The Botanical Review

, Volume 41, Issue 4, pp 361–390 | Cite as

On Ö. Winge and a Prayer: The origins of polyploidy

  • Jack R. Harlan
  • J. M. J. deWet
Article

Summary

  1. 1)

    Almost all polyploids arise by way of unreduced gametes; other mechanisms occur, but are negligible.

     
  2. 2)

    The most widespread and common event is (2n+n) reproduction.

     
  3. 3)

    Triploids so produced frequently yield 4X plants on backcrossing and 6X plants on selfing.

     
  4. 4)

    Spontaneous polyploids appear repeatedly, but their fate depends on vigor and competitive ability.

     
  5. 5)

    The polyploids most frequently produced are probably strict autoploids, but they often lack competitive ability and may not become successfully established.

     
  6. 6)

    Wide crosses occur in nature but not very often; if the hybrid is vigorous, it may yield a stable, fertile polyploid in the second or later generations via unreduced gametes.

     
  7. 7)

    Wide crosses by way of (2n+n) reproduction are probably more common and successful than the above (6) pathway.

     
  8. 8)

    The most likely pathway to a successful polyploid in nature involves neither wide crosses nor strict autoploidy but crosses between races, ecotypes and cytotypes within a biological species.

     
  9. 9)

    The more or less autoploids so produced may generate genuine alloploids by interspecific hybridization at polyploid levels.

     
  10. 10)

    The classic explanation of alloploidyvia “chromosome doubling” of a sterile diploid interspecific hybrid is misleading in most cases, and this route is probably negligible in the evolution of polyploid systems.

     

Zusammenfassung

  1. 1)

    Die meisten Polyploide enstehen durch Befruchtungen nicht reduzierter Gameten. Es gibt auch andere, aber unbedeutende Mechanismen.

     
  2. 2)

    Die am meisten vorkommende Art der Fortpflanzung ist 2n+n.

     
  3. 3)

    Solche Triploide bilden häufig 4X-Abkömmlinge wenn sie zurückgekreuzt werden, und 6X-Pflanzen wenn sie selbstbestäubt sind.

     
  4. 4)

    Polyploide entstehen oft spontan, aber ihr Schicksal ist abhängig von ihrer Vitalität und der Fähigkeit sich zu behaupten.

     
  5. 5)

    Die am häufigsten vorkommenden Polyploide sind wahrscheinlich reine Autopolyploide, aber diese sind oftmals weichlich und können sich dann möglicherweise nicht erfolgreich durchsetzen.

     
  6. 6)

    Die Natur erzeugt nur selten entfernt verwandte Kreuzungen; aber falls die Bastarde sich behaupten, mögen in den nachfolgenden Generationen stabilen und fruchtbaren Polyploide auftauchen via unreduzierten, Gameten.

     
  7. 7)

    Kreuzungen swischen entfernter verwandten Pflanzen durch 2n+n-Befruchtungen sind wahrscheinlich häufiger und erfolgreicher als die in der oben erwähnten (6) Weise.

     
  8. 8)

    Der warscheinlichste in der Natur vorkommende Weg zur Erzeugung einer erfolgreichen Polyploide ist weder durch Kreuzungen swischen entfernt verwandten Individuen, noch durch reine Autopolyploidie, sondern durch Kreuzungen innerhalb einer biologischen Art swischen Rassen, Oekotypen oder Cytotypen.

     
  9. 9)

    Hemi-Autopolyploide produziert in solcher Weise können wahre Allopolyploide bilden durch Kreuzungen zwischen Arten auf der Polyploid Stufe.

     
  10. 10)

    Die klassische Erklärung der Allopolyploidie via Verdoppeln der Chromosomenzahl einer sterilen diploiden Hybride verschiedener Arten ist in den meisten Fällen unzutreffend, und diese Route ist wahrscheinlich unbedeutend in der Entwickelung (Evolution) von polyploiden Systemen.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alexander, D. E. 1957. The genetic induction of autotetraploidy: A proposal for its use in corn breeding. Agron. J.49: 40–43.CrossRefGoogle Scholar
  2. Alexander, D. E. 1958. Genetic induction of autotetraploidy in maize. Proc. 10th Int. Congr. Genet. Montreal: 3 (abst).Google Scholar
  3. Alexander, D. E. and J. B. Beckett. 1963. Spontaneous triploidy and tetraploidy in maize. J. Hered.54: 103–106.Google Scholar
  4. Andersson-Kottö, I. and A. E. Gairdner. 1931. Interspecific crosses in the genusDianthus. Genetica13: 77–112.CrossRefGoogle Scholar
  5. Anonymous. 1964. Report of Sugarcane Breeding Institute, Coimbatore. Indian Council Agric. Res.4: 31–33; 107–108; 177–178; 240–243.Google Scholar
  6. Barrow, J. R. 1971. Meiosis and pollen development in haploid cotton plants. J. Hered.62: 139–141.Google Scholar
  7. Bauman, L. F. 1961. Production of diploid eggs by normal diploid maize. Maize Genet. Coop. Newsletter35: 128–130.Google Scholar
  8. Bennett, H. W. and E. C. Bashaw. 1960. An interspecific hybrid inPaspalum. J. Hered.51: 81–85.Google Scholar
  9. Bergman, B. 1951. On the formation of reduced and unreduced gametophytes in the females ofAntennaria carpatica. Hereditas37: 501–518.Google Scholar
  10. Bernström, Peter. 1955. Cytogenetic studies on relationships between annual species ofLamium. Hereditas41: 1–122.Google Scholar
  11. Bingham, E. T. and A. Binek. 1969. Hexaploid alfalfa,Medicago sativa L.: origin, fertility and cytology. Can. J. Genet. Cytol.11: 359–366.Google Scholar
  12. Blackburn, K. B. and J. W. H. Harrison. 1924. Genetical and cytological studies in hybrid roses. Brit. J. Exp. Biol.1: 557–570.Google Scholar
  13. Buxton, B. H. and C. D. Darlington. 1931. Behaviour of a new species,Digitalis mertonensis. Nature127: 94.CrossRefGoogle Scholar
  14. Buxton, B. H. and W. C. F. Newton. 1928. Hybrids ofDigitalis ambigua andDigitalis purpurea, their fertility and cytology. J. Genet.19: 269–279.Google Scholar
  15. Cauderon, Y. 1958. Etude cytogé né tique desAgropyrum francais et de leurs hybrides avec les blé s. An. Inst. Nat. Rech. Agron. Paris, Sé r. B,8: 389–566.Google Scholar
  16. Chavez, R. S. and M. Hernandez de Sosa. 1971. Use of dihaploids in the breeding ofSolarium tuberosum L. I. Cytological considerations. Hereditas69: 83–100.Google Scholar
  17. Chheda, H. R. and J. R. Harlan. 1962. Mode of chromosome association inBothriochloa hybrids. Caryologia15: 461–476.Google Scholar
  18. Clausen, R. E. 1928. Interspecific hybridization inNicotiana. VII. The cytology of hybrids of the synthetic speciesdigluta, with its parentsglutinosa andtabacum. Univ. Calif. Publ. Bot.11: 177–211.Google Scholar
  19. Clausen, R. E. and T. H. Goodspeed. 1925. Interspecific hybridization inNicotiana. II. A tetraploidglutinosa-tabacum hybrid, an experimental verification of Winge’s hypothesis. Genetics10: 278–284.PubMedGoogle Scholar
  20. Clausen, J., D. D. Keck and W. M. Heisey. 1945. Experimental studies on the nature of species. II. Plant evolution through amphiploidy and autopolyploidy, with examples from the Madiinae. Carnegie Inst. Wash. Publ.564: 1–174.Google Scholar
  21. Combes, D. and J. Pernes. 1970. Variations dans les nombres chromosomiques duPanicum maximum Jacq. en relation avec le mode de réproduction. C. R. Acad. Sc. Paris, Sé r. D,270: 782–785.Google Scholar
  22. Crane, M. B. and C. D. Darlington. 1927. The origin of new forms inRubus I. Genetica9: 241–278.CrossRefGoogle Scholar
  23. Darlington, C. D. 1930. Studies inPrunus III. J. Genet.22a: 65–93.Google Scholar
  24. Darlington, C. D. 1932. Recent advances in cytology. Churchill, London, pp. 559.Google Scholar
  25. D’Cruz, R. and K. Chakravarty. 1961. Spontaneous allopolyploidy inArachis. Indian Oilseeds J.5: 55–57.Google Scholar
  26. Dermen, H., F. H. Harmon and J. H. Weinberger. 1970. Fertile hybrids from a cross of a variety ofVitis vinifera withV. rotundifolia. J. Hered.61: 269–271.Google Scholar
  27. De Vries, Hugo. 1913. Gruppenweise Artibildung. Borntraeger, Berlin. pp. 365.Google Scholar
  28. deWet, J. M. J. and J. R. Harlan. 1966. Morphology of the compilospeciesBothriochloa intermedia. Amer. J. Bot.53: 94–98.CrossRefGoogle Scholar
  29. deWet, J. M. J. and J. R. Harlan. 1970. Apomixis, polyploidy and speciation inDichanthium. Evolution24: 270–277.CrossRefGoogle Scholar
  30. deWet, J. M. J., L. M. Engle, C. A. Grant and S. T. Tanaka. 1972. Cytology ofmaize-Tripsacum introgression. Amer. J. Bot.59: 1026–1029.CrossRefGoogle Scholar
  31. deWet, J. M. J., J. R. Harlan and W. L. Richardson. 1966. Biosystematics of the Bothriochloininae (Andropogonae, Gramineae): A Report of Progress, 1960 to 1965. Okla. Agric. Expt. Sta. Proc. Series P-532, pp. 31.Google Scholar
  32. deWet, J. M. J., R. J. Lambert, J. R. Harlan and S. M. Naik. 1970. Stable triploid hybrids amongZea-Tripsacum-Zea backcross populations. Caryologia23: 183–187.Google Scholar
  33. Dewey, D. R. 1972. Cytogenetics ofElymus angustus and its hybrids withElymus giganteus, Elymus cinereus, andAgropyron repens. Bot. Gaz.133: 57–64.CrossRefGoogle Scholar
  34. Digby, L. 1912. The cytology ofPrimula kewensis and of other relatedPrimula hybrids. Ann. Bot.26: 357–388.Google Scholar
  35. Dunford, M. P. 1964. A cytogenetic analysis of certain polyploids inGrindelia (Compositae). Amer. J. Bot.51: 49–56.CrossRefGoogle Scholar
  36. Emerson, R. A. and G. W. Beadle. 1930. A fertile tetraploid hybrid betweenEuchlaena perennis andZea mays. Amer. Nat.64: 190–192.CrossRefGoogle Scholar
  37. Engle, L. M., J. M. J. deWet and J. R. Harlan. 1973. Cytology of backcross offspring derived from amaize-Tripsacum hybrid. Crop Sci.13: 690–694.CrossRefGoogle Scholar
  38. Engle, L. M., J. M. J. deWet and J. R. Harlan. 1974. Chromosomal variation among offspring of hybrid derivatives with 20Zea and 36Tripsacum chromosomes. Carylogia27: 193–209.Google Scholar
  39. Esen, A. and R. K. Soost. 1971. Unexpected triploids inCitrus: their origin, identification, and possible use. J. Hered.62: 329–333.Google Scholar
  40. Esen, A. and R. K. Soost. 1972. Tetraploid progenies from 2x X 4x crosses ofCitrus and their origin. J. Am. Soc. Hort. Sci.97a: 410–414.Google Scholar
  41. Evans, W. D. 1974. Evidence of a crossability barrier in diploid X hexaploid and diploid X octoploid crosses in the genusFragaria. Euphytica23: 95–100.CrossRefGoogle Scholar
  42. Fagerlind, F. 1947. Die Restitutions— und Kontraktionskerne derHieracium- Microsporogenese. Svensk. Bot. Tidskr.41: 247–263.Google Scholar
  43. Fang, J. S. and H. W. Li. 1966. Cytological study inPaspalum conjugatum Berg. Bot. Bull. Acad. Sinica7: 1–12.Google Scholar
  44. Fedorova, N. J. 1934. Polyploid interspecific hybrids in the genusFragaria. Genetica16: 524–541.CrossRefGoogle Scholar
  45. Gairdner, A. E. 1926.Campanula persicifolia and its tetraploid form, Telham Beauty, J. Genet.16: 341–351.Google Scholar
  46. Gates, R. R. 1909. The stature and chromosomes ofOenothera gigas De Vries. Archiv f. Zellforsch.3: 525.Google Scholar
  47. Gates, R. R. 1924. Polyploidy. Brit. J. Exp. Biol.1: 153–182.Google Scholar
  48. Gorenflot, R. and J. L. Marcotte. 1970. Natural polyploidisation in thePlantago maritima complex L. sl. Compt. Rend. Hebd. Acad. Sci. Paris, Sé r. D,270: 1911–1914.Google Scholar
  49. Grant, V. 1952. Cytogenetics of the hybridGilia millefoliata Xachilleaefolia. I. Variations in meiosis and polyploidy rate as affected by nutritional and genetic conditions. Chromosoma5: 372–390.PubMedCrossRefGoogle Scholar
  50. Greenleaf, W. H. 1947. A spontaneous tetraploid hybrid in pepper (Capsicum frutescens). Proc. Amer. Soc. Hort. Sci.49: 231–232.Google Scholar
  51. Gregor, J. W. and F. W. Sansome. 1930. Experiments on the genetics of wild populations. II.Phleum pratense L. and the hybridP. pratense L. XP. alpinum L. J. Genet.22: 373–387.CrossRefGoogle Scholar
  52. Hair, J. B. 1956. Subsexual reproduction inAgropyron. Heredity10: 129–160.Google Scholar
  53. Håkansson, Artur. 1941. Zur Zytologie von Godetia—Arten und Bastarden. Hereditas27: 319–336.Google Scholar
  54. Hakansson, Artur. 1955. Chromosome numbers and meiosis in certain Salices. Hereditas41: 454–482.Google Scholar
  55. Hakansson, A. and S. Ellerström. 1950. Seed development after reciprocal crosses between diploid and autotetraploid rye. Hereditas36: 256–296.Google Scholar
  56. Harlan, J. R., R. P. Celarier, W. L. Richardson, M. H. Brooks and K. L. Mehra. 1958. Studies on Old World bluestems II. Okla. Agric. Expt. Sta. Tech. Bul. No. T-72, pp. 23.Google Scholar
  57. Harlan, J. R. and J. M. J. deWet. 1963. The role of apomixis in the evolution of theBothriochloa-Dichanthium complex. Crop Sci.3: 314–316.CrossRefGoogle Scholar
  58. Harlan, J. R., M. H. Brooks, D. S. Borgaonkar and J. M. J. deWet. 1964. Nature and inheritance of apomixis inBothriochloa andDichanthium. Bot. Gaz.125: 41–46.CrossRefGoogle Scholar
  59. Heneen, W. K. 1963. Meiosis in the interspecific hybridElymus farctus XE. repens. Hereditas49: 107–118.Google Scholar
  60. Hermsen, J. G. T. 1969. Induction of haploids and aneuploids in colchicineinduced tetraploidSolarium chacoense Bitt. Euphytica18: 183–189.Google Scholar
  61. Hitchcock, C. L. and Arthur Cronquist. 1973. Flora of the Pacific Northwest. Univ. Washington Press, Seattle, pp. 730.Google Scholar
  62. Hollingshead, Lillian. 1930. Cytological investigations of hybrids and hybrid derivatives ofCrepis capillaris andCrepis tectorum. Univ. Calif. Publ. Agric. Sci.6: 55–94.Google Scholar
  63. Hornsey, K. G. 1973. The occurrence of hexaploid plants among auto-tetraploid populations of sugar beet (Beta vulgaris L.), and the production of tetraploid progeny using a diploid pollinator. Caryologia26: 225–228.Google Scholar
  64. Ichijima, K. 1926. Cytological and genetic studies onFragaria. Genetics11: 590–604.PubMedGoogle Scholar
  65. Jahr, W., K. Skiebe and M. Stein. 1965. Die Herstellung von neuen Allopolyploiden fur die Züchtung. Züchter35: 7–14.CrossRefGoogle Scholar
  66. Jenkin, T. J. and P. T. Thomas. 1939. Interspecific and intergeneric hybrids in herbage grasses.III. Lolium loliaceum andLolium rigidum. J. Genet.37: 255–286.Google Scholar
  67. Johnsson, Helge. 1945. Chromosome numbers of the progeny from the cross triploid X tetraploidPopulus tremula. Hereditas31: 500–501.Google Scholar
  68. Jørgensen, C. A. 1928. The experimental formation of heteroploid plants in the genusSolanum. J. Genet.19: 133–210.Google Scholar
  69. Kagawa, F. and Y. Chizaki. 1934. Cytological studies on the genus hybrids amongTriticum, Secale andAegilops, and the species hybrids inAegilops. Jap. J. Bot.7: 1–32.Google Scholar
  70. Kamemoto, H. 1950. Polyploidy inCattleyas. Amer. Orchid Soc. Bul.19: 366–373.Google Scholar
  71. Kandasami, P. A. 1961. Interspecific and intergeneric hybrids ofSaccharum spontaneum L. I. Functioning of gametes. Cytologia26: 2: 117–123.Google Scholar
  72. Karpechenko, G. D. 1927. The production of polyploid gametes in hybrids. Hereditas9: 349–368.Google Scholar
  73. Kattermann, G. 1934. Die cytologischen Verhältnisse einiger Weizenroggen-Bastarde und ihre Nachkommenschaft (F2). Züchter6: 97–107.Google Scholar
  74. Kiellander, C. L. 1950. Polyploidy inPicea Abies. Hereditas36: 513–516.Google Scholar
  75. Kihara, H. 1931. Genomanalyse beiTriticum undAegilops II.Aegilotricum undAegilops cylindrica. Cytologia2: 106–156.Google Scholar
  76. Kihara, H. and Y. Katayama. 1931. Genomanalyse beiTriticum undAegilops. III. Zur Entstehungsweise eine neuen konstanten oktoploidenAegilotricum. Cytologia2: 234–255.Google Scholar
  77. Kihara, H. and T. Ono. 1926. Chromosomenzahlen und systematische Gruppierung der Rumex-Arten. Zeitschr. f. Zellforsch. Mikro Anat.4: 475–481.CrossRefGoogle Scholar
  78. Kimber, G. and R. Riley. 1963. The relationships of the diploid progenitors of hexaploid wheat. Can. J. Genet. Cytol.5: 83–88.Google Scholar
  79. Kootin-Sanwu, M. and S. R. J. Woodell. 1971. The cytology ofCaltha palustris: cytogenetic relationships. Heredity26: 121–125.Google Scholar
  80. Kostoff, D. 1938. Studies on polyploid plants. XVIII. Cytogenetic studies onNicotiana silvestris XN. tomentosiformis hybrids and amphidiploids and their bearings on the problem of the origin ofN. tabacum. Compt. Rend. Acad. Sci. USSR18: 459–462.Google Scholar
  81. Kostoff, D. and J. Kendall. 1931. Studies of certainPetunia aberrants. J. Genet.24: 165–178.Google Scholar
  82. Koul, A. K. and R. N. Gohil. 1971. Further studies on natural triploidy in viviporous onion. Cytologia36: 253–261.Google Scholar
  83. Kuwada, Y. 1928. An occurrence of restitution-nuclei in the formation of the embryosacs inBalanophora japonica Mak. Bot. Mag. (Tokyo)42: 117–128.Google Scholar
  84. Lammerts, Walter. 1929. Interspecific hybridization inNicotiana. IX. Further studies of the cytology of the backcross progenies of thepaniculata-rustica hybrid. Genetics14: 286–304.PubMedGoogle Scholar
  85. Lammerts, Walter. 1931. Interspecific hybridization inNicotiana. XII. The amphidiploidrustica-paniculata hybrid; its origin and cytogenetic behavior. Genetics16: 191–211.PubMedGoogle Scholar
  86. Lange, W. and M. Wagenvoort. 1973. Meiosis in triploidSolanum tuberosum. Euphytica22: 8–18.CrossRefGoogle Scholar
  87. Larsen, C. S. and M. Westergaard, 1938. Contributions to the cytogenetics of forest trees. I. A triploid hybrid betweenLarix decidua Miller andLarix occidentalis Nutt. J. Genet.36: 523–530.Google Scholar
  88. Lesley, M. M. and J. W. Lesley. 1930. The mode of origin and chromosome behaviour in pollen mother cells of a tetraploid seedling tomato. J. Genet.22: 419–425.CrossRefGoogle Scholar
  89. Levan, Albert. 1941. The cytology of the species hybridAllium cepa Xfistulosum and its polyploid derivatives. Hereditas27: 253–272.Google Scholar
  90. Li, H. W., C. C. Chen, T. S. Weng and K. D. Wuu. 1963. Cytogenetical studies ofOryza sativa L. and its related species. 4. Interspecific crosses involvingO. australiensis withO. sativa andO. minuta. Bot. Bull. Acad. Sinica4: 65–74.Google Scholar
  91. Li, H. W., K. K. S. Yang and K. C. Ho. 1964. Cytogenetical studies ofOryza sativa L. and its related species. 7. Non-synchronization of mitosis and cytokinesis in relation to the formation of diploid gametes in hybrids ofOryza sativa L. andO. officinalis Wall. Bot. Bull. Acad. Sinica5: 142–153.Google Scholar
  92. Liljifors, Alf. 1936. Zytologische Studien über den F1—BastardeTriticum turgidum XSecale cereale. Hereditas21: 240–262.Google Scholar
  93. Lin, P. S. and J. G. Ross. 1969. Chromosome configuration changes with stages of anther development in a triploid sorghum plant. Crop Sci.9: 670–672.CrossRefGoogle Scholar
  94. Marchant, C. J. 1968. Evolution inSpartina (Gramineae). II. Chromosomes, basic relationships and problem ofS. Xtownsendii Agg. J. Linn. Soc. (Bot.)60: 381–409Google Scholar
  95. Marks, G. E. 1966. The origin and significance of intraspecific polyploidy: experimental evidence fromSolanum chacoense. Evolution20: 552–557.CrossRefGoogle Scholar
  96. Marsden-Jones, E. W. and W. B. Turrill. 1930. The history of tetraploid Saxifrage. J. Genet.23: 83–92.Google Scholar
  97. McClure, W. J. 1966. Cytological and morphological observations in crosses between diploid and tetraploid sorghum. Dissert. Abstr.27: Order No. 66–4039: 44 (Abst.).Google Scholar
  98. Menzel, M. Y. and D. W. Martin. 1971. Chromosome homology in some intercontinental hybrids inHibiscus sect.Furcaria. Am. J. Bot.58: 191–202.CrossRefGoogle Scholar
  99. Mitsuoka, S. and F. Ehrendorfer. 1972. Cytogenetics and evolution ofMatricaria and related genera (Asteraceae-Anthemideae). Bot. Zeitschr.120: 155–200.Google Scholar
  100. Montelongo-Escobedo, H. and P. R. Rowe. 1969. Haploid induction in potato: cytological basis for the pollinator effect. Euphytica18: 116–123.Google Scholar
  101. Morinaga, T. and E. Fukushima. 1934/35. Cyto-genetical studies onOryza sativa L. II. Spontaneous autotriploid mutants inOryza sativa L. Jap. J. Bot.7: 207–225.Google Scholar
  102. Müntzing, Arne. 1932. Cyto-genetic investigations on syntheticGaleopsis tetrahit. Hereditas16: 105–154.Google Scholar
  103. Müntzing, Arne. 1939. Studies on the properties and the ways of production of rye-wheat amphidiploids. Hereditas25: 387–430.Google Scholar
  104. Müntzing, Arne. 1958. Heteroploidy and polymorphism in some apomictic species ofPotentilla. Hereditas44: 280–329.Google Scholar
  105. Newton, W. C. F. and C. D. Darlington. 1929. Meiosis in polyploids. J. Genet.21: 1–56.Google Scholar
  106. Newton, W. C. F. and Caroline Pellew. 1929.Primula kewensis and its derivatives. J. Genet.20: 405–467.CrossRefGoogle Scholar
  107. Olsson, Gösta and Brita Rufelt. 1948. Spontaneous crossing between diploid and tetraploidSinapis alba. Hereditas34: 351–365.Google Scholar
  108. Ostergen, G. 1940. Cytology ofAgropyron junceum, A. repens and their spontaneous hybrids. Hereditas26: 305–316.Google Scholar
  109. Owenbey, M. 1950. Natural hybridization and amphidiploidy in the genusTragopogon. Am. J. Bot.37: 637–499.Google Scholar
  110. Percival, John. 1930. Cytological studies of some hybrids ofAegilops sp. X wheats, and of some hybrids between different species ofAegilops. J. Genet.22: 201–278.CrossRefGoogle Scholar
  111. Pogan, E. 1971. Karyological studies in a natural hybrid ofAlisma lanceolatum With. XAlisma plantago-aquatica L. and its progeny. Genet. Polan.12: 219–222.Google Scholar
  112. Poole, C. F. 1932. The interspecific hybridCrepis rubra XC. foetida and some of its derivatives. II. Two selfed generations from an amphidiploid hybrid. Univ. Calif. Publ. Agric. Sci.6: 231–255.Google Scholar
  113. Price, S. 1957. Cytological studies inSaccharum and allied genera. III. Chromosome numbers in interspecific hybrids. Bot. Gaz.118: 146–159.CrossRefGoogle Scholar
  114. Randolph, L. F. and B. McClintock. 1926. Polyploidy inZea mays L. Am. Nat.60: 99–102.CrossRefGoogle Scholar
  115. Raman, V. S. and P. C. Kesavan. 1965. A tetraploid hybrid inArachis and its bearing on differentiation between diploid species. Ind. J. Genet.25: 8084.Google Scholar
  116. Ramanna, M. S. 1974. The origin of unreduced microspores due to aberrant cytokinesis in the meiocytes of potato and its genetic significance. Euphytica23: 20–30.CrossRefGoogle Scholar
  117. Reddy, P. S. and R. D’Cruz. 1971. Sterility in the interspecific hybrids ofDichanthium Will. Cytologia36: 461–468.Google Scholar
  118. Rhoades, M. M. 1956. Genetic control of chromosome behavior. Maize Genetics Coop. Newsletter30: 38–42.Google Scholar
  119. Riley, R. and C. N. Law. 1965. Genetic variation in chromosome pairing. Adv. Genet.13: 57–114.Google Scholar
  120. Roach, B. T. 1968. Cytological studies inSaccharum. Chromosome transmission in interspecific and intergeneric crosses. Proc. Int. Soc. Sugar Cane Technologists13: 901–920.Google Scholar
  121. Rosenberg, O. 1926. Zum Mechanismus der diploiden Kernteilung in Pollenmutterzellen. Ark. Bot.20B: 1–5.Google Scholar
  122. Salesses, G. 1970. Sur le phé nomène de cytomixie chez des hybrides triploides de prunier. Ann. Amé lior. Plantes20: 383–388.Google Scholar
  123. Schröter, W. 1966. Möglichkeiten zur Herstellung tetraploider Beta-Rüben über unreduzierte Gameten. Tagungsber. Deutsch. Akad. Landwirtschaftsw. Berlin No. 73, pp. 172.Google Scholar
  124. Shimotomai, N. 1932. Eigenartige Vermehrung der Chromosomenzahl bei den Artbastarden vonChrysanthemum. Bot. Mag. (Tokyo)46: 789–799.Google Scholar
  125. Simmonds, N. W. 1961. Megasporogenesis and female fertility in three edible triploid bananas. J. Genet.57: 269–278.Google Scholar
  126. Skalinska, M. 1932. Cytological mechanism of segregation in the progeny of an allotetraploidAquilegia. Proc. 6th Int. Congr. Genet.2: 185–187.Google Scholar
  127. Skiebe, K. 1956. Artbastardierung und Polyploidie in der GattungCheiranthus L. Züchter26: 353–363.CrossRefGoogle Scholar
  128. Skiebe, K. 1958. Die Bedeutung von unreduzierten Gameten für die Polyploidiezüchtung bei der Fliederprimel (Primula malacoides Franchet). Züchter28: 353–359.CrossRefGoogle Scholar
  129. Skiebe, K. 1965. Die Entstehung von polyploiden Populationen in der Evolution. Deutsch. Landw. (Berlin)16: 340–343.Google Scholar
  130. Snyder, L. A. 1961. Asyndesis and meiotic non-reduction in microsporogenesis of apomicticPaspalum secans, Cytologia26: 50–61.Google Scholar
  131. Speckmann, G. J. and G. E. van Dijk. 1972. Chromosome number and plant morphology in some ecotypes ofPoa pratensis L. Euphytica21: 171–180.CrossRefGoogle Scholar
  132. Stebbins, G. L. 1947. Types of polyploids: their classification and significance. Adv. Genet.1: 403–429.PubMedGoogle Scholar
  133. Stebbins, G. L. 1950. Variation and evolution in plants. Columbia Univ. Press, New York, pp. 643.Google Scholar
  134. Stebbins, G. L. 1970. Chromosomal evolution in higher plants. Addison-Wesley Publ. Co., Menlo Park (Calif.), pp. 216.Google Scholar
  135. Stomps, T. J. 1912. Die Enstehung vonOenothera gigas. Ber. Deutsch. Bot. Ges.30: 406–416.Google Scholar
  136. Storey, W. B. 1956. Diploid and polyploid gamete formation in orchids. Proc. Am. Soc. Hort. Sci.68: 491–502.Google Scholar
  137. Strandhede, Sven-Olov. 1965. Chromosome studies inEleocharis, subser.palustres. II. Pollen mitosis with special reference to some strains with 15 chromosomes, and formation of secondarily unreduced pollen grains. Hereditas53: 374–388.CrossRefGoogle Scholar
  138. Straub, J. 1939. Polyploidieauslösung durch Temperaturwirkungen. Zeitschr. Bot.34: 385–481.Google Scholar
  139. Tara, M. 1972. Cytogenetic studies on natural intergeneric hybridization inAster alliences. I.Aster ageratoides subsp.ovatus (2n=36) XKalimeras incisa (2n=72). Bot. Mag. (Tokyo)5: 219–240.CrossRefGoogle Scholar
  140. Thompson, R. C. 1942. An amphidiploidLactuca. J. Hered.33: 253–264.Google Scholar
  141. Thompson, W. P. 1931. Cytology and genetics of crosses between fourteen and seven chromosome species of wheat. Genetics16: 309–324.PubMedGoogle Scholar
  142. Ting, Y. C. 1959. Meiosis in triploid maize-teosinte hybrids. Genetics44: 542 (Abst.).Google Scholar
  143. Tschermak, E. von and H. Bleier. 1926. Uber fruchtbare Aegilops-Weizenbastarde. Ber. Deutsch. Bot. Ges.44: 110–132.Google Scholar
  144. U. Nagaharv. 1934/35. Genome analysis inBrassica with special reference to the experimental formation ofB. napus and peculiar mode of fertilization. Jap. J. Bot.7: 389–452.Google Scholar
  145. Wagenaar, E. B. 1968. Meiotic restitution and the origin of polyploidy. I. Influence of genotype on polyploid seedset in aTriticum crassum XT. turgidum hybrid. Can. J. Genet. Cytol.10: 836–843.Google Scholar
  146. Wagenaar, E. B. 1968a. Meiotic restitution and the origin of polyploidy. II. Prolonged duration of metaphase I as a causal factor of restitution induction. Can. J. Genet. Cytol.10: 844–852.Google Scholar
  147. Wagenaar, E. B. 1969. Meiotic restitution and the origin of polyploidy. III. The cytology and fertility of eight generations of the offspring of a spontaneously produced amphipolyploid ofTriticum crassum XT. turgidum. Can. J. Genet. Cytol.11: 729–738.Google Scholar
  148. Walters, M. S. 1958. Aberrant chromosome movement and spindle formation in meiosis ofBromus hybrids: an interpretation of spindle organization. Am. J. Bot.45: 271–289.CrossRefGoogle Scholar
  149. Wettstein, F. V. 1924. Morphologie und Physiologie des Formwechsels der Moosen auf genetischer Grundlage. Zeitschr. Indük. Abst. Vererb. Lehre33: 1–236.CrossRefGoogle Scholar
  150. Whitaker, T. W. 1943. The occurrence of a spontaneous triploid celery. Proc. Am. Soc. Hort. Sci.39: 346–348.Google Scholar
  151. Whittington, W. J. and J. Hill. 1961. Growth studies on natural hybrids betweenLolium perenne andFestuca pratensis. J. Exp. Bot.12: 330–340.CrossRefGoogle Scholar
  152. Winge, Ö. 1917. The chromosomes. Their numbers and general importance. Compt. Rend. Trav. du Lab. de Carlsberg13: 131–275.Google Scholar
  153. Winge, Ö. 1933/34. A case of amphidiploidy within the collective speciesErophila vern. Hereditas18: 181–191.CrossRefGoogle Scholar
  154. Zohary, D. and U. Nur. 1959. Natural triploids in the orchardgrass,Dactyiis glomerata L., polyploid complex and their significance for gene flow from diploid to tetraploid levels. Evolution13: 311–317.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1975

Authors and Affiliations

  • Jack R. Harlan
    • 1
  • J. M. J. deWet
    • 1
  1. 1.Crop Evolution LaboratoryAgronomy Department University of IllinoisUrbana

Personalised recommendations