The Botanical Review

, Volume 43, Issue 4, pp 449–528 | Cite as

Plant decomposition and soil respiration in terrestrial ecosystems

  • J. S. Singh
  • S. R. Gupta


This review deals with methodological approaches, measured rates, and environmental control of two major interdependent processes regulating the structure and function of terrestrial ecosystems, viz., plant decomposition and soil respiration.

Both these processes have been evaluated through indirect assessments as well as through direct measurements under the field conditions. The techniques used suffer in general from difficulties in creating conditions of natural environment during the process of measurement. Generalizations regarding the magnitude of rates in different ecosystems are difficult because of limited results or non-comparability of results from different methods.

Temperature and moisture and their interactions markedly influence both the processes. The surface feeders and soil animals have a marked influence on the decomposition. Partitioning of soil respiration into components due to live roots, microbes, and soil fauna has eluded a satisfactory solution so far.


Leaf Litter Soil Respiration Botanical Review Root Respiration Soil Respiration Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Cette revue traite des approches méthodologiques, des vitesses mesurées et du contrôle des environs de deux procédés interdépendants principaux qui règlent la structure et la fonction des écosystèmes terrestes, viz, la décomposition des plantes et de la respiration du sol.

Ces deux procédés ont été évalués par des méthodes indirectes aussi bien que par des mesures directes sous le terrain. Les techniques employées souffrent en géneral des difficultés dans la création des conditions de l’environnement naturel pendant mesure. Des généralisations en ce qui concerne la grandeur des vitesses dans les différents écosystèmes sont difficiles parce que les différentes méthodes ne peuvent pas être comparées que d’une façon limitée ou non-comparable.

La température et l’humidité et leurs interactions ont une très grande influence sur les deux procédés. Les animaux et les plantes qui se nourrissent sur la surface et les animaux dans la terre ont une très grande influence sur la décomposition. La séparation de la respiration du sol en composantes causée par des microbes des racines vivantes et de la faune du sol a echappé à une solution satisfaite jusqu’à présent.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alexander, M. 1961. Introduction to soil microbiology. John Wiley and Sons, Inc., New York. 472 pp.Google Scholar
  2. Alway, F. J., J. Kittredge, andW. J. Methley. 1933. Composition of the forest floor layers under different forest types of the same soil type. Soil Sci.36: 387–398.Google Scholar
  3. Anderson, J. M. 1973a. The breakdown and decomposition of sweet chestnut (Castanea sativa Mill) and beech (Fagus sylvatica L.) leaf litter in two deciduous woodland soils. I. Breakdown, leaching, and decomposition. Oecologia12: 251–274.Google Scholar
  4. Anderson, J. M. 1973b. The breakdown and decomposition of sweet chestnut (Castanea sativa Mill) and beech (Fagus sylvatica L.) leaf litter in two deciduous woodland soils. II. Changes in the carbon, hydrogen, nitrogen and polyphenol content. Oecologia12: 275–288.Google Scholar
  5. Anderson, J. M. 1973c. Carbon dioxide evolution from two temperate, deciduous woodland soils. J. Appl. Ecol.10: 361–378.CrossRefGoogle Scholar
  6. Anderson, I. M. 1975. Succession, diversity and trophic relationships of some soil animals in decomposing leaf litter. J. Anim. Ecol.44: 475–495.CrossRefGoogle Scholar
  7. Anderson, J. P. E., andK. H. Domsch. 1973. Quantification of bacterial and fungal contributions to soil respiration. Arch. Mikrobiol.93: 113–127.CrossRefGoogle Scholar
  8. Anderson, J. P. E., andK. H. Domsch. 1974. Use of selective inhibitors in the study of respiratory activities and shifts in bacterial and fungal populations in soil. Ann. Microbiol.24: 189–194.Google Scholar
  9. Anderson, J. P. E., andK. H. Domsch. 1975. Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soil. Can. J. Microbiol.21: 314–322.PubMedGoogle Scholar
  10. Ashton, D. H. 1975. Studies of litter inEucalyptus regnans forest. Aust. J. Bot.23: 413–433.CrossRefGoogle Scholar
  11. Attiwill, P. M. 1968. The loss of elements from decomposing litter. Ecology49: 142–145.CrossRefGoogle Scholar
  12. Ausmus, B. S. 1973. The use of the ATP assay in terrestrial decomposition studies.In: Modern methods in the study of microbial ecology, ed. by T. Rosswail. Bull. 17, Ecol. Res. Comm., Swed. Nat. Sci. Res. Counc., Stockholm. pp. 223–234.Google Scholar
  13. Ayres, K. W., R. G. Button, andE. de Jong. 1972. Soil morphology and soil physical properties. I. Soil aeration. Can. J. Soil Sci.52: 311–321.Google Scholar
  14. Ayres, K. W., R. G. Button, andE. de Jong. 1973. Soil morphology and soil properties. II. Mechanical impedance and moisture retention and movement. Can. J. Soil Sci.53: 9–20.Google Scholar
  15. Barakov, P. 1910. The carbon dioxide content of soils during different stages of growth of plants. J. Exp. Agron.11: 321–342.Google Scholar
  16. Barker, H. A., andT. C. Broyer. 1942. Notes on the influence of microorganisms on growth of squash plants in water culture with particular reference to manganese nutrition. Soil Sci.53: 467–477.CrossRefGoogle Scholar
  17. Bartos, D. L., andD. A. Jameson. 1974. A dynamic root model. Am. Midl. Nat.91: 499–504.CrossRefGoogle Scholar
  18. Bell, M. K. 1974. Decomposition of herbaceous litter.In: Biology of plant litter decomposition, vol. 1, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 37–67.Google Scholar
  19. Berry, L. J., andW. E. Norris, Jr. 1949. Studies of onion root respiration. I. Velocity of oxygen consumption in different segments of roots at different temperatures as a function of partial pressure of oxygen. II. The effect of temperature on the apparent diffusion coefficient in different segments of the root tip. Biochim. Biophys. Acta3: 593–614.CrossRefGoogle Scholar
  20. Berthet, P. 1963. Mesure de la consommation d’oxygene des Oribatides (Acariens) de la litiere des forets.In: Soil organisms, ed. by J. Doeksen and J. Van Der Drift. North-Holland Publ. Co., Amsterdam. pp. 18–31.Google Scholar
  21. Bertrand, A. R., andH. Kohnke. 1957. Subsoil conditions and their effects on oxygen supply and the growth of corn roots. Soil Sci. Soc. Am. Proc.21: 135–140.CrossRefGoogle Scholar
  22. Birch, H. F. 1958. The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil10: 9–31.CrossRefGoogle Scholar
  23. Birch, L. C., andM. T. Friend. 1956. Humus decomposition in east Africa soils. Nature178: 500–501.CrossRefGoogle Scholar
  24. Bizzell, J. A., andT. L. Lyon. 1918. The effect of certain factors on the carbon dioxide content of soil air. J. Am. Soc. Agron.10: 97–112.Google Scholar
  25. Bleak, A. T. 1970. Disappearance of plant material under a winter snow cover. Ecology51: 915–917.CrossRefGoogle Scholar
  26. Bocock, K. L. 1963. The digestion and assimilation of food byGlomeris.In: Soil organisms, ed. by J. Doeksen and J. Van Der Drift. North-Holland Publ. Co., Amsterdam. pp. 85–91.Google Scholar
  27. Bocock, K. L. 1964. Changes in the amounts of dry matter, nitrogen, carbon, and energy in decomposing woodland leaf litter in relation to the activities of the soil fauna. J. Ecol.52: 273–284.CrossRefGoogle Scholar
  28. Bocock, K. L., andO. J. W. Gilbert. 1957. The disappearance of litter under different woodland conditions. Plant Soil9: 179–185.CrossRefGoogle Scholar
  29. Bocock, K. L., O. J. W. Gilbert, C. K. Capstick, D. C. Twinn, J. S. Waid, andM. J. Woodman. 1960. Changes in the leaf litter when placed on the surface of soils with contrasting humus types. 1. Losses in dry weight of oak and ash leaf litters. J. Soil Sci.11: 1–9.CrossRefGoogle Scholar
  30. Boois, H. M. de 1974. Measurement of seasonal variations in the oxygen uptake of various litter layers of an oak forest. Plant Soil40: 545–555.CrossRefGoogle Scholar
  31. Bourliere, F., andM. Hadley. 1970. The ecology of tropical savannas. Annu. Rev. Ecol. Syst.1: 125–152.CrossRefGoogle Scholar
  32. Boussingault, J. B., andB. Levy. 1853. Mémoire sur la composition de l’aire confine dans la terre vegétable. Ann. Chem. Phys.37: 5–50.Google Scholar
  33. Boyd, C. E. 1970. Losses of mineral nutrients during decomposition ofTypha latifolia. Arch. Hydrobiol.66: 511–517.Google Scholar
  34. Boynton, D., andO. C. Compton. 1944. Normal seasonal changes of oxygen and carbon dioxide percentages in gas from the larger pores of three orchard subsoils. Soil Sci.57: 107–117.CrossRefGoogle Scholar
  35. Boynton, D., andW. Reuther. 1939. Seasonal variation of oxygen and carbon dioxide in three different orchard soils during 1938 and its possible significance. Am. Soc. Hort. Sci. Proc.36: 1–6.Google Scholar
  36. Bray, J. R., andE. Gorham. 1964. Litter production in the forests of the world. Adv. Ecol. Res.2: 101–157.Google Scholar
  37. Broadfoot, W. M., andW. H. Pierre. 1939. Forest soil studies: 1. Relation of rate of decomposition of tree leaves to their acid-base balance and other chemical properties. Soil Sci.48: 329–348.CrossRefGoogle Scholar
  38. Brown, A., andA. Macfadyen. 1969. Soil carbon dioxide output and small scale vegetation pattern in a Calluna heath. Oikos20: 8–15.CrossRefGoogle Scholar
  39. Brown, R., andD. Broadbent. 1950. The development of cells in the growing zones of the root. J. Exp. Bot.1: 249–263.CrossRefGoogle Scholar
  40. Buckingham, E. 1904. Contribution to our knowledge of the aeration of soils. U.S. Dep. Agric. Bull., Soils Bull. 25.Google Scholar
  41. Bunt, J. S., andA. D. Rovira. 1954. Oxygen uptake and carbon dioxide evolution of heat-sterilized soil. Nature173: 1242.CrossRefGoogle Scholar
  42. Burges, A. 1967. The decomposition of organic matter in the soil.In: Soil biology, ed. by A. Burges and F. Raw. Academic Press, London. pp. 479–492.Google Scholar
  43. Caldwell, R. 1963. Observations on the fungus flora of decomposing beech litter in soil. Trans. Br. Mycol. Soc.46: 249–261.Google Scholar
  44. Carré, C. G. 1964. Fungus decomposition of beech cupules. Trans. Br. Mycol. Soc.47: 437–444.Google Scholar
  45. Chase, F. E., andP. H. H. Gray. 1957. Application of the Warburg respirometer in studying respiratory activity in soil. Can. J. Microbiol.3: 335–349.Google Scholar
  46. Chester, C. G. C. 1950. On the succession of microfungi associated with the decay of logs and branches. Trans. Lines. Nat. Union12: 129–135.Google Scholar
  47. Clark, F. E. 1949. Soil microorganisms and plant roots. Adv. Agron.1: 241–288.Google Scholar
  48. Clark, F. E. 1967. Bacteria in soil.In: Soil biology, ed. by A. Burges and F. Raw. Academic Press, London. pp. 15–49.Google Scholar
  49. Clark, F. E. 1969. The microflora of grassland soils and some microbial influences on ecosystem functions.In: The grassland ecosystem: A preliminary synthesis. A supplement, ed. by R. L. Dix and R. G. Beidleman. Range Sci. Dep. Sci. Ser. No. 2 Supplement. Colorado State Univ., Fort Collins. pp. 361–376.Google Scholar
  50. Clark, F. E., andD. C. Coleman. 1972. Secondary productivity below ground in Pawnee grassland. US/IBP Grassland Biome Tech. Rep. No. 169. Colorado State Univ., Fort Collins. 23 pp.Google Scholar
  51. Clark, F. E., andE. A. Paul. 1970. The microflora of grassland. Adv. Agron.22: 375–435.CrossRefGoogle Scholar
  52. Clements, F. E. 1921. Aeration and air content. Carnegie Inst. Wash. Pub. No. 315, Washington, D.C. 183 pp.Google Scholar
  53. Clymo, R. S. 1965. Experiments on breakdown of Sphagnum in two bogs. J. Ecol.53: 747–758.CrossRefGoogle Scholar
  54. Coldwell, B. B., andW. A. DeLong. 1950. Studies on the composition of deciduous forest tree leaves before and after partial decomposition. Sci. Agric.30: 456–466.Google Scholar
  55. Coleman, D. C. 1973a. Soil carbon balance in a successional grassland. Oikos24: 195–199.CrossRefGoogle Scholar
  56. Coleman, D. C. 1973b. Compartmental analysis of “total soil respiration”: an exploratory study. Oikos24: 361–366.CrossRefGoogle Scholar
  57. Coleman, D. C. 1976. A review of root production processes and their influence on soil biota in terrestrial ecosystems.In: The role of terrestrial and aquatic organisms in decomposition processes, ed. by J. M. Anderson and A. Macfadyen. Blackwell Sci. Pub., Oxford. pp. 417–434.Google Scholar
  58. Coleman, D. C., R. Andrews, J. E. Ellis, andJ. S. Singh. 1976. Energy flow and partitioning in selected man-managed and natural ecosystems. Agro-Ecosystems3: 45–54.CrossRefGoogle Scholar
  59. Cornforth, I. S. 1970. Leaf fall in a tropical rain forest. J. Appl. Ecol.7: 603–608.CrossRefGoogle Scholar
  60. Crapo, N. L., andR. G. Bowmer. 1973. Comparative respiratory rates in roots of detopped and intact corn. Oikos24: 465–468.CrossRefGoogle Scholar
  61. Crapo, N. L., andD. C. Coleman. 1972. Root distribution and respiration in a Carolina old field. Oikos23: 137–139.CrossRefGoogle Scholar
  62. Crosby, J. S. 1961. Litter-and-duff fuel in shortleaf pine stands in southeast Missouri. Central States For. Exp. Stn. Tech. Paper 178. U.S. For. Serv. Columbus, Ohio. 10 pp.Google Scholar
  63. Crossley, D. A., Jr., andM. P. Hoglund. 1962. A litter bag method for the study of microarthropods inhabiting leaf litter. Ecology43: 571–573.CrossRefGoogle Scholar
  64. Crossley, D. A., Jr., and M. Witkamp. 1964. Forest soil mites and mineral cycling. Acarologia, fasc. h.s.1964: 137–145.Google Scholar
  65. Cruz, A. A. de la, andB. C. Gabriel. 1974. Caloric, elemental, and nutritive changes in decomposingJuncus roemerianus leaves. Ecology55: 882–886.CrossRefGoogle Scholar
  66. Curry, J. P. 1969. The decomposition of organic matter in soil. Part I. The role of fauna in decaying grassland herbage. Soil Biol. Biochem.1: 253–258.CrossRefGoogle Scholar
  67. Dahlman, R. C., andC. L. Kucera. 1965. Root productivity and turnover in native prairie. Ecology46: 84–89.CrossRefGoogle Scholar
  68. Dahlman, R. C., and C. L. Kucera. 1969. Carbon-14 cycling in the root and soil components of a prairie ecosystem.In: Proc. 2nd Nat. Symp. on Radioecology, ed. by D. J. Nelson and F. C. Evans. Div. Tech. Inf., USAEC TID-4500 (Conf-670503), Springfield, Va. pp. 652–660.Google Scholar
  69. Daubenmire, R., andD. C. Prusso. 1963. Studies on the decomposition rates of tree litter. Ecology44: 589–592.CrossRefGoogle Scholar
  70. Davidson, J. L., andF. L. Milthorpe. 1966. The effect of defoliation on the carbon balance inDactylis glomerata. Ann. Bot.30: 185–198.Google Scholar
  71. Déhérain, P. P., andE. de Moussey. 1896. Sur l’oxydation de la matière organique de sol. Ann. Agron.22: 305–337.Google Scholar
  72. De Jong, E., andH. J. V. Schappert. 1972. Calculation of soil respiration and activity from CO2 profiles in the soil. Soil Sci.113: 328–333.CrossRefGoogle Scholar
  73. De Jong, E., H. J. V. Schappert, andK. B. MacDonald. 1974. Carbon dioxide evolution from virgin and cultivated soil as affected by management practices and climate. Can. J. Soil Sci.54: 299–307.CrossRefGoogle Scholar
  74. Dickinson, C. H. 1974. Decomposition of plant litter in soil.In: Biology of plant litter decomposition, vol. 2, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 633–658.Google Scholar
  75. Domsch, K. H. 1962. Bodenatmung. Sammelbericht über methoden und Ergebnisse. Zentralbl. Bakteriol. Parasitenkd. Abt. II.116: 33–78.Google Scholar
  76. Douglas, L. A., andJ. C. F. Tedrow. 1959. Organic matter decomposition rates in arctic soils. Soil Sci.88: 305–312.Google Scholar
  77. Drobnik, J. 1962. The effect of temperature on soil respiration. Folia Microbiol.7: 132–140.Google Scholar
  78. Edwards, C. A. 1974. Macroarthropods.In: Biology of plant litter decomposition, vol. 2, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 533–554.Google Scholar
  79. Edwards, C. A., andG. W. Heath. 1963. The role of soil animals in break-down of leaf material.In: Soil organisms, ed. by J. Doeksen and J. Van Der Drift. North-Holland Publ. Co., Amsterdam. pp. 76–84.Google Scholar
  80. Edwards, C. A., D. E. Reichte, andD. A. Crossley, Jr. 1970. The role of soil invertebrates in turnover of organic matter and nutrients.In: Analysis of temperate forest ecosystems, ed. by D. E. Reichle. Springer-Verlag, New York. pp. 147–172.Google Scholar
  81. Edwards, N. T., andP. Sollins. 1973. Continuous measurement of carbon dioxide evolution from partitioned forest floor components. Ecology54: 406–412.CrossRefGoogle Scholar
  82. Elkan, G. H., andW. E. C. Moore. 1960. The effects of temperature, moisture, and initial levels of organic matter upon differential microbial counts, CO2 activity, and organic matter decomposition in soil. J. Elisha Mitchell Sci. Soc.76: 134–140.Google Scholar
  83. Ellis, R. C. 1969. The respiration of the soil beneath someEucalyptus stands as related to the productivity of the stands. Aust. J. Soil Res,7: 349–357.CrossRefGoogle Scholar
  84. Epstein, E., andH. Kohnke. 1957. Soil aeration as affected by organic matter application. Soil Sci. Soc. Am. Proc.21: 585–588.CrossRefGoogle Scholar
  85. Falconer, J. G., J. W. Wright, andH. W. Beall. 1933. The decomposition of certain types of forest litter under field conditions. Am. J. Bot.20: 196–203.CrossRefGoogle Scholar
  86. Fehér, D. 1933. Untersuchungen über die Mikrobiologie des Waldbodens. Julius Springer, Berlin. 272 pp.Google Scholar
  87. Fehér, D., andG. Sommer. 1928. Investigation on the carbon-nourishment of the forest. II. Biochem. Z.199: 253–271.Google Scholar
  88. Fenton, R. T. 1958. A laboratory study of nitrogen mobilization during litter decomposition. Plant Soil9: 202–214.CrossRefGoogle Scholar
  89. Floate, M. J. S. 1970. Decomposition of organic materials from hill soils and pastures. II. Comparative studies of the mineralization of carbon, nitrogen, and phosphorus from plant materials and sheep feces. Soil Biol. Biochem.2: 173–185.CrossRefGoogle Scholar
  90. Frankland, I. C. 1974. Decomposition of lower plants.In: Biology of plant litter decomposition, vol. 1, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 3–36.Google Scholar
  91. Fred, E. B., and E. B. Hart. 1915. The comparative effect of phosphates and sulfates on soil bacteria. Wisc. Agric. Exp. Stn. Res. Bull. 35.Google Scholar
  92. Froment, A. 1972. Soil respiration in a mixed oak forest. Oikos23: 273–277.CrossRefGoogle Scholar
  93. Froment, A., andF. Mommaerts-Billiot. 1969. La respiration du sol, l’azote minéral et la décomposition des feuilles de chêne et de hêtre en relation avec les facteurs de l’environnement. Bull. Soc. R. Bot. Belg.102: 387–410.Google Scholar
  94. Furr, J. R., andW. W. Aldrich. 1943. Oxygen and carbon dioxide changes in the soil atmosphere of an irrigated date garden on calcareous very fine sandy loam soil. Am. Hort. Sci. Proc.42: 46–52.Google Scholar
  95. Gaarder, T. 1957. Studies in soil respiration in western Norway, the Bergen district. Univ Bergen Arbok Naturvitensk Rekke 3: 24 pp.Google Scholar
  96. Gaastra, P. 1963. Climatic control of photosynthesis and respiration.In: Environmental control of plant growth, ed. by L. T. Evans. Academic Press, New York. pp. 113–140.Google Scholar
  97. Garrett, S. D. 1956. Biology of root infecting fungi. Cambridge Univ. Press, London. 292 pp.Google Scholar
  98. Gilbert, O., andK. L. Bocock. 1960. Changes in the leaf litter when placed on the surface of soils with contrasting humus types. II. Changes in the nitrogen content of oak and ash litter. J. Soil Sci.11: 10–19.CrossRefGoogle Scholar
  99. Golley, F. B. 1965. The structure and function of an old-field broomsedge community. Ecol. Monogr.35: 113–131.CrossRefGoogle Scholar
  100. Gosz, J. R., G. E. Likens, andF. H. Bormann. 1973. Nutrient release from decomposing leaf and branch litter in the Hubbard Brook Forest, New Hampshire. Ecol. Monogr.43: 173–191.CrossRefGoogle Scholar
  101. Gray, P. H. H. andR. H. Wallace. 1957. Correlation between bacterial numbers and carbon dioxide in a field soil. Can. J. Microbiol.3: 191–194.Google Scholar
  102. Gray, T. R. G., andS. T. Williams. 1971. Microbial productivity in soil.In: Microbes and microbial productivity, ed. by D. Hughes and A. H. Rose. 21st Symp. Soc. Gen. Microbiol. Cambridge Univ. Press, London. pp. 255–286.Google Scholar
  103. Griffin, D. M. 1972. Ecology of soil fungi. Chapman and Hall, London. 193 pp.Google Scholar
  104. Gupta, S. R., andJ. S. Singh. 1977a. Decomposition of litter in a tropical grassland. Pedobiologia17: 330–333.Google Scholar
  105. Gupta, S. R., andJ. S. Singh. 1977b. Effect of alkali concentration, volume and absorption area on the measurement of soil respiration in a tropical sward. Pedobiologia17: 233–239.Google Scholar
  106. Gustafson, F. G. 1943. Decomposition of the leaves of some forest trees under field conditions. Plant Physiol.18: 704–707.PubMedGoogle Scholar
  107. Haber, W. 1958. Ökologische Untersuchungen der Bodenatmung. Flora146: 109–157.Google Scholar
  108. Harding, D. J. F., andR. A. Stuttard. 1974. Microarthropods.In: Biology of plant litter decomposition, vol. 2, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 489–532.Google Scholar
  109. Harris, D. G., andC. H. M., van Bavel. 1957. Root respiration of tobacco, corn, and cotton plants. Agron. J.49: 182–184.CrossRefGoogle Scholar
  110. Healey, I. N. 1967. The population metabolism ofOnychiurus procampatus Gisin (Collembola).In: Progress in soil biology, ed. by O. Graff and J. E. Satchell. Braunschweig, Vieweg and Sohn, Amsterdam. pp. 127–137.Google Scholar
  111. Heath, G. W., and H. G. C. King. 1964. The palatability of litter to soil fauna. Proc. 8th Int. Congr. Soil Sci., Bucharest. pp. 979–986.Google Scholar
  112. Heath, G. W., M. K. Arnold, andC. A. Edwards. 1966. Studies in leaf litter breakdown. 1. Breakdown rates among leaves of different species. Pedobiologia6: 1–12.Google Scholar
  113. Heath, G. W., C. A. Edwards, andM. K. Arnold. 1964. Some methods for assessing the activity of soil animals in the breakdown of leaves. Pedobiologia4: 80–87.Google Scholar
  114. Heck, A. F. 1929. A method for the determination of total carbon and also for the estimation of carbon dioxide evolved from soils. Soil Sci.28: 225–232.CrossRefGoogle Scholar
  115. Hödgkinson, K. C., andJ. A. Veale. 1966. The distribution of photosynthate within Lucerne as influenced by illumination. Aust. J. Biol. Sci.19: 15–21.Google Scholar
  116. Hopkins, B. 1966. Vegetation of the Olokemeji Reserve, Nigeria. IV. The litter and soil with special reference to their seasonal changes. J. Ecol.54: 687–703.CrossRefGoogle Scholar
  117. Hudson, H. J. 1962. Succession of microfungi on aging leaves ofSaccharum officinarum. Trans. Br. Mycol. Soc.45: 395–423.Google Scholar
  118. Humfeld, H. 1930. A method for measuring carbon dioxide evolution from soil. Soil Sci.30: 1–9.CrossRefGoogle Scholar
  119. Ino, Y., andM. Monsi. 1969. An experimental approach to the calculation of CO2 amount evolved from several soils. Jap. J. Bot.20: 153–188.Google Scholar
  120. Ivarson, K. C., andF. J. Sowden. 1959. Decomposition of forest litter: I. Production of ammonia and nitrate nitrogen, changes in microbial population, and the rate of decomposition. Plant Soil11: 237–248.CrossRefGoogle Scholar
  121. Jenny, H., S. P. Gessel, andF. T. Bingham. 1949. Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci.68: 419–432.CrossRefGoogle Scholar
  122. Jensen, V. 1974. Decomposition of angiosperm tree leaf litter.In: Biology of plant litter decomposition, vol. 1, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 69–104.Google Scholar
  123. Johnston, J. W., Jr. 1935. The macrofauna of soils as affected by certain coniferous and hardwood types on the Harvard Forest. Ph.D. Thesis, Harvard Univ., Cambridge, Mass. 114 pp.Google Scholar
  124. Jorgensen, J. R., andC. G. Wells. 1973. The relationship of respiration in organic and mineral soil layers to soil chemical properties. Plant Soil39: 373–387.CrossRefGoogle Scholar
  125. Kanemasu, E. T., W. L. Powers, andJ. W. Sij. 1974. Field chamber measurements of CO2 flux from soil surface. Soil Sci.118: 233–237.CrossRefGoogle Scholar
  126. Kärenlampi, L. 1971. Weight loss of leaf litter on forest soil surface in relation to weather at Kevo station, Finnish Lapland. Rep. Kevo Subarct. Res. Stn.8: 101–103.Google Scholar
  127. Keller, T. 1967. Root respiration of young conifers. Proc. 14th Congr. Inst. Union For. Res. Organ. Munich23: 329–340.Google Scholar
  128. Kendrick, W. B. 1959. The time factor in decomposition of coniferous leaf litter. Can. J. Bot.37: 907–912.Google Scholar
  129. Kendrick, W. B., andA. Burges. 1962. Biological aspects of the decay ofPinus sylvestris leaf litter. Nova Hedwigia4: 313–342.Google Scholar
  130. King, H. G. C., andG. W. Heath. 1967. The chemical analysis of small samples of leaf material and the relationship between the disappearance and composition of leaves. Pedobiologia7: 192–197.Google Scholar
  131. Kirita, H. 1971a. Re-examination of the absorption method of measuring soil respiration under field conditions. II. Effect of the size of the apparatus on CO2-absorption rates. Jap. J. Ecol.21: 37–42.Google Scholar
  132. Kirita, H. 1971b. Re-examination of the absorption method of measuring soil respiration under field conditions. III. Combined effect of the covered ground area and the surface area of KOH solution on CO2-absorption rates. Jap. J. Ecol.21: 43–47.Google Scholar
  133. Kirita, H. 1971c. Re-examination of the absorption method of measuring soil respiration under field conditions. IV. An improved absorption method using a disc of plastic sponge as absorbent holder. Jap. J. Ecol.21: 119–127.Google Scholar
  134. Kirita, H. 1971d. Studies of soil respiration in warm-temperature evergreen broadleaf forests of southwestern Japan. Jap. J. Ecol.21: 230–244.Google Scholar
  135. Kirita, H. andK. Hozumi. 1966. Re-examination of the absorption method for measuring soil respiration under field conditions. Physiol. Ecol.14: 23–31.Google Scholar
  136. Kitazawa, Y. 1967. Community metabolism of soil invertebrates in forest ecosystems of Japan.In: Secondary productivity of terrestrial ecosystems, ed. by K. Petrusewicz. Panstwowe Wydawnictwo Naukowe, Warsaw. pp. 649–661.Google Scholar
  137. Klein, D. A. 1972. System analysis of decomposer functions in the grassland ecosystem. US/IBP Grassland Biome Tech. Rep. No. 201. Colorado State Univ., Fort Collins. 95 pp.Google Scholar
  138. Koelling, M. R., andC. L. Kucera. 1965. Production and turnover relationships in native tallgrass prairie. Iowa State J. Sci.39: 387–392.Google Scholar
  139. Koepf, H. 1953. Die Temperature Zeit — Abhängigkeit der Bodenatmung. Z. Pflanzenernähr Düng. Bodenkd.61: 29–48.CrossRefGoogle Scholar
  140. Koepf, H. 1954. Die biologische Aktivität des Bodens und ihre experimentelle Kennzeichnung. Z. Pflanzenernähr. Düng. Bodenkd.64: 138–146.CrossRefGoogle Scholar
  141. Kowal, N. E. 1969. Effect of leaching on pine litter decomposition rates. Ecology50: 739–740.CrossRefGoogle Scholar
  142. Krzysch, G. 1965. Zun Dynamik der Bodenatmung während der Vegetationszeit. Z. Acker. Pflanzenbau.122: 108–140.Google Scholar
  143. Kucera, C. L., andD. L. Kirkham. 1971. Soil respiration studies in tallgrass prairie in Missouri. Ecology52: 912–915.CrossRefGoogle Scholar
  144. Kucera, C. L., R. C. Dahlman, andM. R. Koelling. 1967. Total net productivity and turnover on energy basis for tallgrass prairie. Ecology48: 536–541.CrossRefGoogle Scholar
  145. Kurcheva, G. F. 1960. The role of invertebrates in the decomposition of the oak leaf litter. Pochvovedenie4: 16–23.Google Scholar
  146. Lamotte, M. 1975. The structure and function of a tropical savannah ecosystem.In: Tropical ecological systems, ed. by F. B. Golley and E. Medina. Ecological Studies, vol. 11. Springer-Verlag, New York. pp. 179–222.Google Scholar
  147. Lang, G. E. 1973. Litter accumulation through ecosystem development. Ph.D. Thesis, Rutgers Univ., New Brunswick, N.J. 105 pp.Google Scholar
  148. Lang, G. E. 1974. Litter dynamics in a mixed oak forest on the New Jersey Piedmont. Bull. Torrey Bot. Club101: 277–286.CrossRefGoogle Scholar
  149. Lau, E. 1906. Beiträge zur kenntnis der Zusammensetzung der im ackerboden befindlich luft. C. Hinstorffs Buchdr., Rostock, D.D.R. 34 pp.Google Scholar
  150. Laudelout, H., andJ. Meyer. 1954. Les cycles d’éléments minérales et de matiére organique en foret equatoriale Congolaise. Trans. 5th Int. Cong. Soil Sci.2: 267–272.Google Scholar
  151. Lauenroth, W. K. 1970. Dynamics of dry-matter production in a mixed grass prairie in western North Dakota. M.S. Thesis, North Dakota State Univ., Fargo. 102 pp.Google Scholar
  152. Leather, I. W. 1915. Soil gases. Mem. Dep. India, Pusa, Chem. Ser.4: 85–134.Google Scholar
  153. Lee, K. E., andT. G. Wood. 1971. Termites and soils. Academic Press, London and New York. 251 pp.Google Scholar
  154. Lemmerman, O., K. Aso, H. Fischer, andL. Fresenius. 1911. Untersuchungen über die Zersetzung der Kohlenstoffverbindungen Verschiedene organischer Substanzen im Boden, Speziele unter dem Einfluss von Kalk. Landwirtsch. Jahrb. Schweiz Annu. Agric. Suisse41: 217–256.Google Scholar
  155. Levin, G. V., J. R. Clendenning, E. W. Chappell, A. H. Heim, andF. Rocek. 1964. A rapid method for detection of microorganisms by ATP assay; its possible application in virus and cancer studies. BioScience14: 37–38.CrossRefGoogle Scholar
  156. Lieth, H., andR. Ouellette. 1962. Studies on the vegetation of the Gaspé Peninsula. 2. The soil respiration of some plant communities. Can. J. Bot.40: 127–140.Google Scholar
  157. Lofty, J. R. 1974. Oligochaetes.In: Biology of plant litter decomposition, vol. 2, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 467–488.Google Scholar
  158. Lundegårdh, H. 1921. Ecological studies in the assimilation of certain forest plants and shore plants. Sven. Bot. Tidskr.15: 46–94.Google Scholar
  159. Lundegårdh, H. 1922. Neue apparate zur analyse des Kohlensäuregehalts der Luft. Biochem. Z.131: 109.Google Scholar
  160. Lundegardh, H. 1924. Der Kreislauf der Kohlensäure in der Natur. Gustav Fischer, Jena. 308 pp.Google Scholar
  161. Lundegårdh, H. 1927. Carbon dioxide evolution of soil and crop growth. Soil Sci.23: 417–453.CrossRefGoogle Scholar
  162. Lundegårdh, H. 1957. Klima und Boden in ihrer Wirkung auf das Pflanzenleben. Gustav Fischer, Jena. 583 pp.Google Scholar
  163. Lunt, H. A. 1935. Effect of weathering upon dry matter and composition of hardwood leaves. J. For.33: 607–609.Google Scholar
  164. Macfadyen, A. 1963. The contribution of the microfauna to total soil metabolism.In: Soil organisms, ed. by J. Doeksen and J. Van Der Drift. North-Holland Publ. Co., Amsterdam. pp. 3–16.Google Scholar
  165. Macfadyen, A. 1970. Soil metabolism in relation to ecosystem energy flow and to primary and secondary production.In: Methods of study in soil ecology, ed. by J. Phillipson. IBP/UNESCO Symp. Paris. pp. 167–172.Google Scholar
  166. Madge, D. S. 1965. Leaf fall and litter disappearance in a tropical forest. Pedobiologia5: 273–288.Google Scholar
  167. Makarov, B. N. 1958. Diurnal variation in soil respiration and in the carbondioxide content of the layer of air next to the soil. Soils and Fert. 21, No. 978. (Abstr.). [Also: 1968. Bibliography on Soil Respiration (1967–1957) 1215, No. 69. Commonw. Bur. of Soils, Harpenden, England. (Abstr.).]Google Scholar
  168. Makarov, B. N. 1960. Respiration of soil and composition of soil air on drained peat bog soils. Sov. Soil Sci.1960(2): 154–160.Google Scholar
  169. Malone, C. R., andD. E. Reichle. 1973. Chemical manipulation of soil biota in a fescue meadow. Soil Biol. Biochem.5: 629–639.CrossRefGoogle Scholar
  170. Marsh, F. W. 1928. A laboratory apparatus for the measurement of carbon dioxide evolved from soils. Soil Sci.25: 253–261.CrossRefGoogle Scholar
  171. Mason, C. F. 1974. Mollusca.In: Biology of plant litter decomposition, vol. 2, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 555–592.Google Scholar
  172. McKinley, A. D. 1931. Effect of sorghum plants on biological activities in the soil. Soil Sci.32: 469–480.CrossRefGoogle Scholar
  173. Medina, E., andM. Zelwer. 1972. Soil respiration in tropical plant communities.In: Papers from a symposium on tropical ecology with an emphasis on organic productivity, ed. by P. M. Golley and F. B. Golley. Univ. Georgia, Athens. pp. 245–269.Google Scholar
  174. Melin, E. 1930. Biological decomposition of some types of litter from North American forests. Ecology11: 72–101.CrossRefGoogle Scholar
  175. Meyer, L., dandH. Koepf. 1960. Das Kohlendioxyd und die Kohlensäure im Boden. Handb. Pflanzenphysiologie5: 24–46.Google Scholar
  176. Mikola, P. 1954. Kokeellisia tutkimuksia metsäkarikkeiden hajaantumisnopeudesta. Commun. Inst. For. Fenn.43: 1–50.Google Scholar
  177. Millar, C. S. 1974. Decomposition of coniferous leaf litter.In: Biology of plant litter decomposition, vol. 1, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 105–125.Google Scholar
  178. Mina, V. N. 1962. Comparison of methods for determining the intensity of soil respiration. Sov. Soil Sci.1962(10): 1188–1192.Google Scholar
  179. Minderman, G., andJ. C. Vulto. 1973a. Comparison of techniques for the measurement of carbon dioxide evolution from soil. Pedobiologia13: 73–80.Google Scholar
  180. Minderman, G., andJ. C. Vulto. 1973b. Carbon dioxide production by tree roots and microbes. Pedobiologia13: 337–343.Google Scholar
  181. Möller, J. 1879. Über die freie Kohlensäure im Boden. Forsch. Gebiete Agric. Physiol.2: 329–338.Google Scholar
  182. Monteith, J. L. 1963. Gas exchange of plant communities.In: Environmental control of plant growth, ed. by L. T. Evans. Academic Press, New York. pp. 95–112.Google Scholar
  183. Monteith, J. L., G. Sceicz, andK. Yabuky. 1964. Crop photosynthesis and the flux of carbon dioxide below the canopy. J. Appl. Ecol.1: 321–337.CrossRefGoogle Scholar
  184. Murphy, P. W. 1962. A radioisotope method for determination of rate of disappearance of leaf litter in woodland.In: Progress in soil zoology, ed. by P. W. Murphy. Butterworths Sci. Publ., London. pp. 357–363.Google Scholar
  185. Neales, T. F., andJ. A. Davies. 1966. The effect of photoperiod duration upon the respiratory activity of the roots of wheat seedlings. Aust. J. Biol. Sci.19: 471–480.Google Scholar
  186. Newton, J. D. 1923. Measurement of the carbon dioxide evolved from the roots of various crop plants. Sci. Agric.4: 268–274.Google Scholar
  187. Nielsen, C. O. 1961. Respiratory metabolism of some populations of enchytraeid worms and freeliving nematodes. Oikos12: 17–35.CrossRefGoogle Scholar
  188. Nilovskaya, N. T., V. K. Kovalenko, andV. V. Laptev. 1970. Uptake and liberation of carbon dioxide by plants and microorganisms under artificial environmental conditions. Fiziol Rast.17: 680–685.Google Scholar
  189. Nömmik, A. 1938. Uber die Zersetzungsgeschwindigkeit des gesfallenen laubes und der Koniferennadeln and über den schwung einiger in ihnen enthaltenen Elemente. Z. Pflanzenernähr. Düng. Bodenkd.8: 77–100.Google Scholar
  190. Nye, P. H. 1961. Organic matter and nutrient cycles under moist tropical forests. Plant Soil13: 333–346.CrossRefGoogle Scholar
  191. Nykvist, N. 1961. Leaching and decomposition of litter. IV. Experiments on needle litter ofPicea abies. Oikos12: 264–279.CrossRefGoogle Scholar
  192. O’Connor, F. B. 1963. Oxygen consumption and population metabolism of Enchytraeidae.In: Soil organisms, ed. by J. Doeksen and J. Van Der Drift. North-Holland Publ. Co., Amsterdam. pp. 32–48.Google Scholar
  193. Odum, E. P. 1971. Fundamentals of ecology. W. B. Saunders Co., Philadelphia. 574 pp.Google Scholar
  194. Odum, E. P., andA. A. de la Cruz. 1963. Detritus as a major component of ecosystems. BioScience13: 39–40.Google Scholar
  195. Odum, H. T., andC. F. Jordan. 1970. Metabolism and evapotranspiration of the lower forest in a giant plastic cylinder.In: A tropical rain forest: A study of irradiation and ecology at El Verde, Puerto Rico, ed. by H. T. Odum. Div. Tech. Information, USAEC, Washington, D.C. pp. I-165 to I-189.Google Scholar
  196. Odum, H. T., A. Lugo, G. Cintrón, andC. F. Jordan. 1970. Metabolism and evapotranspiration of some rain forest plants and soil.In: A tropical rain forest: A study of irradiation and ecology at El Verde, Puerto Rico, ed. by H. T. Odum. Div. Tech. Information, USAEC, Washington, D.C. pp. I-103 to I-124.Google Scholar
  197. Ohmasa, M., andK. Mori. 1937. The amount of fall and decomposition of leaf litter of the forest trees of Japan. Bull. For. Exp. Stn. Tokyo-Fu3: 39–107.Google Scholar
  198. Old, S. M. 1969. Microclimates, fire and plant production in an Illinois prairie. Ecol. Monogr.34: 355–384.CrossRefGoogle Scholar
  199. Olson, I. S. 1963. Energy storage and balance of producers and decomposers in ecological systems. Ecology44: 322–331.CrossRefGoogle Scholar
  200. Olson, J. S., andD. A. Crossley, Jr. 1963. Tracer studies of the breakdown of forest litter.In: Radioecology, ed. by V. Schultz and A. W. Klements, Jr. Reinhold Publ. Co., New York. pp. 411–416.Google Scholar
  201. Osman, A. M. 1971. Root respiration of wheat plants as influenced by age, temperature and irradiation of shoot. Photosynthetica5: 107–112.Google Scholar
  202. Osman, A. M., andF. L. Milthorpe. 1971. Photosynthesis of wheat leaves in relation to age, illumination and nutrient supply. 1. Techniques. Photosynthetica5: 55–60.Google Scholar
  203. Ovington, J. D. 1962. Quantitative ecology and the woodland ecosystem concept. Adv. Ecol. Res.1: 103–192.CrossRefGoogle Scholar
  204. Parkinson, D. 1973. Techniques for the study of soil fungi. Bull. Ecol. Res. Commun. (Stockholm)17: 29–36.Google Scholar
  205. Parkinson, D., andE. Coups. 1963. Microbial activity in a podzol.In: Soil organisms, ed. by J. Doeksen and J. Van Der Drift. North-Holland Publ. Co., Amsterdam. pp. 167–175.Google Scholar
  206. Parkinson, D., andW. B. Kendrick. 1960. Investigations of soil microhabitats.In: The ecology of soil fungi, ed. by D. Parkinson and J. S. Waid. Liverpool Univ. Press, Liverpool. pp. 22–28.Google Scholar
  207. Payne, W. J. 1970. Energy yields and growth of heterotrophs. Annu. Rev. Microbiol.24: 17–52.PubMedCrossRefGoogle Scholar
  208. Perel, T. S., andD. F. Sokolov. 1964. The quantity value of the rain wormsLumbricus terrestris Linne (Lumbricidae, Oligocheta): Participation in the forest fall decomposition. Zool. J.42: 1618–1625.Google Scholar
  209. Phillipson, J. 1965. Respiratory metabolism of the terrestrial isopodOniscus asellus L. Oikos16: 78–87.CrossRefGoogle Scholar
  210. Priesner, E. 1961. Nahrungswahl und Nahrungsverarbeitung bei der Larve vonTipula maxima. Pedobiologia1: 25–37.Google Scholar
  211. Pugh, G. J. F. 1958. Leaf-litter fungi found onCarex paniculata L. Trans. Br. Mycol. Soc.41: 185–195.Google Scholar
  212. Pugh, G. J. F. 1970. A study of fungi in the rhizosphere and the root surface of plants growing in primitive soils.In: Methods of study in soil ecology, ed. by J. Phillipson. IBP/UNESCO Symp. Paris. pp. 159–164.Google Scholar
  213. Pugh, G. J. F. 1974. Terrestrial fungi.In: Biology of plant litter decomposition, vol. 2, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 303–336.Google Scholar
  214. Raw, F. 1962. Studies of earthworm populations in orchards. I. Leaf burial in apple orchards. Ann. Appl. Biol.50: 389–404.CrossRefGoogle Scholar
  215. Redmann, R. E. 1974. Photosynthesis, plant respiration, and soil respiration measured with controlled environment chambers in the field: III. Soil respiration. Can. Comm. for IBP, Matador Project, Tech. Rep. No. 60. 37 pp.Google Scholar
  216. Redmann, R. E. 1975. Production ecology of grassland plant communities in western North Dakota. Ecol. Monogr.45: 83–106.CrossRefGoogle Scholar
  217. Reichle, D. E. 1968. Relation of body size to food intake, oxygen consumption, and trace element metabolism in forest floor arthropods. Ecology49: 538–542.CrossRefGoogle Scholar
  218. Reichle, D. E. 1971. Energy and nutrient metabolism of soil and litter invertebrates.In: Productivity of forest ecosystems, ed. by P. Duvigneaud. UNESCO, Paris. pp. 465–477.Google Scholar
  219. Reichle, D. E., B. E. Dinger, N. T. Edwards, W. F. Harris, andP. Sollins. 1973. Carbon flow and storage in forest ecosystems.In: Carbon and the biosphere, ed. by G. M. Woodwell. USAEC CONF-720510, U.S. Document Printing Office, Springfield, Va. pp. 345–365.Google Scholar
  220. Reichle, D. E., J. F. McBrayer, andB. S. Ausmus. 1975. Ecological energetics of decomposer invertebrates in deciduous forest and total respiration budget.In: Progress in soil zoology, ed. by J. Vanêk. Academia Publishing House of Slovak Academy of Sciences, Prague. pp. 283–292.Google Scholar
  221. Reiners, W. A. 1968. Carbon dioxide evolution from the floor of three Minnesota forests. Ecology49: 471–483.CrossRefGoogle Scholar
  222. Renters, W. A., andN. M. Reiners. 1970. Energy and nutrient dynamics of forest floors in three Minnesota forests. J. Ecol.58: 497–519.CrossRefGoogle Scholar
  223. Richard, F. 1945–46. Der biologische Abbau von Zellulose und Eiweiss-Testschnüren im Boden von Wald- und Rasengesellschaften. Mitt. Schweig. Anst. Forstl. Versuchw.24(1): 297–397.Google Scholar
  224. Rochow, J. J. 1974. Litter fall relations in a Missouri forest. Oikos25: 80–85.CrossRefGoogle Scholar
  225. Romell, L. G. 1922. Luftvaxlingen i marken som ekologisk faktor. Medd. Statens. Skogsforskningsinst.19: 125–360.Google Scholar
  226. Romell, L. G. 1932. Mull and duff as biotic equilibria. Soil Sci.34: 161–188.CrossRefGoogle Scholar
  227. Russell, E. J., andA. Appleyard. 1915. The atmosphere of the soil, its composition and causes of variation. J. Agric. Sci.7: 1–44.Google Scholar
  228. Russell, E. W. 1961. Soil conditions and plant growth. Longmans, Green and Co., London.Google Scholar
  229. Saito, T. 1956. Microbial decomposition of beech litter. Ecol. Rev.14: 141–147.Google Scholar
  230. Saito, T. 1957. Chemical changes in beech litter under microbiological conditions. Ecol. Rev.14: 209–216.Google Scholar
  231. Saito, T. 1966. Sequential pattern of decomposition of beech litter with special reference to microbial succession. Ecol. Rev.16: 245–254.Google Scholar
  232. Saito, T. 1975. Soil respiration ofMiscanthus sinensis grassland in Kawatabi IBP area.In: Ecological studies in Japanese grasslands with special refence to the IBP area: Productivity of terrestrial communities, ed. by M. Numata. Jap. Comm., Int. Biol. Prog. Univ. Tokyo, Japan. pp. 223–225.Google Scholar
  233. Satchell, J. E. 1967. Lumbricidae.In: Soil biology, ed. by A. Burges and F. Raw. Academic Press, London. pp. 259–322.Google Scholar
  234. Satchell, J. E. 1971. Feasibility study of an energy budget for Meathop wood.In: Productivity of forest ecosystems, ecology and conservation, No. 4, ed. by P. Duvigneaud. UNESCO, Paris. pp. 619–630.Google Scholar
  235. Satchell, J. E. 1974. Litter-interface of animate/inanimate matter.In: Biology of plant litter decomposition, vol. 1, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. xiii-xliv.Google Scholar
  236. Satchell, J. E., andD. G. Lowe. 1967. Selection of leaf litter byLumbricus terrestris.In: Progress in soil biology, ed. by O. Graff and J. E. Satchell. Braunschweig, Vieweg and Sohn, Amsterdam. pp. 102–119.Google Scholar
  237. Schulze, E. 1967. Soil respiration of tropical vegetation types. Ecology48: 652–653.CrossRefGoogle Scholar
  238. Shanks, R. E., andI. S. Olson. 1961. First year breakdown of leaf litter in southern Appalachian forests. Science134: 194–195.PubMedCrossRefGoogle Scholar
  239. Shaver, G. R., andW. D. Billings. 1975. Root production and root turnover in a wet tundra ecosystem, Barrow, Alaska. Ecology56: 401–409.CrossRefGoogle Scholar
  240. Shields, J. A., E. A. Paul, W. E. Lowe, andD. Parkinson. 1973. Turnover of microbial tissue in soil under field conditions. Soil Biol. Biochem.5: 753–764.CrossRefGoogle Scholar
  241. Sims, P. L., andI. S. Singh. 1971. Herbage dynamics and net primary production in certain ungrazed and grazed grasslands in North America.In: Preliminary analysis of structure and function in grasslands, ed. by N. R. French. Range Sci. Dep. Sci. Ser. No. 10. Colorado State Univ., Fort Collins, pp. 59–124.Google Scholar
  242. Singh, I. S. 1962. Preliminary studies on the humus status of some forest communities of Bashahr Himalayas. Proc. Natl. Acad. Sci. India32B: 403–407.Google Scholar
  243. Singh, I. S. 1968. Net aboveground community productivity in the grasslands at Varanasi.In: Proceedings of the symposium on recent advances in tropical ecology, ed. by R. Misra and B. Gopal. ISTE, Varanasi. pp. 631–654.Google Scholar
  244. Singh, J. S., andD. C. Coleman. 1973. A technique for evaluating functional root biomass in grassland ecosystems. Can. J. Bot.51: 1867–1870.Google Scholar
  245. Singh, I. S., andD. C. Coleman. 1974. Distribution of photo-assimilated14carbon in the root system of a shortgrass prairie. J. Ecol.62: 359–365.CrossRefGoogle Scholar
  246. Singh, J. S., andD. C. Coleman. 1977. Evaluation of functional root biomass and translocation of photoassimilated14C in a shortgrass prairie ecosystem.In: The belowground system: A synthesis of plant-associated processes, ed. by J. K. Marshall. Range Sci. Dep. Sci. Ser. No. 26. Colorado State Univ., Fort Collins. pp. 123–131.Google Scholar
  247. Singh, J. S., andP. S. Yadava. 1974. Seasonal variation in composition, plant biomass, and net primary productivity of a tropical grassland at Kurukshetra, India. Ecol. Monogr.44: 351–376.CrossRefGoogle Scholar
  248. Singh, J. S., W. K. Lauenroth, andR. K. Steinhorst. 1975. Review and assessment of various techniques for estimating net aerial primary productivity in grasslands from harvest data. Bot. Rev.41: 181–232.Google Scholar
  249. Singh, K. P. 1968. Litter production and nutrient turnover in deciduous forests of Varanasi. Proc. Symp. Recent Adv. Trop. Ecol. pp. 655–665.Google Scholar
  250. Singh, K. P. 1969. Nutrient concentration in leaf litter of ten important tree species of deciduous forests at Varanasi. Trop. Ecol.10: 83–95.Google Scholar
  251. Smith, F. B., andP. E. Brown. 1931. Soil respiration. J. Am. Soc. Agron.23: 909–916.Google Scholar
  252. Smith, F. B., andP. E. Brown. 1932. Further studies of soil respiration. J. Am. Soc. Agron.24: 577–583.Google Scholar
  253. Smith, F. B., andP. E. Brown. 1933. The diffusion of carbon dioxide through soils. Soil Sci.35: 413–421.CrossRefGoogle Scholar
  254. Sollins, P. 1972. Organic matter model and budget for a southern AppalachianLiriodendron forest. ORNL-IBP Memo Rep. 71. Oak Ridge Nat. Lab., Tenn. 86 pp.Google Scholar
  255. Sparrow, E. B., andK. G. Doxtader. 1973. Adenosine Triphosphate (ATP) in grassland soil: Its relationship to microbial biomass and activity. US/IBP Grassland Biome Tech. Rep. No. 224. Colorado State Univ., Fort Collins. 161 pp.Google Scholar
  256. Starkey, R. L. 1929. Some influences of the development of higher plants upon the micro-organisms in the soil: 3. Influence of the stage of plant growth upon some activities of the organisms. Soil Sci.27: 433–444.Google Scholar
  257. Stenina, T. A. 1964. Decomposition of plant residues in arable podzolic soils. Sov. Soil Sci.1964(1): 74–80.Google Scholar
  258. Stevenson, I. L. 1956. Some observations on the microbial activity in a remoistened air-dried soil. Plant Soil8: 170–182.CrossRefGoogle Scholar
  259. Stille, B. 1938. Untersuchungen liber Bedeutung der Rhizosphäre. Arch. Mikrobiol.9: 477–485.CrossRefGoogle Scholar
  260. Stoklasa, J. 1911. Methoden zur Bestimmung der Atmungsintensität der Bakterien im Boden. Z. Landw. Versuch. Oesterr14: 1243–1279.Google Scholar
  261. Stoklasa, J., andA. Ernest. 1905. Uber den Ursprung, die Menge und die Bedeutung des Kohlendioxyds in Boden. Cent. Bakteriol.14: 723–736.Google Scholar
  262. Stotzky, G. 1960. A simple method for the determination of the respiratory quotient of soils. Can. J. Microbiol.6: 439–452.PubMedGoogle Scholar
  263. Swaby, R. J., andB. I. Passey. 1953. A sample macro-respirometer for studies in soil microbiology. Aust. J. Agric. Res.4: 334–339.CrossRefGoogle Scholar
  264. Tesařová, M., and J. Gloser. 1972. Soil respiration in a moist meadow plant community.In: Ecosystem Study on Grassland Biome in Czechoslovakia, ed. by M. Rychnovská. IBP/PT-PP Rep. No. 2. Brno, Czechoslovakia.Google Scholar
  265. Thomas, W. A. 1968. Decomposition of loblolly pine needles with and without the addition of dogwood leaves. Ecology49: 568–571.CrossRefGoogle Scholar
  266. Thomas, W. A. 1969. Accumulation and cycling of calcium by dogwood trees. Ecol. Monogr.39: 101–120.CrossRefGoogle Scholar
  267. Turpin, H. W. 1920. The carbon dioxide of the soil air. Cornell Univ., Agric. Exp. Stn. Memo.32: 315–362.Google Scholar
  268. Tyler, G. 1971. Distribution and turnover of organic matter and minerals in a shore meadow ecosystem. Oikos22: 265–291.CrossRefGoogle Scholar
  269. Van Cleave, K. 1971. Energy and weight loss functions for decomposing foliage in birch and aspen forests in interior Alaska. Ecology52: 720–723.CrossRefGoogle Scholar
  270. Van Cleave, K., andD. Sprague. 1971. Respiration rates in the forest floor of birch and aspen stands in interior Alaska. Arct. Alp. Res.3: 17–26.CrossRefGoogle Scholar
  271. Van Der Drift, J. 1963. The disappearance of litter in mull and mor in connection with weather conditions and the activity of the macrofauna.In: Soil organisms, ed. by J. Doeksen and J. Van Der Drift. North-Holland Publ. Co., Amsterdam. pp. 125–133.Google Scholar
  272. Van Der Drift, J., andM. Witkamp. 1960. The significance of the break-down of oak litter byEniocyla pusilla. Burm. Arch. Neerland Zool.13: 486–492.Google Scholar
  273. Van Schreven, D. A. 1967. The effect of intermittent drying and wetting of a calcareous soil on carbon and nitrogen mineralization. Plant Soil26: 14–32.CrossRefGoogle Scholar
  274. Voigt, G. K. 1965. Nitrogen recovery from decomposing tree leaf tissue and forest humus. Soil Sci. Soc. Am. Proc.29: 756–759.CrossRefGoogle Scholar
  275. Waid, J. S. 1957. Distribution of fungi with decomposing tissues of ryegrass roots. Trans. Br. Mycol. Soc.40: 391–406.CrossRefGoogle Scholar
  276. Waid, J. S. 1974. Decomposition of roots.In: Biology of plant litter decomposition, vol. 1, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York. pp. 175–211.Google Scholar
  277. Waksman, S. A., andF. C. Gerretsen. 1931. Influence of temperature and moisture upon the nature and extent of decomposition of plant residues by microorganisms. Ecology12: 33–60.CrossRefGoogle Scholar
  278. Waksman, S. A., andR. L. Starkey. 1924. Microbiological analysis of soil as an index of soil fertility: VII. Carbon dioxide evolution. Soil Sci.17: 141–161.Google Scholar
  279. Waksman, S. A., andF. G. Tenney. 1928. Composition of natural organic materials and their decomposition in the soil. III. The influence of nature of plants upon the rapidity of its decomposition. Soil Sci.26: 155–171.CrossRefGoogle Scholar
  280. Waksman, S. A., F. G. Tenney, andK. R. Stevens 1928. The role of microorganisms in the transformation of organic matter in forest soil. Ecology9: 126–144.CrossRefGoogle Scholar
  281. Wallis, G. W., andS. A. Wilde. 1957. Rapid method for the determination of carbon dioxide evolved from forest soils. Ecology38: 359–361.CrossRefGoogle Scholar
  282. Walter, H. 1952. Eine einfache Methode zur ökologischen Erfassung des CO2-Faktors am Standort. Ber. Dtsch. Bot. Ges.65: 175–182.Google Scholar
  283. Walter, H. 1960. Grundlagen der Pflanzenverbreitung, Teil. 1. Standortlehre. Eugen Ulmer Verlag, Stuttgart. 525 pp.Google Scholar
  284. Walter, H., and W. nHaber. Über die Intensität der Bodenatmung mit Bermerkungen zu den Lundegardhschen Werten. Ber. Dtsch. Bot. Ges.70: 257–282.Google Scholar
  285. Wanner, H. 1970. Soil respiration, litter fall and productivity of tropical rain forest. J. Ecol.58: 543–547.CrossRefGoogle Scholar
  286. Warembourg, F. R., andE. A. Paul. 1973. The use of C14O2 canopy techniques for measuring carbon transfer through the plant-soil system. Plant Soil38: 331–345.CrossRefGoogle Scholar
  287. Weaver, J. E. 1947. Rate of decomposition of roots and rhizomes of certain range grasses in undisturbed prairie soil. Ecology28: 221–240.CrossRefGoogle Scholar
  288. Weaver, R. W. 1974. Simple, inexpensive apparatus for simultaneous collection of CO2 evolved from numerous soil. Soil Sci. Soc. Am. Proc.38: 853.CrossRefGoogle Scholar
  289. Webster, J. 1956. Succession of fungi on decaying cocksfoot culms. I. J. Ecol.44: 517–544.Google Scholar
  290. Webster, I. 1957. Succession of fungi on decaying cocksfoot culms. II. J. Ecol.45: 1–30.CrossRefGoogle Scholar
  291. Wiant, H. V. 1967a. Influence of temperature on the rate of soil respiration. J. For.65: 489–490.Google Scholar
  292. Wiant, H. V. 1967b. Influence of moisture content on “soil respiration.” J. For.65: 902–903.Google Scholar
  293. Wiant, H. V. 1967c. Contribution of roots to forest “soil respiration.” Adv. Frontiers Plant Sci.18: 136–138.Google Scholar
  294. Wiegert, R. G. 1974. Litterbag studies for microarthropod populations in three South Carolina old fields. Ecology55: 94–102.CrossRefGoogle Scholar
  295. Wiegert, R. G., D. C. Coleman, andE. P. Odum. 1970. Energetics of the littersoil subsystem.In: Methods of study in soil ecology, ed. by J. Phillipson. IBP/UNESCO Symp., Paris. pp. 93–98.Google Scholar
  296. Wiegert, R. G., andF. C. Evans. 1964. Primary production and disappearance of dead vegetation on an old field in southeastern Michigan. Ecology45: 49–63.CrossRefGoogle Scholar
  297. Wiegert, R. G., andJ. T. McGinnis. 1975. Annual production and disappearance of detritus on three South Carolina old fields. Ecology56: 129–140.CrossRefGoogle Scholar
  298. Wiegert, R. G., andP. Murphy. 1970. Effect of season, species, and location on the disappearance rate of leaf litter in a Puerto Rican rain forest.In: A tropical rain forest: A study of irradiation and ecology at El Verde, Puerto Rico, ed. by H. T. Odum. Div. Tech. Information, USAEC, Washington, D.C. pp. 101–104.Google Scholar
  299. Wildung, R. E., T. R. Garland, andR. L. Buschbom. 1975. The interdependence effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils. Soil Biol. Biochem.7: 373–378.CrossRefGoogle Scholar
  300. Williams, S. T., andT. R. G. Gray. 1974. Decomposition of the litter on the soil surface.In: Biology of plant litter decomposition, vol. 2, ed. by C. H. Dickinson and G. J. F. Pugh. Academic Press, London and New York, pp. 611–632.Google Scholar
  301. Witkamp, M. 1963. Microbial population of leaf litter in relation to environmental conditions and decomposition. Ecology44: 370–377.CrossRefGoogle Scholar
  302. Witkamp, M. 1964. Environmental influences on microbial populations and activity of the forest floor. Trans. 8th Int. Cong. Soil Sci.3: 647–654.Google Scholar
  303. Witkamp, M. 1966a. Decomposition of leaf litter in relation to environmental conditions, microflora and microbial respiration. Ecology47: 194–201.CrossRefGoogle Scholar
  304. Witkamp, M. 1966b. Rates of carbon dioxide evolution from the forest floor. Ecology47: 492–494.CrossRefGoogle Scholar
  305. Witkamp, M. 1969. Cycles of temperature and carbon dioxide evolution from litter and soil. Ecology50: 922–924.CrossRefGoogle Scholar
  306. Witkamp, M., andD. A. Crossley, Jr, 1966. The role of arthropods and microflora in breakdown of white oak litter. Pedobiologia6: 293–303.Google Scholar
  307. Witkamp, M., andM. L. Frank. 1967. Retention and loss of cesium-137 by components of the groundcover in a pine (Pinus virginiana L.) stand. Health Phys.13: 985–990.PubMedCrossRefGoogle Scholar
  308. Witkamp, M., andM. L. Frank. 1969. Evolution of CO2 from litter, humus, and subsoil of a pine stand. Pedobiologia9: 358–365.Google Scholar
  309. Witkamp, M., andJ. S. Olson. 1963. Breakdown of confined and nonconfined oak litter. Oikos14: 138–147.CrossRefGoogle Scholar
  310. Witkamp, M., andJ. Van Der Drift. 1961. Breakdown of forest litter in relation to environmental factors. Plant Soil15: 295–311.CrossRefGoogle Scholar
  311. Wittich, W. 1939. Untersuchungen über den Verlauf der Streuzersetzungen auf einem Boden mit Mullzustand. 1. Forstarchiv15: 96–111.Google Scholar
  312. Wittingham, W. F., and L. Baker. 1972. Microfungal population changes associated with the decomposition of oak forest leaf litter. Eastern Deciduous Forest Biome Memo. Rep. No. 72. 105 pp.Google Scholar
  313. Wollny, E. 1831. Untersuchungen über den Einfluss der physikalischen Eigenschaften des Bodens auf dessen Gehalt an freier Kohlensaure. Forsch. Gebiete Agric. Phys.4: 1–28.Google Scholar
  314. Wood, T. G. 1976. The role of termites (Isoptera) in decomposition processes.In: The role of terrestrial and aquatic organisms in decomposition processes, ed. by J. M. Anderson and A. Macfadyen. Blackwell Sci. Pub., Oxford. pp. 145–168.Google Scholar
  315. Woodford, E. K., andF. G. Gregory. 1948. Preliminary results obtained with an apparatus for the study of salt uptake and root respiration of whole plants. Ann. Bot.12: 335–370.Google Scholar
  316. Woodwell, G. M., andW. R. Dykeman. 1966. Respiration of forest measured by carbon dioxide accumulation during temperature inversions. Science154: 1031–1034.PubMedCrossRefGoogle Scholar
  317. Woodwell, G. M., andT. G. Marples. 1968. The influence of chronic gamma irradiation on production and decay of litter and humus in an oak-pine forest. Ecology49: 456–464.CrossRefGoogle Scholar
  318. Yamane, I., and K. Sato. 1971. Decay of litter ofMiscanthus sinensis andSasa palmata in Kawatabi IBP area.In: Grassland ecosystem studies, ed. by M. Numata. Jap. Comm., Int. Biol. Prog., Grassland Project. 51 pp.Google Scholar
  319. Yastrebov, M. T. 1958. Effect of the major biological factors on air composition of alluvial soils in the Klyaz’ma River flood plain. Sov. Soil Sci.1958(10): 1155–1162.Google Scholar
  320. Yemm, E. W. 1965. The respiration of plants and their organs.In: Plant physiology, vol. IV-A. Metabolism: Organic nutrition and nitrogen metabolism, ed. by F. C. Steward. Academic Press, Inc., New York. pp. 231–310.Google Scholar
  321. Zlotin, R. I. 1970. Invertebrate animals as a factor of the biological turnover. IV Colloq. Int. de la Faune du Sol, Dijon 1970, Paris19H: 455–462.Google Scholar

Copyright information

© The New York Botanical Garden 1977

Authors and Affiliations

  • J. S. Singh
    • 1
  • S. R. Gupta
    • 2
  1. 1.Department of BotanyKumaun UniversityNaini TalIndia
  2. 2.Department of BotanyKurukshetra UniversityKurukshetraIndia

Personalised recommendations