. andG. A. Yarranton. 1975. Demography of a jack pine stand. Can. J. Bot.53: 310–314.CrossRefGoogle Scholar
  410. Zach, L. W. 1950. A northern climax, forest or muskey? Ecology31: 304–306.CrossRefGoogle Scholar
  411. Zackrisson, O. 1977. Influence of forest fires on the north Swedish boreal forest. Oikos29: 22–32.CrossRefGoogle Scholar
  412. Zavitkovski, J. andM. Newton. 1968. Ecological improtance of snowbrush (Ceanothus velutinus) in the Oregon Cascades. Ecology49: 1134–1145.CrossRefGoogle Scholar
  413. Zedler, P. H. andT. A. Ebert. 1977. Shrub seedling establishment and survival following an unusual September rain in the Colorado desert. Abstract in Bull. Ecol. Soc. Am.58(2): 47.Google Scholar
  414. — andF. G. Goff. 1973. Size-association analysis of forest successional trends in Wisconsin. Ecol. Monogr.43: 79–94.CrossRefGoogle Scholar
  415. Zobel, D. B. 1969. Factors affecting the distribution ofPinus pungens, an Appalachian endemic. Ecol. Monogr.39: 303–333.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1979

Authors and Affiliations

  • Peter S. White
    • 1
  1. 1.Department of the InteriorNational Park Service, Southeast Region Uplands Field Research LaboratoryGatlinburg

Personalised recommendations