The Botanical Review

, Volume 43, Issue 1, pp 3–104 | Cite as

Early cretaceous fossil evidence for angiosperm evolution

  • Leo J. Hickey
  • James A. Doyle
Interpreting Botanical Progress

Abstract

Morphological, stratigraphic, and sedimentological analyses of Early Cretaceous pollen and leaf sequences, especially from the Potomac Group of the eastern United States, support the concept of a Cretaceous adaptive radiation of the angiosperms and suggest pathways of their initial ecological and systematic diversification. The oldest acceptable records of angiosperms are rare monosulcate pollen grains with columellar exine structure from probable Barremian strata of England, equatorial Africa, and the Potomac Group, and small, simple, pinnately veined leaves with several orders of reticulate venation from the Neocomian of Siberia and the basal Potomac Group. The relatively low diversity and generalized character of these fossils and the subsequent coherent pattern of morphological diversification are consistent with a monophyletic origin of the angiosperms not long before the Barremian. PatuxentArundel floras (Barremian-early Albian?) of the Potomac Group include some pollen and leaves with monocotyledonous features as well as dicotyledonous forms. Patuxent angiosperm pollen is strictly monosulcate and has exine sculpture indicative of insect pollination. Rare Patuxent-Arundel angiosperm leaves are generally small, have disorganized venation, and are largely restricted to sandy stream margin lithofacies; the largest are comparable to and may include ancestors of woody Magnoliidae adapted to understory conditions. Patapsco floras (middle to late Albian?) contain rapidly diversifying tricolpate pollen and several new complexes of locally abundant angiosperm leaves. Ovate-cordate and peltate leaves in clayey pond lithofacies may includeancestors of aquatic Nymphaeales and Nelumbonales. Pinnatifid and later pinnately compound leaves with increasingly regular venation which are abundant just above rapid changes in sedimentation are interpreted as early successional “weed trees” transitional to but more primitive than the modern subclass Rosidae. Apparently related palmately lobed, palinactinodromous leaves which develop rigidly percurrent tertiary venation and become abundant in uppermost Potomac stream margin deposits (latest Albian-early Cenomanian?) are interpreted as riparian trees ancestral to the order Hamamelidales. Comparisons of dated pollen floras of other regions indicate that one major subgroup of angiosperms, tricolpate-producing dicots (i.e., excluding Magnoliidae of Takhtajan) originated in the Aptian of Africa-South America at a time of increasing aridity and migrated poleward into Laurasia and Australasia. However, the earlier (Barremian) monosulcate phase of the angiosperm record is represented equally in Africa-South America and Laurasia before marked climatic differentiation between the two areas. These trends are considered consistent with the hypothesis that the angiosperms originated as small-leafed shrubs of seasonally arid environments, and underwent secondary expansion of leaf area and radiated into consecutively later successional stages and aquatic habitats after entering mesic regions as riparian “weeds,” as opposed to the concept that they arose as trees of mesic forest environments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaryre Cited

  1. Allen, J. R. L. 1964. Studies in fluviatile sedimentation: Six cyclothems from the lower Old Red Sandstone, Anglo-Welsh Basin. Sedimentology3: 163–198.CrossRefGoogle Scholar
  2. —. 1965. A review of the origin and characteristics of Recent alluvial sediments. Sedimentology5: 89–91.CrossRefGoogle Scholar
  3. —. 1970. Studies in fluviatile sedimentation: A comparison of fining-upward cyclothems, with special reference to coarse-member composition and interpretation. J. Sediment. Petrol.40: 298–323.Google Scholar
  4. Andrews, H. N. 1963. Early seed plants. Science142: 925–931.PubMedCrossRefGoogle Scholar
  5. Archangelsky, S. andJ. C. Gamerro. 1967. Spore and pollen types of the Lower Cretaceous in Patagonia (Argentina). Rev. Palaeobot. Palynol.1: 211–217.CrossRefGoogle Scholar
  6. Arkhangel’skiy, D. B. 1966. Zvezdchataya skul’ptura ekziny pyl’tsevykh zeren,in M. I. Neyshtadt (editor), Znachenie palinologicheskogo analiza dlya stratigrafii i paleofloristiki, pp. 22–26. Nauka, Moscow.Google Scholar
  7. Axelrod, D. I. 1952. A theory of angiosperm evolution. Evolution6: 29–60.CrossRefGoogle Scholar
  8. —. 1959. Poleward migration of early angiosperm flora. Science130: 203–207.PubMedCrossRefGoogle Scholar
  9. —. 1960. The evolution of flowering plants,in S. Tax (editor), The evolution of life, pp. 227–305. Univ. Chicago Press, Chicago.Google Scholar
  10. —. 1970. Mesozoic paleogeography and early angiosperm history. Bot. Rev.36: 277–319.CrossRefGoogle Scholar
  11. —. 1972. Edaphic aridity as a factor in angiosperm evolution. Amer. Naturalist106: 311–320.CrossRefGoogle Scholar
  12. Bailey, I. W. 1949. Origin of the angiosperms: Need for a broadened outlook. J. Arnold Arbor.30: 64–70.Google Scholar
  13. Banks, H. P. 1968. The early history of land plants,in E. T. Drake (editor), Evolution and environment, pp. 73–107. Yale Univ. Press, New Haven.Google Scholar
  14. -. 1970. Evolution and plants of the past. Wadsworth, Belmont, California.Google Scholar
  15. Barghoorn, E. S. 1971. The oldest fossils. Sci. Amer.224(5): 30–42.PubMedGoogle Scholar
  16. Beck, C. B. 1960. The identity ofArchaeopteris andCallixylon. Brittonia12: 351–368.CrossRefGoogle Scholar
  17. —. 1970. The appearance of gymnospermous structure. Biol. Rev. Cambridge Philos. Soc.45: 379–400.CrossRefGoogle Scholar
  18. —. 1976. Current status of the Progymnospermopsida. Rev. Palaeobot. Palynol.21: 5–23.CrossRefGoogle Scholar
  19. Beerbower, J. R. 1965. Cyclothems and cyclic depositional mechanisms in aliuvial plain sedimentation. Kansas State Geol. Surv. Bull.169: 31–42.Google Scholar
  20. Bell, W. A. 1956. Lower Cretaceous floras of Western Canada. Geol. Surv. Canada Mem.285.Google Scholar
  21. Berry, E. W. 1911a. Systematic paleontology, Lower Cretaceous: Fossil plants,in W. B. Clark (editor), Lower Cretaceous, pp. 214–508. Maryland Geol. Surv., Baltimore.Google Scholar
  22. -. 1911b. The flora of the Raritan Formation. New Jersey Geol. Surv. Bull. 3.Google Scholar
  23. —. 1916. Systematic paleontology, Upper Cretaceous: Fossil plants,in W. B. Clark (editor), Upper Cretaceous, pp. 757–901. Maryland Geol. Surv., Baltimore.Google Scholar
  24. —. 1922. The flora of the Cheyenne Sandstone of Kansas. U. S. Geol. Surv. Profess. Pap.127-I: 199–225.Google Scholar
  25. Bews, J. W. 1927. Studies in the ecological evolution of angiosperms. New Phytol.26: 1–21, 65–84, 129–148, 209–248, 273–294.CrossRefGoogle Scholar
  26. Bierhorst, D. W. 1971. Morphology of vascular plants. Macmillan, New York.Google Scholar
  27. Blatt, H., R. Middleton andR. Murray. 1972. Origin of sedimentary rocks. Prentice-Hall, Englwood Cliffs, New Jersey.Google Scholar
  28. Brenner, G. J. 1963. The spores and pollen of the Potomac Group of Maryland. Maryland Dept. Geol., Mines and Water Resources Bull.27.Google Scholar
  29. —. 1967. Early angiosperm pollen differentiation in the Albian to Cenomanian deposits of Delaware (U.S.A.). Rev. Palaeobot. Palynol.1: 219–227.CrossRefGoogle Scholar
  30. —. 1968. Middle Cretaceous spores and pollen from northeastern Peru. Pollen & Spores10: 341–383.Google Scholar
  31. —. 1976. Middle Cretaceous floral provinces and early migrations of angiosperms,in C. B. Beck (editor), Origin and early evolution of angiosperms, pp. 23–47. Columbia Univ. Press, New York.Google Scholar
  32. Brideaux, W. W. andD. J. McIntyre. 1975. Miospores and microplankton from Aptian-Albian rocks along Horton River, District of Mackenzie. Geol. Surv. Canada Bull.252: 1–85.Google Scholar
  33. Brown, R. W. 1956. Palmlike plants from the Dolores Formation (Triassic) in southwestern Colorado. U. S. Geol. Surv. Profess. Pap.274-H: 205–209.Google Scholar
  34. Burger, D. 1970. Early Cretaceous angiospermous pollen grains from Queensland. Bur. Mineral Resources, Geol. and Geophys., Canberra, Bull.116: 1–10.Google Scholar
  35. —. 1973. Palynological observations in the Carpentaria Basin, Queensland. Bur. Mineral Resources, Geol. and Geophys., Canberra, Bull.140: 27–44.Google Scholar
  36. Carlquist, S. 1975. Ecological strategies of xylem evolution. Univ. California Press, Berkeley and Los Angeles.Google Scholar
  37. Casey, R. 1964. The Cretaceous Period,in The Phanerozoic time-scale. Quart. J. Geol. Soc. London120s: 193–202.Google Scholar
  38. Chaloner, W. G. 1967. Spores and land-plant evolution. Rev. Palaeobot. Palynol.1: 83–93.CrossRefGoogle Scholar
  39. —. 1970. The rise of the first land plants. Biol. Rev. Cambridge Philos. Soc.45: 353–377.CrossRefGoogle Scholar
  40. Chesters, K. I. M., F. R. Gnauck and N. F. Hughes. 1967. Angiospermae,in W. B. Harland and others (editors), The fossil record (Geol. Soc. London Special Publ.), pp. 269–288.Google Scholar
  41. Clark, W. B. 1897. Outline of present knowledge of the physical features of Maryland,in Maryland Geological Survey, vol. 1, pp. 139– 228. Baltimore.Google Scholar
  42. Clark, W. B. andA. B. Bibbins. 1897. The stratigraphy of the Potomac Group in Maryland. J. Geol.5: 479–506.CrossRefGoogle Scholar
  43. Cloud, P. E. 1948. Some problems and patterns of evolution exemplified by fossil invertebrates. Evolution2: 322–350.PubMedCrossRefGoogle Scholar
  44. — 1976. Beginnings of biospheric evolution and their biochemical consequences. Paleobiology2: 351–387.Google Scholar
  45. Cotter, E. 1971. Paleoflow characteristics of a Late Cretaceous river in Utah from analysis of sedimentary structures in the Ferron Sandstone. J. Sediment. Petrol.41: 129–138.Google Scholar
  46. Couper, R. A. 1953. Upper Mesozoic and Cainozoic spores and pollen grains from New Zealand. New Zealand Geol. Surv. Paleontol. Bull22: 1–77.Google Scholar
  47. —. 1958. British Mesozoic microspores and pollen grains. Palaeontographica, Abt. B,103: 75–179.Google Scholar
  48. —. 1960. New Zealand Mesozoic and Cainozoic plant microfossils. New Zealand Geol. Surv. Paleont. Bull.32: 5–82.Google Scholar
  49. Cracraft, J. 1974. Continental drift and vertebrate distribution. Annual Rev. Ecol. Syst.5: 215–261.CrossRefGoogle Scholar
  50. Cronquist, A. 1968. The evolution and classification of flowering plants. Houghton Mifflin, Boston.Google Scholar
  51. Davis, P. N. 1963. Palynology and stratigraphy of the Lower Cretaceous rocks of northern Wyoming. Ph.D. thesis, Univ. Oklahoma, Norman.Google Scholar
  52. Delevoryas, T. andC. P. Person. 1975.Mexiglossa varia gen. et sp. nov., a new genus of glossopteroid leaves from the Jurassic of Oaxaca, Mexico. Palaeontographica, Abt. B,154: 114–120.Google Scholar
  53. Dettmann, M. E. 1973. Angiospermous pollen from Albian to Turonian sediments of eastern Australia. Geol. Soc. Australia Special Publ.4: 3–34.Google Scholar
  54. Dilcher, D. L. 1974. Approaches to the identification of angiosperm leaf remains. Bot. Rev.4: 1–157.CrossRefGoogle Scholar
  55. Dilcher, D. L., W. L. Crepet, C. D. Beeker andH. C. Reynolds. 1976. Reproductive and vegetative morphology of a Cretaceous angiosperm. Science191: 854–856.PubMedCrossRefGoogle Scholar
  56. Doyle, J. A. 1969. Cretaceous angiosperm pollen of the Atlantic Coastal Plain and its evolutionary significance. J. Arnold Arbor.50: 1–35.Google Scholar
  57. —. 1973. Fossil evidence on early evolution of the monocotyledons. Quart. Rev. Biol.48: 399–413.CrossRefGoogle Scholar
  58. -. (in press). Patterns of evolution in early angiosperms,in A. Hallam (editor), Patterns of evolution. Elsevier, Amsterdam.Google Scholar
  59. Doyle, J. A. andL. J. Hickey. 1972. Coordinated evolution in Potomac Group angiosperm pollen and leaves. Amer. J. Bot.59: 660(abstract).Google Scholar
  60. — 1976. Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution,in C. B. Beck (editor), Origin and early evolution of angiosperms, pp. 139–206. Columbia Univ. Press, New York.Google Scholar
  61. Doyle, J. A. and E. I. Robbins. (in press). Angiosperm pollen zonation of the continental Cretaceous of the Atlantic Coastal Plain and its application to deep wells in the Salisbury Embayment. Palynology1.Google Scholar
  62. Doyle, J. A., P. Biens, A. Doerenkamp and S. Jardiné, (in press). Angiosperm pollen from the pre-Albian Lower Cretaceous of equatorial Africa. Proc. 7th West African Micropaleontol. Colloquium (Ile Ife, 1976).Google Scholar
  63. Doyle, J. A., S. Jardiné and A. Doerenkamp. 1976. Evolution of angiosperm pollen in the Lower Cretaceous of equatorial Africa. Bot. Soc. Amer., Abstr. of Papers, p. 25 (abstract).Google Scholar
  64. Doyle, J. A., M. Van Campo andB. Lugardon. 1975. Observations on exine structure ofEucommiidites and Lower Cretaceous angiosperm pollen. Pollen & Spores17: 429–486.Google Scholar
  65. Erdtman, G. 1948. Did dicotyledonous plants exist in early Jurassic time? Geol. Foren. Stockholm Förh.70: 265–271.Google Scholar
  66. —. 1952. Pollen morphology and plant taxonomy. Part I. Angiosperms. Chronica Botanica, Waltham, Massachusetts.Google Scholar
  67. Esau, K. 1953. Plant anatomy. Wiley, New York.Google Scholar
  68. Faegri, K. andL. van der Pijl. 1966. The principles of pollination ecology. Pergamon, Oxford.Google Scholar
  69. Florin, R. 1951. Evolution in cordaites and conifers. Acta Horti Berg.15: 285–388.Google Scholar
  70. Fontaine, W. M. 1889. The Potomac or younger Mesozoic flora. U. S. Geol. Surv. Monogr.15.Google Scholar
  71. Givnish, T. J. 1976. Leaf form in relation to environment: A theoretical study. Ph.D. Thesis, Princeton Univ.Google Scholar
  72. -. (in press). The adaptive significance of compound leaves, with particular reference to tropical trees,in P. B. Tomlinson and M. H. Zimmermann (editors), Tropical trees as living systems. Cambridge Univ. Press.Google Scholar
  73. Givnish, T. J. andG. J. Vermeij. 1976. Sizes and shapes of liane leaves. Amer. Naturalist110: 743–778.CrossRefGoogle Scholar
  74. Glaser, J. D. 1969. Petrology and origin of Potomac and Magothy (Cretaceous) sediments, Middle Atlantic Coastal Plain. Maryland Geol. Surv. Rep. Invest.11.Google Scholar
  75. Glen, W. 1975. Continental drift and plate tectonics. Merrill, Columbus, Ohio.Google Scholar
  76. Góczán, F., J. J. Groot, W. Krutzsch andB. Pacltová. 1967. Die Gattungen des “Stemma Normapolles Pflug 1953b” (Angiospermae). Paläontol. Abh., Abt. B,2: 429–539.Google Scholar
  77. Groot, J. J. andC. R. Groot. 1962. Plant microfossils from Aptian, Albian and Cenomanian deposits of Portugal. Comun. Serv. Geol. Portugal46: 133–176.Google Scholar
  78. Groot, J. J. andJ. S. Penny. 1960. Plant microfossils and age of nonmarine Cretaceous sediments of Maryland and Delaware. Micropaleontology6: 225–236.CrossRefGoogle Scholar
  79. Groot, J. J., J. S. Penny andC. R. Groot. 1961. Plant microfossils and age of the Raritan, Tuscaloosa, and Magothy Formations of the eastern United States. Palaeontographica, Abt. B,108: 121–140.Google Scholar
  80. Grow, J. A., J. S. Schlee, R. E. Mattick andJ. C. Behrendt. 1976. Recent marine geophysical studies along the Atlantic continental margin. Geol. Soc. Amer. Abstr. with Programs8: 186 (abstract).Google Scholar
  81. Hansen, H. J. 1969. Depositional environments of subsurface Potomac Group in southern Maryland. Bull. Amer. Assoc. Petrol. Geol.53: 1923–1937.Google Scholar
  82. Hara, N. 1964. Ontogeny of the reticulate venation in the pinna ofOnoclea sensibilis. Bot. Mag. (Tokyo)77: 381–387.Google Scholar
  83. Harris, T. M. 1932. The fossil flora of Scoresby Sound, East Greenland. 2. Description of seed plantsincertae sedis together with a discussion of certain cycadophyte cuticles. Meddel. Grønland85: 1–112.Google Scholar
  84. Hedlund, R. W. andG. Norris. 1968. Spores and pollen grains from Fredericksburgian (Albian) strata, Marshall County, Oklahoma. Pollen & Spores10: 129–159.Google Scholar
  85. Helal, A. H. 1966. Jurassic plant microfossils from the subsurface of the Kharga Oasis, Western Desert, Egypt. Palaeontographica, Abt. B,117: 83–98.Google Scholar
  86. Herngreen, G. F. W. 1973. Palynology of Albian-Cenomanian strata of borehole 1-QS-1-MA, State of Maranhao, Brazil. Pollen & Spores15: 515–555.Google Scholar
  87. —. 1974. Middle Cretaceous palynomorphs from northeastern Brazil. Sci. Géol., Bull., Strasbourg,27: 101–116.Google Scholar
  88. Heslop-Harrison, J. 1971. Sporopollenin in the biological context,in J. Brooks, P. R. Grant, M. Muir, P. van Gijzel and G. Shaw (editors), Sporopollenin, pp. 1–30. Academic Press, London.Google Scholar
  89. —. 1976. The adaptive significance of the exine,in I. K. Ferguson and J. Muller (editors), The evolutionary significance of the exine (Linn. Soc. London Symp. Series No. 1), pp. 27–37. Academic Press, London.Google Scholar
  90. Hickey, L. J. 1971. Evolutionary significance of leaf architectural features in the woody dicots. Amer. J. Bot.58: 469 (abstract).Google Scholar
  91. —. 1973. Classification of the architecture of dicotyledonous leaves. Amer. J. Bot.60: 17–33.CrossRefGoogle Scholar
  92. Hickey, L. J. andJ. A. Wolfe. 1975. The bases of angiosperm phylogeny: Vegetative morphology. Ann. Missouri Bot. Gard.62: 538–589.CrossRefGoogle Scholar
  93. Hideux, M. J. andI. K. Ferguson. 1976. The stereostructure of the exine and its evolutionary significance in Saxifragaceaesensu lato, in I. K. Ferguson and J. Muller (editors), The evolutionary significance of the exine (Linn. Soc. London Symp. Series No. 1), pp. 327–378. Academic Press, London.Google Scholar
  94. Hollick, A. 1906. The Cretaceous flora of southern New York and New England. U. S. Geol. Surv. Monogr.50.Google Scholar
  95. Horn, H. S. 1971. The adaptive geometry of trees. Princeton Univ. Press, Princeton, New Jersey.Google Scholar
  96. —. 1975. Forest succession. Sci. Amer.232(5): 90–98.CrossRefGoogle Scholar
  97. Hughes, N. F. 1961a. Fossil evidence and angiosperm ancestry. Sci. Progr.49: 84–102.Google Scholar
  98. —. 1961b. Further interpretation ofEucommiidites Erdtman, 1948. Palaeontology4: 292–299.Google Scholar
  99. -. 1976. Palaeobiology of angiosperm origins. Cambridge Univ. Press.Google Scholar
  100. —. 1977. Palaeo-succession of earliest angiosperm evolution. Bot. Rev.43: 105–127.Google Scholar
  101. Jardiné, S. andL. Magloire. 1965. Palynologie et stratigraphic du Crétacé des bassins du Sénégal et de Côte d’Ivoire. Mém. Bur. Rech. Géol. Minières32: 187–245.Google Scholar
  102. Jardiné, S., A. Doerenkamp andP. Biens. 1974a.Dicheiropollis etruscus, un pollen caractéristique du Crétacé inférieur afro-sudaméricain. Conséquences pour l’évaluation des unités climatiques et implications dans la dérive des continents. Sci. Géol., Bull., Strasbourg,27: 87–100.Google Scholar
  103. Jardiné, S., G. Kieser andY. Reyre. 1974b. L’individualisation progressive du continent africain vue à travers les données palynologiques de l’ère secondaire. Sci. Géol., Bull., Strasbourg,27: 69–85.Google Scholar
  104. Jarzen, D. M. andG. Norris. 1975. Evolutionary significance and botanical relationships of Cretaceous angiosperm pollen in the western Canadian interior. Geosci. & Man11: 47–60.Google Scholar
  105. Kaplan, D. R. 1973. The problem of leaf morphology and evolution in the monocotyledons. Quart. Rev. Biol.48: 437–457.CrossRefGoogle Scholar
  106. Kemp, E. M. 1968. Probable angiosperm pollen from British Barremian to Albian strata. Palaeontology11: 421–434.Google Scholar
  107. —. 1970. Aptian and Albian miospores from southern England. Palaeontographica, Abt. B,131: 73–143.Google Scholar
  108. Krassilov, V. A. 1967. Rannemelovaya flora Yuzhnogo Primorya i yeye znacheniye dlya stratigrafii. Nauka, Moscow.Google Scholar
  109. —. 1973. Mesozoic plants and the problem of angiosperm ancestry. Lethaia6: 163–178.CrossRefGoogle Scholar
  110. —. 1975. Dirhopalostachyaceae — a new family of proangiosperms and its bearing on the problem of angiosperm ancestry. Palaeontographiea, Abt. B,153: 100–110.Google Scholar
  111. Krutzsch, W. 1970. Atlas der mittel- und jungtertiären dispersen Sporen- und Pollensowie der Mikroplanktonformen des nördlichen Mitteleuropas. Lieferung VII. Monoporate, monocolpate, longicolpate, dicolpate und ephedroide (polyplicate) Pollenformen. Gustav Fischer Verlag, Jena.Google Scholar
  112. Kuyl, O. S., J. Muller andH. T. Waterbolk. 1955. The application of palynology to oil geology, with special reference to western Venezuela. Geol. & Mijnb., n.s.,17: 49–76.Google Scholar
  113. Laming, D. J. C. 1966. Imbrication, paleocurrents, and other sedimentary features in the lower New Red Sandstone, Devonshire, England. J. Sediment. Petrol.36: 940–959.Google Scholar
  114. Laing, J. F. 1975. Mid-Cretaceous angiosperm pollen from southern England and northern France. Palaeontology18: 775–808.Google Scholar
  115. —. 1976. The stratigraphic setting of early angiosperm pollen,in I. K. Ferguson and J. Muller (editors), The evolutionary significance of the exine (Linn. Soc. London Symp. Series No. 1), pp. 15–26. Academic Press, London.Google Scholar
  116. Lesquereux, L. 1892. The flora of the Dakota group. U. S. Geol. Surv. Monogr. 17.Google Scholar
  117. Luyendyk, B. P., D. Forsyth, andJ. D. Phillips. 1972. Experimental approach to the paleocirculation of the oceanic surface waters. Bull. Geol. Soc. Amer.83: 2649–2664.CrossRefGoogle Scholar
  118. Mamay, S. H. 1976. Paleozoic origin of the cycads. U. S. Geol. Surv. Profess. Pap.934.Google Scholar
  119. Margalef, R. 1968. Perspectives in ecological theory. Univ. Chicago Press.Google Scholar
  120. McElhinny, M. W. 1973. Palaeomagnetism and plate tectonics. Cambridge Univ. Press.Google Scholar
  121. McGee, W. J. 1888. Three formations of the Middle Atlantic Slope. Amer. J. Sci., Ser. 3,35: 120–143.Google Scholar
  122. Meeuse, A. D. J. 1966. Fundamentals of phytomorphology. Ronald Press, New York.Google Scholar
  123. —. 1970. The descent of the flowering plants in the light of new evidence from phytochemistry and from other sources. Acta Bot. Neerl.19: 61–72, 133–140.Google Scholar
  124. —. 1975. Floral evolution in the Hamamelididae. Acta Bot. Neerl.24: 155–179.Google Scholar
  125. Melville, R. 1962. A new theory of the angiosperm flower. I. The gynoecium. Kew Bull.16: 1–50.CrossRefGoogle Scholar
  126. —. 1963. A new theory of the angiosperm flower. II. The androecium. Kew Bull.17: 1–63.CrossRefGoogle Scholar
  127. —. 1969. Leaf venation patterns and the origin of the angiosperms. Nature224: 121–125.CrossRefGoogle Scholar
  128. Mersky, M. L. 1973. Lower Cretaceous (Potomac Group) angiosperm cuticles. Amer. J. Bot.60(4, suppl.): 17–18 (abstract).CrossRefGoogle Scholar
  129. Millioud, M. E. 1967. Palynological studies of the type localities at Valangin and Hauterive. Rev. Palaeobot. Palynol.5: 155–167.CrossRefGoogle Scholar
  130. Moore, D. G. andP. C. Scruton. 1957. Minor internal sedimentary structures of some Recent unconsolidated sediments. Bull. Amer. Assoc. Petrol. Geol.41: 2723–2751.Google Scholar
  131. Mouton, J. A. 1970. Architecture de la nervation foliaire. Compt. Rend. 92e Congr. Natl. Soc. Savantes (Strasbourg et Colmar, 1967)3: 165–176.Google Scholar
  132. Müller, H. 1966. Palynological investigations of Cretaceous sediments in northeastern Brazil,in J. E. van Hinte (editor), Proc. 2nd West African Micropaleontol. Colloquium (Ibadan), pp. 123–136. Brill, Leiden.Google Scholar
  133. Muller, J. 1959. Palynology of Recent Orinoco delta and shelf sediments. Micropaleontology5: 1–32.CrossRefGoogle Scholar
  134. —. 1970. Palynological evidence on early differentiation of angiosperms. Biol. Rev. Cambridge Philos. Soc.45: 417–450.CrossRefGoogle Scholar
  135. Němejc, F. 1956. On the problem of the origin and phylogenetic development of the angiosperms. Sborn. Nár. Mus. v Praze, Rada B, Příř. Vědy,12: 59–143.Google Scholar
  136. Newberry, J. S. 1895. The flora of the Amboy Clays. U. S. Geol. Surv. Monogr.26.Google Scholar
  137. Norris, G. 1967. Spores and pollen from the lower Colorado Group (Albian-Cenomanian) of central Alberta. Palaeontographica, Abt. B,120: 72–115.Google Scholar
  138. Norris, G., D. M. larzen and B. V. Awai-Thorne. 1975. Evolution of the Cretaceous terrestrial palynoflora in western Canada,in W. G. E. Caldwell (editor), The Cretaceous System in the Western Interior of North America. Geol. Assoc. Canada Special Pap.13: 333–364.Google Scholar
  139. Owens, J. P. andN. F. Sohl. 1969. Shelf and deltaic paleoenvironments in the Cretaceous-Tertiary formations of the New Jersey Coastal Plain,in S. Subitzky (editor), Geology of selected areas in New Jersey and eastern Pennsylvania and guidebook of excursions, pp. 235–278. Rutgers Univ. Press, New Brunswick, New Jersey.Google Scholar
  140. Pacltová, B. 1961. Zur Frage der GattungEucalyptus in der böhmischen Kreideformation. Preslia33: 113–129.Google Scholar
  141. —. 1971. Palynological study of Angiospermae from the Peruc Formation (?Albian-Lower Cenomanian) of Bohemia. Ústřední Ústav Geol., Sbom. Geol. V⩋, Paleontol., Řada P,13: 105–141.Google Scholar
  142. Pannella, G. 1966. Palynology of the Dakota Group and Graneros Shale of the Denver Basin. Ph.D. thesis, Univ. Colorado, Boulder.Google Scholar
  143. Pettitt, J. M. andC. B. Beck. 1968.Archaeosperma arnoldii—a cupulate seed from the Upper Devonian of North America. Contr. Univ. Michigan Mus. Paleontol.22: 139–154.Google Scholar
  144. Pierce, R. L. 1961. Lower Upper Cretaceous plant microfossils from Minnesota. Minnesota Geol. Surv. Bull.42: 1–86.Google Scholar
  145. Playford, G. 1971. Palynology of Lower Cretaceous (Swan River) strata of Saskatchewan and Manitoba. Palaeontology14: 533–565.Google Scholar
  146. Pocock, S. A. J. 1962. Microfloral analysis and age determination of strata at the Jurassic-Cretaceous boundary in the western Canada plains. Palaeontographica, Abt. B,111: 1–95.Google Scholar
  147. Pray, T. R. 1955. Foliar venation of angiosperms. II. Histogenesis of the venation ofLiriodendron. Amer. J. Bot.42: 18–27.CrossRefGoogle Scholar
  148. —. 1960. Ontogeny of the open dichotomous venation in the pinna of the fernNephrolepis. Amer. J. Bot.47: 319–328.CrossRefGoogle Scholar
  149. —. 1962. Ontogeny of the closed dichotomous venation ofRegnellidium. Amer. J. Bot.49: 464–472.CrossRefGoogle Scholar
  150. —. 1963. Origin of vein endings in angiosperm leaves. Phytomorphology13: 60–81.Google Scholar
  151. Raven, P. R. andD. I. Axelrod. 1974. Angiosperm biogeography and past continental movements. Ann. Missouri Bot. Gard.61: 539–673.CrossRefGoogle Scholar
  152. Read, R. W. andL. J. Hickey. 1972. A revised classification of fossil palm and palm-like leaves. Taxon21: 129–137.CrossRefGoogle Scholar
  153. Regali, M. S., N. Uesugui andA. S. Santos. 1974. Palinologia dos sedimentos meso-cenozóicos do Brasil. Bol. Técn. Petrobrás17: 177–191, 263–301.Google Scholar
  154. Reymanówna, M. 1968. On seeds containingEucommiidites troedssonii pollen from the Jurassic of Grojec, Poland. J. Linn. Soc,. Bot.,61: 147–152.CrossRefGoogle Scholar
  155. Reyment, R. A. andE. A. Tait. 1972. Biostratigraphical dating of the early history of the South Atlantic Ocean. Philos. Trans., Ser. B,264: 55–95.CrossRefGoogle Scholar
  156. Rigby, J. K. and W. K. Hamblin (editors). 1972. Recognition of ancient sedimentary environments. Soc. Econ. Paleontol. Mineral. Special Publ.16.Google Scholar
  157. Sampson, F. B. 1976. Aperture orientation inLaurelia pollen (Atherospermataceae syn. subfamily Atherospermoideae of Monimiaceae). Grana15: 153–157.Google Scholar
  158. Samylina, V. A. 1960. Pokrytosemennye rasteniya iz nizhnemelovykh otlozheniy Kolymy. Bot. Zurn., SSSR,45: 335–352.Google Scholar
  159. —. 1968. Early Cretaceous angiosperms of the Soviet Union based on leaf and fruit remains. J. Linn. Soc., Bot.,61: 207–218.Google Scholar
  160. Scheckler, S. E. andH. P. Banks. 1971. Anatomy and relationships of some Devonian progymnosperms from New York. Amer. J. Bot.58: 737–751.CrossRefGoogle Scholar
  161. Schluger, P. R. andH. E. Roberson. 1975. Mineralogy and chemistry of the Patapsco Formation, Maryland, related to the ground-water geochemistry and flow system: A contribution to the origin of red beds. Bull. Geol. Soc. Amer.86: 153–158.CrossRefGoogle Scholar
  162. Schopf, J. W. 1970. Precambrian micro-organisms and evolutionary events prior to the origin of vascular plants. Biol. Rev. Cambridge Philos. Soc.45: 319–352.CrossRefGoogle Scholar
  163. —. 1975. The age of microscopic life. Endeavour34: 51–58.CrossRefGoogle Scholar
  164. Schulz, E. 1967. Sporenpaläontologische Untersuchungen rätoliassischer Schichten im Zentralteil des germanischen Beckens. Paläontol. Abh., Abt. B,2: 542–633.Google Scholar
  165. Schuster, R. M. 1976. Plate tectonics and its bearing on the geographical origin and dispersal of angiosperms,in C. B. Beck (editor), Origin and early evolution of angiosperms, pp. 48–138. Columbia Univ. Press, New York.Google Scholar
  166. entific Party for Leg 43 of the Deep Sea Drilling Project. 1975. Glomar Challenger drills in the North Atlantic. Geotimes20(12): 18–21.Google Scholar
  167. Scott, R. A., E. S. Barghoorn andE. B. Leopold. 1960. How old are the angiosperms? Amer. J. Sci.258 A (Bradley vol.): 284–299.Google Scholar
  168. Scott, R. A., P. L. Williams, L. C. Craig, E. S. Barghoorn, L. J. Hickey andH. D. MacGinitie. 1972. “Pre-Cretaceous” angiosperms from Utah: Evidence for Tertiary age of the palm wood and roots. Amer. J. Bot.59: 886–896.CrossRefGoogle Scholar
  169. Sen, L. 1971. The geometric structure of an optimal transport network in a limited city-hinterland case. Geogr. Analysis3: 1–14.CrossRefGoogle Scholar
  170. Seward, A. C. 1931. Plant life through the ages. Cambridge Univ. Press.Google Scholar
  171. Simpson, G. G. 1953. The major features of evolution. Columbia Univ. Press, New York.Google Scholar
  172. Singh, C. 1971. Lower Cretaceous microfloras of the Peace River area, northwestern Alberta. Bull Res. Council Alberta28.Google Scholar
  173. —. 1975. Stratigraphic significance of early angiosperm pollen in the mid-Cretaceous strata of Alberta. Geol. Assoc. Canada Special Pap.13: 365–389.Google Scholar
  174. Slade, B. F. 1957. Leaf development in relation to venation as shown inCercis siliquastrum L.,Prunus serrulata Lindl., andAcer pseudoplatanus L. New Phytol.56: 281–300.CrossRefGoogle Scholar
  175. Sporne, K. R. 1972. Some observations on the evolution of pollen types in dicotyledons. New Phytol.71: 181–185.CrossRefGoogle Scholar
  176. Stanley, E. A. 1967. Cretaceous pollen and spore assemblages from northern Alaska. Rev. Palaeobot. Palynol.1: 229–234.CrossRefGoogle Scholar
  177. Stanley, S. M. 1976. Ideas on the timing of metazoan diversification. Paleobiology2: 209–219.Google Scholar
  178. Stebbins, G. L. 1965. The probable growth habit of the earliest flowering plants. Ann. Missouri Bot. Gard.52: 457–468.CrossRefGoogle Scholar
  179. —. 1974. Flowering plants: Evolution above the species level. Harvard Univ. Press, Cambridge, Massachusetts.Google Scholar
  180. Takhtajan, A. L. 1969. Flowering plants: Origin and dispersal. Oliver and Boyd, Edinburgh.Google Scholar
  181. —. 1976. Neoteny and the origin of flowering plants,in C. B. Beck (editor), Origin and early evolution of angiosperms, pp. 207–219. Columbia Univ. Press, New York.Google Scholar
  182. Teixeira, C. 1948. Flora mesozóica portuguesa. Part I. Serv. Geol. Portugal, Lisbon.Google Scholar
  183. Thome, R. F. 1976. A phylogenetic classification of the Angiospermae,in M. K. Hecht, W. C. Steere and B. Wallace (editors), Evol. Biol.9: 35–106.Google Scholar
  184. Tidwell, W. D., S. R. Rushforth, J. L. Reveal andH. Behunin. 1970a.Palmoxylon simperi andPalmoxylon pristina: Two pre-Cretaceous angiosperms from Utah. Science168: 835–840.PubMedCrossRefGoogle Scholar
  185. Tidwell, W. D., S. R. Rushforth andA. D. Simper. 1970b. Pre-Cretaceous flowering plants: Further evidence from Utah. Science170: 547–548.PubMedCrossRefGoogle Scholar
  186. Tralau, H. 1968. Botanical investigations into the fossil flora of Eriksdal in Fyledalen, Scania. II. The Middle Jurassic microflora. Sveriges Geol. Undersökning, Ser. C, Årsbok62(4): 1–185.Google Scholar
  187. Vagvolgyi, A. andL. V. Hills. 1969. Microflora of the Lower Cretaceous McMurray Formation, northeast Alberta. Bull. Canad. Petrol. Geol.17: 154–181.Google Scholar
  188. Vakhrameev, V. A. 1952. Stratigrafiya i iskopaemaya flora melovykh otlozheniy Zapadnogo Kazakhstana. Regional’naya Stratigrafiya SSSR1.Google Scholar
  189. —. 1973. Pokrytosemennye i granitsa nizhnego i verkhnego mela,in A. F. Chlonova (editor), Palinologiya Mezofita (Trudy III Mezhdunarodnoy Palinologicheskoy Konferentsii), pp. 131–137. Nauka, Moscow.Google Scholar
  190. Vakhrameev, V. A., I. A. Dobruskina, E. D. Zaklinskaya andS. V. Meyen (editors). 1970. Paleozoyskie i mezozoyskie flory Yevrazii i fitogeografiya etogo vremeni. Nauka, Moscow.Google Scholar
  191. Valentine, J. W. andC. A. Campbell. 1975. Genetic regulation and the fossil record. Amer. Sci.63: 673–680.PubMedGoogle Scholar
  192. Van Campo, M. 1971. Précisions nouvelles sur les structures comparées des pollens de Gymnospermes et d’Angiospermes. Compt. Rend. Hebd. Séances Acad. Sci., Sér. D,272: 2071–2074.Google Scholar
  193. —. 1976. Patterns of pollen morphological variation within taxa,in I. K. Ferguson and J. Muller (editors), The evolutionary significance of the exine (Linn. Soc. London Symp. Series No. 1), pp. 125–137. Academic Press, London.Google Scholar
  194. Van Campo, M. andB. Lugardon. 1973. Structure grenue infratectale de l’ectexine des pollens de quelques Gymnospermes et Angiospermes. Pollen & Spores15: 171–187.Google Scholar
  195. Van Konijnenburg-van Cittert, J. H. A. 1971.In situ gymnosperm pollen from the Middle Jurassic of Yorkshire. Acta Bot. Neerl.20: 1–97.Google Scholar
  196. Wagner, W. H., Jr. 1964. The evolutionary patterns of living ferns. Mem. Torrey Bot. Club21: 86–95.Google Scholar
  197. Walker, J. W. 1971. Pollen morphology, phytogeography, and phylogeny of the Annonaceae. Contr. Gray Herb.202: 1–131.Google Scholar
  198. —. 1974. Aperture evolution in the pollen of primitive angiosperms. Amer. J. Bot.60: 1112–1137.CrossRefGoogle Scholar
  199. — 1976. Evolutionary significance of the exine in the pollen of primitive angiosperms,in I. K. Ferguson and J. Muller (editors), The evolutionary significance of the exine (Linn. Soc. London Symp. Series No. 1), pp. 251–308. Academic Press, London.Google Scholar
  200. Walker, J. W. andJ. A. Doyle. 1975. The bases of angiosperm phylogeny: Palynology. Ann. Missouri Bot. Gard.62: 664–723.CrossRefGoogle Scholar
  201. Ward, L. F. 1888. Evidence of the fossil plants as to the age of the Potomac formation. Amer. J. Sci., Ser. 3,36: 119–131.Google Scholar
  202. -. 1895. The Potomac Formation. U. S. Geol. Surv., 15th Annual Rep., pp. 307–397.Google Scholar
  203. -. 1905. Status of the Mesozoic floras of the United States. U. S. Geol. Surv. Monogr.48.Google Scholar
  204. Weaver, K. N., E. T. Cleaves, J. Edwards andJ. D. Glaser. 1968. Geologic map of Maryland. Maryland Geol. Surv., Baltimore.Google Scholar
  205. Whitehead, D. R. 1969. Wind pollination in the angiosperms: Evolutionary and environmental considerations. Evolution23: 28–35.CrossRefGoogle Scholar
  206. Wolfe, J. A. 1972a. Significance of comparative foliar morphology to paleobotany and neobotany. Amer. J. Bot.59: 664 (abstract).Google Scholar
  207. —. 1972b. Phyletic significance of Lower Cretaceous dicotyledonous leaves from the Patuxent Formation, Virginia. Amer. J. Bot.59: 664 (abstract).Google Scholar
  208. —. 1973. Fossil forms of Amentiferae. Brittonia25: 334–355.CrossRefGoogle Scholar
  209. Wolfe, J. A. andH. M. Pakiser. 1971. Stratigraphic interpretations of some Cretaceous microfossil floras of the Middle Atlantic states. U. S. Geol. Surv. Profess. Pap.750-B: B35–47.Google Scholar
  210. Wolfe, J. A., J. A. Doyle andV. M. Page. 1975. The bases of angiosperm phylogeny: Paleobotany. Ann. Missouri Bot. Gard.62: 801–824.CrossRefGoogle Scholar
  211. Young, K. 1966. Texas Mojsisovicziinae (Ammonoidea) and the zonation of the Fredericksburg. Mem. Geol. Soc. Amer.100.Google Scholar

Copyright information

© The New York Botanical Garden 1977

Authors and Affiliations

  • Leo J. Hickey
    • 1
  • James A. Doyle
    • 2
    • 3
  1. 1.Division of PaleobotanySmithsonian InstitutionWashington, D.C.USA
  2. 2.Museum of PaleontologyThe University of MichiganAnn ArborUSA
  3. 3.Department of Ecology and Evolutionary BiologyThe University of MichiganAnn ArborUSA

Personalised recommendations