Advertisement

The Botanical Review

, Volume 48, Issue 3, pp 597–689 | Cite as

Mechanisms for enhancing nutrient uptake in plants, with particular reference to mediterranean South Africa and Western Australia

  • Byron Lamont
Article

Abstract

The major constraints to nutrient uptake by vascular plants in mediterranean South Africa and Western Australia are: very infertile soils, relatively low temperatures when water availability is high, and hot, dry summers. These constraints are partly overcome through increased efficiency of uptake, tapping novel sources of nutrients, and prolonging water uptake. Absorptive area per unit “cost” may be enlarged directly through increased fineness of the root system and proliferation of long root hairs. This reaches its greatest development in the root clusters of the Proteaceae (proteoid roots), Restionaceae (“capillaroid” roots) and Cyperaceae (dauciform roots). Absorptive area is increased indirectly through fungal hyphae which extend from hairless rootlets into the soil. Two major groups can be recognised: general (VA mycorrhizas) and host-specific (ericoid, orchid and sheathing mycorrhizas). Mycorrhizas are the most widespread specialised modes of nutrition and are probably universal in such major taxa here asPodocarpus, Acacia, Fabaceae, Poaceae, Asteraceae, Rutaceae, terrestrial orchids, Ericales and Myrtaceae. General mycorrhizas are the least drought-adapted of mechanisms for maximising absorptive area. All have been implicated in enhancing P uptake through increasing access to inorganic P, solubilisation and shortening the diffusion path. However, selective uptake of other nutrients, especially N, by host-specific mycorrhizas may be equally important.

Included under novel sources of nutrients are free N2 (utilised by N2-fixing nodules), small-animal prey (carnivorous leaves) and persistent leaf bases (aerial roots ofKingia australis). Both legume and non-legume N2-fixing species are well-represented in these two regions, with stands of individual species in southwestern Australia estimated to contribute 2–19 kg N/ha/yr to the ecosystem. Free nitrogen fixation requires additional nutrients, especially Mo and Co, but is enhanced following fires and by supplementary uptake mechanisms, especially VA mycorrhizas. Southwestern Australia is particularly rich in carnivorous species. Nitrogen, P, K and S are important nutrients absorbed, with digestion aided by enzymes provided by bacteria and the glands. Parasitic plants both tap novel sources of nutrients and capitalise on any efficient water and nutrient uptake mechanisms of the hosts. Root parasites are better represented than stem parasites in mediterranean South Africa and Western Australia. Phosphorus and K in particular are absorbed preferentially by the haustoria, but much remains to be known about their modes of operation.

Maximum activity of all uptake mechanisms, except those attached to some deep-rooted plants, is restricted to winter-spring. Most new seasons’s rootlets and specialised roots are confined to the uppermost 15 cm of soil, especially in or near the decomposing litter zone. Nutrient uptake is further enhanced by the tendency for the rootlets to cluster, trapping water by capillary action and prolonging nutrient release. As an early product of decomposition, N tends to be available as NH4 (rather than NO3) and it is absorbed preferentially by almost all specialised modes of nutrition. Microorganisms are required in the formation and/or functioning of all these structures, except haustoria. Uptake mechanisms which are optional to the plant reach their peak contribution to the root system at soil nutrient levels well below those required for greatest plant growth, when they may be absent altogether. It is only over the narrow range of nutrient availability, where shoot content of a nutrient is greater in the presence of the mechanism than in its absence (other factors remaining constant), that specialised modes can be termed nutrient-uptake “strategies.”

For all specialised modes of nutrition, the component genera are better represented in these two regions than in the surrounding more fertile, arid to subtropical regions of much greater area. Endemism of species with each mode exceeds that for the two floras overall (75%). This is taken as preliminary evidence that specialised modes of nutrition are best represented in nutrient-poor soils. While they serve to limit nutrient loss from the ecosystem, their proliferation is therefore not necessarily a response to increasing “leaks” in the system.

A hierarchical scheme of the functional/structural relationships between the various mechanisms is presented, starting with the rootless, VA-mycorrhizal plant as the most primitive condition. Taxa with many of the specialised modes of nutrition at present in southwestern South Africa and Western Australia have been evident in the pollen record since the early Tertiary Period. The absence of ectomycorrhizal forests in mediterranean South Africa, in marked contrast to Western Australia, can be traced to differences in their paleohistory. In both regions, the combination of fluctuating, but essentially diminishing, nutrient and water availability that began with the first mediterranean climate < 5 million years ago resulted in decimation of the less-tolerant rainforest ancestors on the one hand, and remarkable rates of speciation of the pre-adapted sclerophyll nucleus on the other.

Keywords

Root Hair Botanical Review Root Cluster Carnivorous Plant Endemic Genus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abstrakt

Die Haupthindernisse der Nährstoffaufnahme der Kormophyten des Mittelmeerklimas Südafrikas und Westaustraliens sind sehr nahrungsarme Böden, relativ niedrige Temperaturen, wenn genügend Bodenwasser zur Verfügung steht und heisse, trockene Sommer. Diese Hindernisse werden zum Teil durch erhöhte Leistungsfähigkeit von Nährstoffaufnahme, Anzapfung verborgener Quellen von Nährstoffen und Erhöhung und Verlängerung der Wasseraufnahme überwunden. Die Absorptionsfläche kann direkt durch die Feinheit des Wurzelsystems und die Entwicklung langer Wurzelhaare vergrössert werden. Diese Situation ist am besten durch die Wurzelbüschel der Familie Proteaceae (proteoid Wurzeln), die Kapillarwurzeln der Familie Restionaceae und die dauciform Wurzeln der Familie Cyperaceae repräsentiert. Indirekte Erhöhung der Absorptionsfläche ist durch Pilzfäden, die sich von haarlosen Wurzeln im Boden ausbreiten, gewährleistet. Hierbei können zwei Hauptgruppen beobachtet werden: allgemeine (VA Mykorrhizen) und wirt-spezifische (Ericales-, Orchideen- und Hüllmykorrhizen). Mykorrhizen sind die am weitesten verbreiteten, spezialisierten Arten erhöhter Nährstoffaufnahme und sind wahrscheinlich universal inPodocarpus, Acacia, Fabaceae, Poaceae, Asteraceae, Rutaceae, Land Orchideen, Ericales und Myrtaceae. Der Nährstoffaufnahmemechanismus der VA Mykorrhyzen ist der am wenigsten trockenresistente. Alle Mykorrhyzen haben die Fähigkeit entwickelt, grössere Mengen von Phosphor durch vergrösserten Zugang, erhöhte Auflösung und Verkürzung des Aufnahmeweges von inorganischem Phosphor aufzunehmen. Im Falle der wirt-spezifischen Mykorrhyzen ist jedoch bevorzugte Aufnahme anderer Nährstoffe, vor allem Stickstoff, gleichgalls wichtig.

Andere Quellen der Nährstoffaufnahme sind freier Stickstoff (ausgenutzt von N2-Bakterien in Wurzelknollen), Kleintierbeute in Blättern von Carnivoren und beharrende Blattbasen (Luftwurzeln vonKingia australis). Beide Formen von Legume- und Nichtlegume-Fixierung von N2 sind in diesen beiden Gegenden gut vertreten. In Südwestaustralien können einzelne Formen zwischen 2–19 kg N/ha/Jahr dem Ökosystem zuführen. N2-Fixierung benötigt zusätzliche Nährstoffe, vor allem Mo und Co. Es ist erhöht nach Busch (Wald) bränden und durch spezielle Ergänzungsaufnahme, vor allem in VA Mykorrhizen.

Südwestaustralien im besonderen ist reich an Carnivoren Spezies: N, P, K und S sind wichtige Nährstoffe, die aufgenommen werden. Die Verdauung von Kleintieren wird durch Enzyme bewerkstelligt, die von Bakterien und Drüsen ausgeschieden werden. Parasitische Pflanzen zapfen neue Quellen von Nährstoffen an und werten auch alle Vorrichtungen des Wirtes in Bezug auf erhöhte Wasser- und Nährstoffaufnahme aus. In den Mittelmeerklimaten Südafrikas und Westaustraliens sind Wurzelparasiten häufiger als Stammparasiten. Besonders P und K werden von den Haustorien bevorzugt aufgenommen, jedoch mehr Forschung ist nötig, um den Aufnahmemechanismus zu verstehen.

Mit der Ausnahme von tief-wurzelnden Pflanzen, optimale Nährstoffaufnahme ist auf die Winter-Frühlingszeit beschränkt. Dabei entwickeln sich Fein- und Spezialwurzeln innerhalb der oberen 15 cm-Bodenschicht, vorzugsweise innerhalb oder nahebei der Verwitterungszone des Laubes. Nährstoffaufnahme ist weiterhin durch Büschelformation der Feinwurzeln—wobei Wasser durch Kapillaraktion festgehalten und die Dauer der Nährstoffaufnahme verlängert wird—gesteigert. Ein zeitiges Produkt der Verwesung ist NH4, welches von bald allen spezialisierten Formen eher aufgenommen wird als NO3. Mit Ausnahme der Haustorien der Parasiten alle oben erwähnten Aufnahmeformen von Nährstoffen benötigen die Gegenwart von Mikroorganism. Nährstoffaufnahmemechanismen, die nicht unbedingt für die Pflanze notwendig sind, erreichen ihre grösste Verbreitung in der Bodenschicht, die weniger Nährstoffe enthält. In Bodenschichten mit einem hohen Nährstoffgehalt sind diese Mechanismen oft abwesend. In bezug auf die Verfügbarkeit von Nährstoffen ist es nur ein enger Bereich, in dem der Stengelnährstoffgehalt in der Gegenwart eines Spezialaufnahmemechanismus grösser ist als in der Abwesenheit eines solchen (wenn andere Faktoren gleich sind). In solchen Fällen kann man von Nährstoff aufnahme ‘Strategien’ sprechen.

Alle Spezialnährstoffaufnahmemechanismen sind in beiden Gegenden wohlvertreten. Dies steht im Gegensatz zu den umgebenden fruchtbareren ariden und subtropischen Gegenden. Endemismus von Spezies mit diesen spezialen Aufnahmeeinrichtungen übertrifft die anderen Spezies (75%). Diese Feststellung mag wohl zeigen, dass Spezialformen der Nährstoffaufnahme am besten in nährstoffarmen Böden gedeihen. Während diese dazu dienen, den Verlust von Nährstoffen vom Ökosystem zu vermindern, ist ihre Verbreitung innerhalb des Ökosystems nicht notwendigerweise eine Reaktion von zunehmenden ‘Lücken’ des Systems.

Ein Hierarchie-Schema der funktionalen/strukturalen Verwandtschaft der verschiedenen Mechanismen ist gegeben, beginnend mit der wurzellosen VA-mykorrhyzal Pflanze als die primitivste. Taxa mit vielen der verschiedenen Mechanismen der Nährstoffaufnahme sind in Südafrika und Westaustralien seit dem Früh-Tertiär—dokumentiert durch Pollenfunde—vertreten. Die Abwesenheit von ektotrophen Mykorrhyza Wäldern im Mittelmeerklima Südafrikas, im Gegensatz zu denen in Westaustralien, konnte durch die Verschiedenheit der Plaläohistorie erklärt werden. Die Kombination von Schwankungen, besonders der Abnahme der zur Verfügung stehenden Nährstoffe und des Wassers, die mit dem ersten Mittelmeerklima vor ungefähr 5 Million Jahren begann, resultierte in dem Verschwinden der weniger toleranten Regenwald Vorfahren auf der einen Seite und der Bemerkenswerten Fähigkeit zur Spezialisierung der Pro-sklerophyten auf der anderen Seite.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abott, L. K. andA. D. Robson. 1977. The distribution and abundance of vesicular-arbuscular endophytes in some Western Australian soils. Austral. J. Bot.25: 515–522.CrossRefGoogle Scholar
  2. ——. 1979. A quantitative study of the spores and anatomy of mycorrhizas formed by a species ofGlomus, with reference to its taxonomy. Austral. J. Bot.27: 363–375.CrossRefGoogle Scholar
  3. Adams, R. M. andG. W. Smith. 1977. An SEM survey of the five carnivorous pitcher plant genera. Amer. J. Bot.64: 265–272.CrossRefGoogle Scholar
  4. Adamson, R. S. 1931. Notes on some petrified wood from Banke, Namaqualand. Trans. Roy. Soc. South Africa19: 255–258.Google Scholar
  5. —. 1956. The South African species of Aizoaceae. III,Galenia L. J. South African Bot.22: 87–127.Google Scholar
  6. Ansiaux, J. R. 1958. Sur l’alimentation minérale des phanérogames parasites. Bull. Acad. Roy. Sci. Belg., Cl, Sci. 5 sér.44: 787–793.Google Scholar
  7. Armstrong, W. 1981. The water relations of heathlands: General physiological effects of waterlogging. Pages 111–122in R. L. Specht (ed.). Heathlands and related shrublands B. Analytical studies. Elsevier, Sci. Publ., Amsterdam.Google Scholar
  8. Asai, T. 1944. Über die Mykorrhizenbildung der Leguminosen-Pflanzen. Jap. J. Bot.13: 463–485 + figs.Google Scholar
  9. Aschmann, H. 1973. Distribution and peculiarity of mediterranean ecosystems. Pages 11–19in F. Di Castri and H. A. Mooney (eds.). Mediterranean-type ecosystems. Chapman and Hall, London.Google Scholar
  10. Ashford, A. E., M. Ling-Lee andG. A. Chilvers. 1975. Polyphosphate in eucalypt mycorrhizas: A cytochemical demonstration. New Phytol.74: 447–453.CrossRefGoogle Scholar
  11. Ashton, D. H. 1976. Studies on the mycorrhizae ofEucalyptus regnans F. Muell. Austral. J. Bot.24: 723–774.CrossRefGoogle Scholar
  12. Atsatt, P. R. 1973. Parasitic flowering plants: How did they evolve? Amer. Naturalist107: 502–510.CrossRefGoogle Scholar
  13. —. 1977. The insect herbivore as a predictive model in parasitic seed plant biology. Amer. Naturalist111: 579–586.CrossRefGoogle Scholar
  14. —,T. F. Hearn, R. L. Nelson andR. T. Heineman. 1978. Chemical induction and repression of haustoria inOrthocarpus purpurescens (Scrophulariaceae). Ann. Bot.42: 1177–1184.Google Scholar
  15. Axelrod, D. I. andP. H. Raven. 1978. Late Cretaceous and Tertiary vegetation history of Africa. Pages 77–130in M. J. Werger (ed.). Biogeography and ecology of southern Africa. W. Junk, The Hague.Google Scholar
  16. Azcón, R., C. Azcón-G. De Aquilar andJ. M. Barea. 1978. Effects of plant hormones present in bacterial cultures on the formation and responses of VA endomycorrhiza. New Phytol.80: 359–364.CrossRefGoogle Scholar
  17. Bagyaraj, D. J., A. Manjunath andR. B. Patil. 1979. Interaction between vesiculararbuscular mycorrhiza andRhizobium and their effects on soybean in the field. New Phytol.82: 141–145.CrossRefGoogle Scholar
  18. Baird, A. M. 1977. Regeneration after fire in King’s Park, Western Australia. J. Roy. Soc. Western Australia60: 1–22.Google Scholar
  19. Baker, E. G. 1921. Revision of South African species ofRhynchosia. Bothalia1: 113–138.Google Scholar
  20. Baker, H. A. andE. G. Oliver. 1967. Ericas in southern Africa. Purnell, Cape Town. 180 pp.Google Scholar
  21. Barlow, B. A. 1966. A revision of the Loranthaceae of Australia and New Zealand. Austral. J. Bot.14: 421–499.CrossRefGoogle Scholar
  22. — andD. Wiens. 1977. Host-parasite resemblance in Australian mistletoes: The case for cryptic mimicry. Evolution31: 69–84.CrossRefGoogle Scholar
  23. Barrow, N. J. 1977. Phosphorus uptake and utilization by tree seedlings. Austral. J. Bot.25: 571–584.CrossRefGoogle Scholar
  24. Bartlett, E. M. andD. H. Lewis. 1973. Surface phosphatase activity of mycorrhizal roots of beech. Soil Biol. Biochem.5: 249–257.CrossRefGoogle Scholar
  25. Baylis, G. T. 1967. Experiments on the ecological significance of phycomycetous mycorrhizas. New Phytol.66: 231–243.CrossRefGoogle Scholar
  26. —. 1970. Root hairs and phycomycetous mycorrhizas in phosphorus-deficient soils. Pl. &Soil33: 713–716.CrossRefGoogle Scholar
  27. —. 1972. Fungi, phosphorus and the evolution of root systems. Search3: 257–259.Google Scholar
  28. —. 1975. The magnolioid root and mycotrophy in root systems derived from it. Pages 373–389in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.Google Scholar
  29. —,R. F. McNabb andT. M. Morrison. 1963. The mycorrhizal nodules of podocarps. Trans. Brit. Mycol. Soc.46: 378–384.Google Scholar
  30. Beadle, N. C. 1964. Nitrogen economy in arid and semi-arid plant communities. III. The symbiotic nitrogen-fixing organisms. Proc. Linn. New South Wales89: 273–286.Google Scholar
  31. —. 1966. Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology47: 992–1007.CrossRefGoogle Scholar
  32. —. 1968. Some aspects of the ecology and physiology of Australian xeromorphic plants. Austral. J. Sci.30: 348–355.Google Scholar
  33. —. 1981. Origins of the Australian angiosperm flora. Pages 409–426in A. Keast (ed.). Ecological biogeography of Australia. W. Junk, The Hague.Google Scholar
  34. Beard, J. S. (ed.). 1970. A descriptive catalogue of West Australian plants. Ed. 2. Surrey, Beatty &Sons, Chipping Norton, N.S.W. 142 pp.Google Scholar
  35. —. 1977. Tertiary evolution of the Australian flora in the light of latitudinal movements of the continent. J. Biogeogr.4: 111–118.CrossRefGoogle Scholar
  36. Becking, J. H. 1970. Plant-endophyte symbiosis in non-leguminous plants. Pl. &Soil32: 611–654.CrossRefGoogle Scholar
  37. Beresford, R. T. 1979. Nutrient imbalances in tomato plants and acid phosphatase activity in the leaves. J. Sci. Food Agric.30: 275–280.CrossRefGoogle Scholar
  38. Bergersen, F. J. 1974. Formation and function of bacteroids. Pages 473–498in A. Quispel (ed.). The biology of nitrogen fixation. North-Holland Pub. Co., Amsterdam.Google Scholar
  39. —,G. S. Kennedy andW. Wittman. 1965. Nitrogen fixation in the coralloid roots ofMacrozamia communis L. Johnson. Austral. J. Biol. Sci.18: 1135–1142.Google Scholar
  40. Bhat, K. K. andP. H. Nye. 1973. Diffusion of phosphate to plant roots in soil. 1. Quantitative autoradiography of the depletion zone. Pl. &Soil38: 161–175.CrossRefGoogle Scholar
  41. —— andJ. P. Baldwin. 1976. Diffusion of phosphate to plant roots in soil. IV. The concentration distance profile in the rhizosphere of roots with root hairs in low-P soil. Pl. &Soil44: 63–72.CrossRefGoogle Scholar
  42. Bint, A. N. 1981. An early Pliocene pollen assemblage from Lake Tay, South-Western Australia, and its phytogeographic implications. Austral. J. Bot.29: 277–291.CrossRefGoogle Scholar
  43. Boerd, G. andS. Thien. 1979. Phosphatase activity and phosphorus availability in the rhizosphere of corn roots. Pages 231–242in J. L. Harley and R. S. Russell (eds.). The soil-root interface. Academic Press, London.Google Scholar
  44. Bond, G. 1957. The development and significance of the root nodules ofCasuarina. Ann. Bot.21: 373–380.Google Scholar
  45. —. 1974. Root-nodule symbiosis with actinomycete-like organisms. Pages 342–378in A. Quispel (ed.). The biology of nitrogen fixation. South-Holland Publishers, Amsterdam.Google Scholar
  46. —. 1976. The results of the IBP survey of root-nodule formation in non-leguminous angiosperms. Pages 443–474in P. S. Nutman (ed.). Symbiotic nitrogen fixation in plants. Cambridge University Press, London.Google Scholar
  47. — andG. D. Scott. 1955. An examination of some symbiotic systems for fixation of nitrogen. Ann. Bot.19: 67–77.Google Scholar
  48. Bowen, G. D. 1973. Mineral nutrient relations of ectomycorrhizae. Pages 151–205in G. C. Marks and T. T. Kozlowski (eds.). Ectomycorrhizae—Their ecology and physiology. Academic Press, New York.Google Scholar
  49. —. 1981. Coping with low nutrients. Pages 33–64in J. S. Pate and A. J. McComb (eds.). The biology of Australian plants. University of Western Australian Press, Perth.Google Scholar
  50. — andA. D. Rovira. 1966. Microbial factor in short term phosphate uptake studies with plant roots. Nature211: 665–666.CrossRefGoogle Scholar
  51. — andC. Theodorou. 1973. Growth of ectomycorrhizal fungi around seeds and roots. Pages 122–125in G. C. Marks and T. T. Kozlowski (eds.). Ectomycorrhizae—Their ecology and physiology. Academic Press, New York.Google Scholar
  52. Bowyer, J. W. andV. B. Skerman. 1968. Production of axenic cultures of soil-borne and endophytic blue-green algae. J. Gen. Microbiol.54: 299–306.PubMedGoogle Scholar
  53. Brook, P. J. 1952. Mycorrhiza ofPernettya macrostigma. New Phytol.51: 388–397.CrossRefGoogle Scholar
  54. Bruce, A. N. 1907. On the activity of the glands ofByblis gigantea, Lindl. Notes Roy. Bot. Gard., Edinburgh4: 9–14.Google Scholar
  55. Caldwell, M. M. 1979. Root structure: The considerable cost of below ground function. Pages 408–427in O. T. Solbrig, J. Subodh, G. B. Johnson and P. H. Raven (eds.). Topics in plant population biology. MacMillan Press, London.Google Scholar
  56. Callow, J. A., L. C. Capaccio, G. Parish andP. B. Tinker. 1978. Detection and estimation of polyphosphate in vesicular-arbuscular mycorrhizas. New Phytol.80: 125–134.CrossRefGoogle Scholar
  57. Campbell, E. O. 1963.Gastrodia minor Petrie, an epiparasite of Manuka. Trans. Roy. Soc. New Zealand, Bot.2: 73–81.Google Scholar
  58. —. 1964. The restiad peat bogs at Motumaoho and Moanatuatua. Trans. Roy. Soc. New Zealand, Bot.2: 219–227.Google Scholar
  59. —. 1981. The water relations of heathlands: Morphological adaptation to waterlogging. Pages 107–109in R. L. Specht (ed.). Heathlands and related shrublands of the world. B. Analytical studies. Elsevier Sci. Pub., Amsterdam.Google Scholar
  60. Carlquist, S. 1974. Island biology. Columbia Univ. Press, New York.Google Scholar
  61. Carr, D. J., S. G. M. Carr andW. R. Papst. 1979. Field studies on nitrogen fixation of Australian alpine soils and plants. Symposium in the biology of Australian native plants. University of Western Australia, Perth (abstract).Google Scholar
  62. Carrodus, B. B. 1967. Absorption of nitrogen by mycorrhizal roots of beech. II. Ammonia and nitrate as sources of nitrogen. New Phytol.66: 1–4.CrossRefGoogle Scholar
  63. Chambers, C. A., S. E. Smith andF. A. Smith. 1980. Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth ofTrifolium subterraneum. New Phytol.85: 47–62.CrossRefGoogle Scholar
  64. Chandler, G. E. andJ. W. Anderson. 1976a. Studies on the origin of some hydrolytic enzymes associated with the leaves and tentacles ofDrosera species and their role in heterotrophic nutrition. New Phytol.77: 51–62.CrossRefGoogle Scholar
  65. ——. 1976b. Studies on the nutrition and growth ofDrosera species with reference to the carnivorous habit. New Phytol.76: 129–141.CrossRefGoogle Scholar
  66. ——. 1976c. Uptake and metabolism of insect metabolites by leaves on tentacles ofDrosera species. New Phytol.77: 625–634.CrossRefGoogle Scholar
  67. Chapin, F. S. 1980. The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst.11: 233–260.CrossRefGoogle Scholar
  68. Chapman, F. andI. Crespin. 1934. The palaeontology of the Plantagenet Beds of Western Australia. J. Roy. Soc. Western Australia20: 103–136.Google Scholar
  69. Chilvers, G. A. 1968. Low power electron microscopy of the root cap region of eucalypt mycorrhizas. New Phytol.67: 663–665.CrossRefGoogle Scholar
  70. —. 1973. Mycorrhizas and problems in association inEucalyptus L’Herit. Ph.D. Thesis, Australian National University, Canberra.Google Scholar
  71. — andL. D. Pryor. 1965. The structure of eucalypt mycorrhizas. Austral. J. Bot.13: 245–259.Google Scholar
  72. Chippendale, G. M. 1981. Distribution density ofEucalyptus species in Australia. Search12: 131–133.Google Scholar
  73. Chippindall, L. K. 1955. A guide to the identification of grasses in South Africa.In D. Meredith (ed.). The grasses and pastures of South Africa. Central News Agency, Cape Town.Google Scholar
  74. Christensen, P. 1979. Mycophagy (fungus consumption) by mammals in the southwest of Western Australia. Symposium on the biology of Australian native plants, University of Western Australia, Perth (abstract).Google Scholar
  75. Churchill, D. W. 1961. The Tertiary and Quaternary vegetation and climate in relation to the living flora in south western Australia. Ph.D. Thesis. University of Western Australia. Perth.Google Scholar
  76. Clarkson, D. T. 1969. Metabolic aspects of aluminium toxicity and some possible mechanisms for resistance. Pages 381–397in I. H. Rorison (ed.). Ecological aspects of the mineral nutrition of plants. Blackwell, Oxford.Google Scholar
  77. Coates-Palgrave, K. 1977. Trees of southern Africa. C. Struik Publishers, Cape Town.Google Scholar
  78. Codd, L. E. 1956. TheScholia species of southern Africa. Bothalia6: 515–533.Google Scholar
  79. Coetzee, J. A. 1978. Climatic and biological changes in south-western Africa during the late Cainozoic. Pages 13–29in E. M. van Zinderen Bakker and J. A. Coetzee (eds.). Palaeoecology of Africa and the surrounding islands. Vol. 10/11. Balkema, Rotterdam.Google Scholar
  80. Coley, P. G. F. andD. T. Mitchell. 1980. Distribution of soil fungi in a CapeErica heathland community. S. African J. Sci.76: 185.Google Scholar
  81. Cooke, T. 1912. Plantaginaceae. Pages 387–392in W. T. Thiselton-Dyer (ed.). Flora Capensis 5. Reeve, London.Google Scholar
  82. Cookson, I. C. 1954. The occurrence of an older Tertiary microflora in Western Australia. Austral. J. Sci.17: 37–38.Google Scholar
  83. Cooper, K. M. 1975. Growth responses to the formation of endotrophic mycorrhizas inSolanum, Leptospermum, and New Zealand ferns. Pages 391–408in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.Google Scholar
  84. — andP. B. Tinker. 1978. Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. New Phytol.81: 43–52.CrossRefGoogle Scholar
  85. Cowling, R. M. andB. M. Campbell. 1980. Convergence in vegetation structure in the mediterranean communities of California, Chile and South Africa. Vegetatio43: 191–198.CrossRefGoogle Scholar
  86. Cox, G. andP. B. Tinker. 1976. Translocation and transfer of nutrients in vesiculararbuscular mycorrhizas. I. The arbuscule and phosphorus transfer: A quantitative ultrastructural study. New Phytol.77: 371–378.CrossRefGoogle Scholar
  87. Crush, J. R. 1974. Plant growth responses to vesicular-arbuscular mycorrhiza. VII. Growth and nodulation of some herbage legumes. New Phytol.73: 743–750.CrossRefGoogle Scholar
  88. Daft, M. J. 1979. Effects of calcium, phosphorus and potassium on mycorrhizal plants. Pages 420–421in J. L. Harley and R. S. Russell (eds.). The soil-root interface. Academic Press, London.Google Scholar
  89. —,E. Hacskaylo andT. H. Nicolson. 1975. Arbuscular raycorrhizas in plants colonising cola spoils in Scotland and Pennsylvania. Pages 561–580in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press. London.Google Scholar
  90. Dahlgren, R. 1963. Studies onAspalathus. Phytogeographical aspects. Bot. Not.116: 431–472.Google Scholar
  91. —. 1970. Parallelism, convergence, and analogy in some South African genera of Leguminosae. Bot. Not.123: 551–568.Google Scholar
  92. Dakin, W. J. 1919. The West Australian pitcher plant (Cephalotus follicularis) and its physiology. J. Proc. Roy. Soc. Western Australia4: 37–53.Google Scholar
  93. Dart, P. J. 1974. The infection process. Pages 381–429in A. Quispel (ed.). The biology of nitrogen fixation. North-Holland Pub., Amsterdam.Google Scholar
  94. Davison, J. D. 1927. Celastraceae. Bothalia2: 289–346.Google Scholar
  95. Deacon, H. J. In press. Comparative evolution of mediterranean-type ecosystems: A southern perspective.In F. J. Kruger, D. T. Mitchell and J. N. Jarvis (eds.). Mediterranean ecosystems: The role of nutrients. Springer-Verlag, Berlin.Google Scholar
  96. Dell, B. 1977. Distribution and function of resins and glandular hairs in West Australian plants. J. Roy. Soc. Western Australia59: 119–123.Google Scholar
  97. — andA. H. Burbidge. 1981. Notes on the biology ofPilostyles (Rafflesiaceae) in Western Australia. Western Australian Herbarium Research Notes5: 71–79.Google Scholar
  98. —,J. Kuo andG. J. Thomson. 1980. Development of proteoid roots inHakea obliqua R. Br. (Proteaceae) grown in water culture. Austral. J. Bot.28: 27–37.CrossRefGoogle Scholar
  99. De Luca, P., S. Sabato, A. Balduzzi andR. Nazzaro. 1980. Coralloid root regeneration onMacrozamia megagametophytes. Giorn. Bot. Ital.114: 271–275.Google Scholar
  100. De Winter, B. 1962. The South African Stipeae and Aristideae (Gramineae). Bothalia8: 201–404.Google Scholar
  101. —. 1963. Ebenaceae. Pages 54–99in R. A. Dyer, L. E. Codd and H. B. Rycroft (eds.). Flora of southern Africa 26. Dept. Agri. Tech. Serv., Pretoria, S. Africa.Google Scholar
  102. Dexheimer, J. 1978. Study of mucilage secretion by the cells of the digestive glands ofDrosera capensis L. Ultrastructural localization of neutral phosphatases and ATPases. Z. Pflanzenphysiol.86: 189–201.Google Scholar
  103. Diem, H. G., I. Gueye, V. Gianinazzi-Pearson, J. A. Fortin andF. R. Dommergues. 1981. Ecology of VA mycorrhizae in the tropics: The semi-arid zone of Senegal. Acta Oecol./ Oecol. Plant.2: 53–62.Google Scholar
  104. Dixon, K. W., J. S. Pate andW. J. Bailey. 1980. Nitrogen nutrition of the tuberous sundewDrosera erythrorhiza Lindl. with special reference to catch of arthropod fauna by its glandular leaves. Austral. J. Bot.28: 283–297.CrossRefGoogle Scholar
  105. Dodd, J. and E. M. Heddle. 1981. Root systems of some swamp and banksia woodland plants of the Swan Coastal Plain, Western Australia. Bull. Ecol. Soc. Austral. 11,4 (abstract).Google Scholar
  106. Dörr, I. 1975. Development of transfer cells in higher parasitic plants. Pages 177–186in S. Aronoff, J. Dainty, P. R. Gorham, L. M. Srivastava and C. A. Swanson (eds.). Phloem transport. Plenum Press, New York.Google Scholar
  107. Drew, M. C. andP. H. Nye. 1969. The supply of nutrient ions by diffusion to plant roots in soil. II. The effects of root hairs on the uptake of potassium by roots of rye grass (Lolium multiflorum). Pl. &Soil31: 407–424.CrossRefGoogle Scholar
  108. Doyle, J. A. 1978. Origin of angiosperms. Ann. Rev. Ecol. Syst.9: 365–392.CrossRefGoogle Scholar
  109. Dyer, R. A. 1963. Myrsinaceae. Pages 1–9in R. A. Dyer, L. E. Codd and H. B. Rycroft (eds.). Flora of southern Africa 26. Dept. Agri. Tech. Services, Pretoria, South Africa.Google Scholar
  110. —. 1975, 1976. The genera of South African flowering plants. Vol. 1,2. Dept. Agric. Tech. Services, Pretoria.Google Scholar
  111. Engin, M. andJ. I. Sprent. 1973. Effects of water stress on growth and nitrogen-fixing activity ofTrifolium repens. New Phytol.72: 117–126.CrossRefGoogle Scholar
  112. Erickson, R. 1968. Plants of prey in Australia. Lamp Paterson, Perth, West. Australia.Google Scholar
  113. Fineran, B. A. 1974. A study of “phloeotracheids” in haustoria of santalaceous root parasites using scanning electron microscopy. Ann. Bot.38: 937–946.Google Scholar
  114. —. 1979. Ultrastructure of differentiating graniferous tracheary elements in the haustorium ofExocarpus bidwillii (Santalaceae). Protoplasma98: 199–221.CrossRefGoogle Scholar
  115. — andS. Bullock. 1979. Ultrastructure of graniferous tracheary elements in the haustorium ofExocarpus bidwillii, a root hemi-parasite of the Santalaceae. Proc. Roy. Soc. London. Ser. B, Biol. Sci.204: 329–343.Google Scholar
  116. Finlayson, M. andA. J. McComb. 1978. Nitrogen fixation in wetlands of southwestern Australia. Search9: 98–99.Google Scholar
  117. Fitter, A. H. 1977. Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol.79: 119–125.CrossRefGoogle Scholar
  118. Forbes, H. M. 1930. The genusPsoralea Linn. Bothalia3: 116–136.Google Scholar
  119. —. 1948. A revision of the South African species of the genusTephrosia Pers. Bothalia4: 951–1006.Google Scholar
  120. Fraser, L. 1932. An investigation ofLobelia gibbosa andLobelia dentata. 1. Mycorrhiza, latex system and general biology. Linn. Soc. New South Wales57: 497–525.Google Scholar
  121. Gadgil, R. L. andP. W. Gadgil. 1971. Mycorrhiza and litter decomposition. Nature233: 133.PubMedCrossRefGoogle Scholar
  122. Gardner, C. A. 1948. Contributions florae australiae occidentalis XII. J. Roy. Soc. Western Australia34: 75–81.Google Scholar
  123. Gardner, W. R. 1960. Dynamic aspects of water availability in plants. Soil Sci.89: 63–73.CrossRefGoogle Scholar
  124. George, A. S. 1980.Rhizanthella gardneri R. S. Rogers—The underground orchid of Western Australia. Amer. Orchid Soc. Bull.49: 631–646.Google Scholar
  125. —. 1981. The genusBanksia L.f. (Proteaceae). Nuytsia3: 239–473.Google Scholar
  126. —,A. J. Hopkins andN. G. Marchant. 1979. The heathlands of Western Australia. Pages 211–320in R. L. Specht (ed.). Heathlands and associated shrublands. A descriptive study. Elsevier, Sci. Pub., Amsterdam.Google Scholar
  127. Gianinazzi, S., V. Gianinazzi-Pearson andJ. Dexheimer. 1979. Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. III. Ultrastructural localization of acid and alkaline phosphatase in onion roots infected byGlomus mosseae (Nicol. &Gerd.). New Phytol.82: 127–132.CrossRefGoogle Scholar
  128. Gibson, A. H. 1976. Recovery and compensation by nodulated legumes to environmental stress. Pages 405–420in P. S. Nutman (ed.). Symbiotic nitrogen fixation in plants. Cambridge University Press, Cambridge.Google Scholar
  129. Giddy, C. 1974. Cycads of South Africa. Purnell, Cape Town.Google Scholar
  130. Giessler, A. 1928. Einfluss von Salzlösungen auf die Stärheverarbeitung beiDrosera. Flora23: 133–190.Google Scholar
  131. Glassford, D. K. andL. P. Killigrew. 1976. Evidence for Quaternary extension of the Australian desert into south-western Australia. Search7: 394–396.Google Scholar
  132. ——. 1979. Evidence for repeated glacial-age aridities throughout southwestern Australia during late Cainozoic times. Page 82in Symposium on the biology of Australian native plants. University of Western Australia, Perth. (abstract)Google Scholar
  133. Glyphis, J., E. J. Mell andB. M. Campbell. 1978. Phytosociological studies on Table Mountain, South Africa: I. The Back Table. J. South African Bot.44: 281–289.Google Scholar
  134. Gobel, T. 1975. Some field observations onNuytsia floribunda (Labill.) R. Br. Western Australian Nat.29: 50–60.Google Scholar
  135. Goldblatt, P. 1978. An analysis of the flora of southern Africa: Its characteristics, relationships, and origins. Ann. Missouri Bot. Gard.65: 369–436.CrossRefGoogle Scholar
  136. Gray, L. E. andJ. W. Gerdemann. 1973. Uptake of sulphur-35 by vesicular-arbuscular myycorrhizae. Pl. &Soil39: 687–689.Google Scholar
  137. Green, P. S. 1976. Ecological and nutritional aspects of proteoid roots. Hons. Thesis, University Adelaide, S. Aust.Google Scholar
  138. Greenland, D. J. 1979. The physics and chemistry of the soil-root interface: Some comments. Pages 83–98in J. L. Harley and R. S. Russell (eds.). The soil-root interface. Academic Press, London.Google Scholar
  139. Grieve, B. J. andW. E. Blackall. 1975. How to know Western Australian wildflowers. Part 4. University Western Australian Press, Perth.Google Scholar
  140. — andE. O. Hellmuth. 1970. Eco-physiology of Western Australian plants. Oecol. Pl.5: 33–68.Google Scholar
  141. Grobbelaar, N. andB. Clarke. 1972. A qualitative study of the nodulating ability of legume species: List 2. J. South African Bot.35: 241–247.Google Scholar
  142. ——. 1974. A qualitative study of the nodulating ability of legume species: List 4. Agroplantae6: 57–64.Google Scholar
  143. ——. 1975. A qualitative study of the nodulating ability of legume species: List 3. J. South African Bot.41: 29–36.Google Scholar
  144. -J. M. Strauss and E. G. Groenewald. 1971. Non-leguminous seed plants in southern Africa which fix nitrogen symbiotically. Pl. &Soil Special Vol. 325–334.Google Scholar
  145. -,M. E. van Beyma and C. M. Todd. 1967. A qualitative study of the nodulating ability of legume species: List 1. Publication of the University of Pretoria 38.Google Scholar
  146. — andM. W. van Rooyen. 1979. A qualitative study of the nodulating ability of legume species: List 5. J. South African Bot.45: 267–272.Google Scholar
  147. Grove, T. S. andN. Malajczuk. 1980. Nitrogen inputs toEucalyptus marginata andE. diversicolor forests. Pages 1–7in Proceedings of workshop on nitrogen in natural forest ecosystems. CSIRO, Perth.Google Scholar
  148. —,A. M. O’Connell andN. Malajczuk. 1980. Effects of fire on the growth, nutrient content and rate of nitrogen fixation of the cycadMacrozamia riedlei. Austral. J. Bot.28: 271–281.CrossRefGoogle Scholar
  149. Grundon, N. J. 1972. Mineral nutrition of some Queensland heath plants. J. Ecol.60: 171–181.CrossRefGoogle Scholar
  150. Gillian, P. K. 1975. Vegetation at Cranbourne. Vol. 2. Ph.D. Thesis, Monash Univ., Victoria.Google Scholar
  151. Hadley, G. 1975. Organization and fine structure of orchid mycorrhiza. Pages 335–351in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.Google Scholar
  152. Hall, I. R. 1975. Endomycorrhizasof Metrosideros umbellata andWeinmannia racemosa. New Zealand J. Bot.13: 463–472.Google Scholar
  153. —. 1977. Species and mycorrhizal infections of New Zealand Endogonaceae. Trans. Brit. Mycol. Soc.68: 341–356.Google Scholar
  154. Halliday, J. andJ. S. Pate. 1976. Symbiotic nitrogen fixation by coralloid roots of theMacrozamia riedlei: Physiological characteristics and ecological significance. Austral. J. Plant Physiol.3: 349–358.Google Scholar
  155. Hansen, D. H. 1977. Physiology and microclimate in a hemi-parasiteCastilleja chromosa (Scrophulariaceae). Amer. J. Bot.66: 477–484.CrossRefGoogle Scholar
  156. Hardy, R. W., R. C. Burns andR. D. Holsten. 1973. Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol. Biochem.5: 47–81.CrossRefGoogle Scholar
  157. Harley, J. L. 1969. The biology of mycorrhiza. Leonard Hill, London.Google Scholar
  158. —. 1975. Problems in mycotrophy. Pages 1–24in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.Google Scholar
  159. Härtel, O. 1937. Über den Wasserhaushelt vonViscum album L. Ber. Deutsch. Bot. Ges.55: 310–321.Google Scholar
  160. —. 1941. Über die Ökologie einiger Halbparasiten und ihrer Wirtspflanzen. Ber. Deutsch. Bot. Ges.59: 136–148.Google Scholar
  161. Harvey, W. H., O. W. Sonder, W. T. Thiselton-Dyer andA. W. Hill (eds.). 1859–1933. Flora Capensis. 7 vols. Reeve &Co., London.Google Scholar
  162. Hatch, A. B. 1977. Some effects of external factors on nutrient cycling in the jarrah forest ecosystem. Pages 105–111in Nutrient cycling in indigenous forest ecosystems. CSIRO, Div. Land Resources Management, Perth.Google Scholar
  163. Hattingh, M. J. 1972. A note on the fungusEndogone. J. South African Bot.38: 29–31.Google Scholar
  164. Hayman, D. S. 1974. Plant growth responses to vesicular-arbuscular mycorrhiza. New Phytol.73: 71–80.CrossRefGoogle Scholar
  165. Haxen, P. G. 1978. Aspects of nodule physiology of some southwestern Cape leguminous species. Hons. Thesis, Univ. Cape Town.Google Scholar
  166. Head, G. C. 1964. A study of “exudation” from the root hairs of apple roots by timelapse cine-photomicrography. Ann. Bot.28: 495–498.Google Scholar
  167. Heddle, E. M. andR. L. Specht. 1975. Dark island heath (Ninety-mile Plain, South Australia). VIII. The effect of fertilisers on composition and growth, 1950–1972. Austral. J. Bot.23: 151–164.CrossRefGoogle Scholar
  168. Hellmuth, E. O. 1971. Eco-physiological studies on plants in arid and semi-arid regions in Western Australia IV. Comparison of the field physiology of the host,Acacia grasbyi and its hemiparasite,Amyema nestor under optimal and stress conditions. J. Ecol.59: 351–363.CrossRefGoogle Scholar
  169. Herbert, D. A. 1919.Nuytsiafloribunda (the Christmas tree)-Its structure and parsitism. J. Proc. Roy. Soc. Western Australia5: 72–88.Google Scholar
  170. —. 1925. The root parasitism of western Australian Santalaceae. J. Roy. Soc. Western Australia11: 127–149.Google Scholar
  171. Herrera, R., T. Mérida, N. Stark andC. F. Jordan. 1978. Direct phosphorus transfer from litter to roots. Naturwissenschaften65: 208–209.CrossRefGoogle Scholar
  172. Heslop-Harrison, Y. 1978. Carnivorous plants. Sci. Amer.238: 104–115.CrossRefGoogle Scholar
  173. Hewitt, E. J. andT. A. Smith. 1975. Plant mineral nutrition. English University Press, London.Google Scholar
  174. Hill, A. W. 1925. Santalaceae. Pages 135–213in W. T. Thiselton-Dyer (ed.). Flora Capensis. Vol. 5/2. Reeve &Co., London.Google Scholar
  175. Hingston, F. J. 1977. Sources of, and sinks for, nutrients in forest ecosystems. Pages 41–53in Nutrient cycling in indigenous forest ecosystems. CSIRO, Div. Land Resources Management. Perth.Google Scholar
  176. -,N. Malajczuk and T. S. Grove. In press. Acetylene reduction (N2-fixation) by jarrah forest legumes following fire and phosphate application. J. Appl. Ecol.Google Scholar
  177. Hopper, S. D. 1979. Biogeographical aspects of speciation in the southwest Australian flora. Ann. Rev. Ecol. Syst.10: 397–422.CrossRefGoogle Scholar
  178. — andB. R. Maslin. 1978. Phytogeography ofAcacia in Western Australia. Austral. J. Bot.26: 63–78.CrossRefGoogle Scholar
  179. Horak, O. 1974. Comparative analyses of mineral ion content of some Loranthaceae and their hosts. Z. Pflanzenphysiol.73: 461–466.Google Scholar
  180. Hos, D. 1975. Preliminary investigation of the palynology of the Upper Eocene Werillup Formation, Western Australia. J. Roy. Soc. Western Australia58: 1–14.Google Scholar
  181. Hutchinson, J. 1917. XVI. Notes on African Compositae: IV.Matricaria. Kew Bull. Pp. 111–118.Google Scholar
  182. Jackson, D. R., W. J. Selvidge andB. S. Ausmus. 1978. Behaviour of heavy metals in forced microcosms. I. Effects on nutrient cycling processes. Water Air Soil Poll.10: 13–18.Google Scholar
  183. Jackson, N. E., R. H. Miller andR. E. Franklin. 1973. The influence of vesicular-arbuscular mycorrhizae on uptake of90Sr from soil by soybeans. Soil Biol. Biochem.5: 205–212.CrossRefGoogle Scholar
  184. Janos, D. P. 1980. Vesicular-arbuscular mycorrhizae affect lowland tropical rain forest plant growth. Ecology61: 151–162.CrossRefGoogle Scholar
  185. Jeffrey, D. W. 1967. Phosphate nutrition of Australian heath plants. I. The importance of proteoid roots inBanksia (Proteaceae). Austral. J. Bot.15: 403–411.CrossRefGoogle Scholar
  186. Jessop, J. P. 1966. The genusAsparagus in Southern Africa. Bothalia9: 31–96.Google Scholar
  187. Johnson, L. A. andB. G. Briggs. 1975. On the Proteaceae—The evolution and classification of a southern family. J. Linn. Soc., Bot.70: 83–182.Google Scholar
  188. Johnson, P. N. 1973. Mycorrhizae of coniferous-broadleaved forest. Ph.D. Thesis, Otago Univ., New Zealand.Google Scholar
  189. Jones, F. R. 1924. A mycorrhizal fungus in the roots of legumes and some other plants. J. Agric. Res.29: 459–470.Google Scholar
  190. Jongens-Roberts, S. M., G. J. Brown andD. T. Mitchell. 1980. Studies on phosphorus cycling processes in the fynbos biome. CSIR, S. Africa. Fynbos Biome Ann. Rep. No. 2.Google Scholar
  191. Jooste, J. and L. Raitt. 1980. Na/K ratios and the Proteaceae. Report on seminar and discussion session on nutrient studies within the Fynbos Biome Project, CSIR, National Programme for Environmental Sciences. University of Cape Town.Google Scholar
  192. Juniper, B. E., A. J. Gilchrist andA. J. Robins. 1977. Some features of secretory systems in plants. Histochem. J.9: 659–680.PubMedCrossRefGoogle Scholar
  193. Kana, T. M. andJ. D. Tjepkema. 1978. Nitrogen fixation associated withScirpus atrovirens and other non-nodulated plants in Massachusetts. Canad. J. Bot.56: 2636–2640.Google Scholar
  194. Kepert, D. G., A. D. Robson andA. M. Posner. 1979. The effect of organic root products on the availability of phosphorus to plants. Pages 115–124in J. L. Harley and R. S. Russell (eds.). The soil-root interface. Academic Press, London.Google Scholar
  195. Khan, A. G. 1967.Podocarpus root nodules in sterile culture. Nature215: 1170.CrossRefGoogle Scholar
  196. —. 1978. Vesicular-arbuscular mycorrhizas in plants colonizing black wastes from bituminous coal mining in the Illawara region of New South Wales. New Phytol.81: 53–63.CrossRefGoogle Scholar
  197. Kies, P. 1951. Revision of the genusCyclopia and notes on some other sources of bush tea. Bothalia6: 161–173.Google Scholar
  198. Killick, D. J. 1969. The South African species ofMyrica. Bothalia10: 5–17.Google Scholar
  199. Kimber, P. C. 1974. The root system of jarrah (Eucalyptus marginata). Res. Paper No. 14. Forests Dept., Perth.Google Scholar
  200. Klaren, C. H. andG. Janssen. 1978. Physiological changes in the hemiparasiteRhinanthus serotinus before and after attachment. Physiol. Pl.42: 151–155.CrossRefGoogle Scholar
  201. — andS. J. van de Dijk. 1976. Water relations of the hemiparasiteRhinanthus serotinus before and after attachment. Physiol. Pl.38: 121–125.CrossRefGoogle Scholar
  202. Kruger, F. J. 1979. South African heathlands. Pages 19–80in R. L. Specht (ed.). Heathlands and associated shrublands. A descriptive study. Elsevier Sci. Pub., Amsterdam.Google Scholar
  203. Knuckelmann, H. W. 1975. Effect of fertilizers, soil tillage, and plant species on the frequency ofEndogone chlamydospores and mycorrhizal infection in arable soils. Pages 511–525in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.Google Scholar
  204. Kuijt, J. 1969. The biology of flowering parasitic plants. University California Press, Berkeley.Google Scholar
  205. Lamont, B. 1972a. The morphology and anatomy of proteoid roots in the genusHakea. Austral. J. Bot.20: 155–174.CrossRefGoogle Scholar
  206. —. 1972b. The effect of soil nutrients on the production of proteoid roots byHakea species. Austral. J. Bot.20: 27–40.CrossRefGoogle Scholar
  207. —. 1972c. “Proteoid” roots in the legumeViminaria juncea. Search3: 90–91.Google Scholar
  208. —. 1973. Factors affecting the distribution of proteoid roots within the root systems of twoHakea species. Austral. J. Bot.21: 165–187.CrossRefGoogle Scholar
  209. —. 1974. The biology of dauciform roots in the sedgeCyathochaete avenacea. New Phytol.73: 985–996.CrossRefGoogle Scholar
  210. —. 1976a. The effects of seasonality and waterlogging on the root systems of a numberof Hakea species. Austral. J. Bot.24: 691–702.CrossRefGoogle Scholar
  211. —. 1976b. A biological survey and recommendations for rehabilitating portion of Reserve 31030 to be mined for heavy minerals during 1975–81. WAIT-AID Ltd., Perth.Google Scholar
  212. —. 1977. Root parasitismof Hakea sulcata byNuytsia floribunda. Western Australian Nat.13: 201–202.Google Scholar
  213. —. 1979. The root systems of Myrtaceae. Austral. Pl.10: 74–78.Google Scholar
  214. -. 1980a. Proteoid roots in the South African Proteaceae. CSIR, S. Africa. Fynbos Biome Ann. Rep. 2 (Available from author.)Google Scholar
  215. —. 1980b. Blue-green algae in nectar ofBanksia aff.sphaerocarpa. Western Australian Nat.14: 193–194.Google Scholar
  216. —. 1981a. Specialized roots of non-symbiotic origin in heathlands. Pages 183–195in R. L. Specht (ed.). Heathlands and related shrublands of the world. B. Analytical Studies. Elsevier Sci. Pub., Amsterdam.Google Scholar
  217. —. 1981b. A botanist in South Africa, 1980. Study Leave Report. School of Biology, WAIT, Bentley (available from author).Google Scholar
  218. —. 1981c. Morphometrics of the aerial roots ofKingia australis (Liliales). Austral. J. Bot.29: 81–96.CrossRefGoogle Scholar
  219. —. 1981d. Autografting of roots and stems inEucalyptus and of rhizomes inNuytsia floribunda. Western Australian Nat.15: 26–28.Google Scholar
  220. —. 1981e. Availability of water and inorganic nutrients in the persistent leaf bases of the grasstreeKingia australis and the uptake and translocation of labelled phosphate by the embedded aerial roots. Physiol. Pl.52: 181–186.CrossRefGoogle Scholar
  221. —. 1981f. Understorey suppression byEucalyptus wandoo. Page 4in Conf. on biology of eucalyptus. Austral. Syst. Bot. Soc., King’s Park and Botanic Garden, Perth (abstract).Google Scholar
  222. —. 1982a. The reproductive biology ofGrevillea leucopteris (Proteaceae), including reference to its glandular hairs and colonizing potential. Flora172: 1–20.Google Scholar
  223. —. 1982b. Host specificity and germination requirements of some South African mistletoes. South African J. Sci.78: 41–42.Google Scholar
  224. -. In press. Mineral nutrition of mistletoes.In D. M. Calder and P. Bernhart (eds.). The biology of mistletoes. Academic Press, London.Google Scholar
  225. —,S. Downes andJ. E. Fox. 1977. Importance-value curves and diversity indices applied to a species-rich heathland in Western Australia. Nature265: 438–441.CrossRefGoogle Scholar
  226. — andB. J. Lange. 1976. “Stalagmiform” roots in limestone caves. New Phytol.76: 353–360.CrossRefGoogle Scholar
  227. — andA. J. McComb. 1974. Soil micro-organisms and the formation of proteoid roots. Austral. J. Bot.22: 681–688.CrossRefGoogle Scholar
  228. — andM. Perry. 1977. The effects of light, osmotic potential and atmospheric gases on germination of the mistletoeAmyema preissii. Ann. Bot.41: 203–209.Google Scholar
  229. — andR. A. Ryan. 1977. Formation of coralloid roots by cycads under sterile conditions. Phytomorphology27: 426–429.Google Scholar
  230. — andK. J. Southall. 1982a. Biology of the mistletoeAmyema preissii on road verges and undisturbed vegetation. Search13: 87–88.Google Scholar
  231. ——. 1982b. Distribution of mineral nutrients between the mistletoeAmyema preissii and its hostAcacia acuminata. Ann. Bot.49: 721–725.Google Scholar
  232. Lange, R. T. 1959. Additions to the known nodulating species of Leguminosae. Antoni van Leeuevenhoek J. Ned. Tijdschr. Hug.25: 272–276.CrossRefGoogle Scholar
  233. —. 1961. Nodule bacteria associated with the indigenous Leguminosae of southwestern Australia. J. Gen. Microbiol.61: 351–359.Google Scholar
  234. —. 1978. Some Eocene leaf fragments comparable to Proteaceae. J. Roy. Soc. Western Australia60: 107–114.Google Scholar
  235. —. 1980. Evidence of lid-cells and host-specific micro-fungi in the search for TertiaryEucalyptus. Rev. Palaeobot. Palyn.29: 29–33.CrossRefGoogle Scholar
  236. Lau, N. S. 1968. Root anatomy ofBanksia spp.,Casuarina glauca and some members of Myrtaceae grown under controlled water conditions. Hons. Thesis, University of Sydney, New South Wales.Google Scholar
  237. Lawrie, A. C. 1981. Nitrogen fixation by native Australian legumes. Austral. J. Bot.29: 143–157.CrossRefGoogle Scholar
  238. Lee, H. M. 1978. Studies of the family Proteaceae II. Further observations on the root morphology of some Australian genera. Proc. Roy. Soc. Vic.90: 251–256.Google Scholar
  239. Levyns, M. 1935. Veld burning experiments at Oakdale, Riversdale. Trans. Roy. Soc. South Africa23: 231–243.Google Scholar
  240. —. 1937. A revision ofStoebe L. J. South African Bot.3: 1–35.Google Scholar
  241. —. 1970. A revision of the genusParanomus (Proteaceae). Contr. Bolus Herb.2: 3–48.Google Scholar
  242. Lewis, O. A. andW. D. Stock. 1978. A preliminary study of the nitrogen nutritional status of members of the South African Proteaceae. J. South African Bot.44: 143–151.Google Scholar
  243. Lie, T. A. and E. G. Mulder (eds.). 1971. Biological nitrogen fixation in natural and agricultural habitats. Pl. &Soil Special Vol.Google Scholar
  244. Ling-Lee, M., A. E. Ashford andG. A. Chilvers. 1977. A histochemical study of polysaccharide distribution in eucalypt mycorrhizas. New Phytol.78: 329–335.CrossRefGoogle Scholar
  245. —,G. A. Chilvers andA. E. Ashford. 1975. Poly-phosphate granules in three different kinds of tree mycorrhiza. New Phytol.75: 551–554.CrossRefGoogle Scholar
  246. Lloyd, F. E. 1942. The carnivorous plants. Chronica Botanica Co., Waltham, Massachusetts.Google Scholar
  247. Loneragan, J. F. 1972. The soil chemical environment in relation to symbiotic nitrogen fixation. Pages 17–54in Use of isotopes for study of fertilizer utilization by legume crops. Pub. 149. Internat. Atomic Energy Comm., Vienna.Google Scholar
  248. Low, A. B. 1979. Phytomass and litter studies on the Cape Flats. CSIR, S. Africa. Fynbos Biome Rep. No. 1.Google Scholar
  249. —. 1980. Preliminary observations on specialized root morphologies in plants of the western Cape Province. South African J. Sci.76: 513–516.Google Scholar
  250. Lundeberg, G. 1970. Utilization of various nitrogen sources, in particular bound soil nitrogen, by mycorrhizal fungi. Stud. Forest. Suec. 79.Google Scholar
  251. Lüttge, U. 1971. Structure and function of plant glands. Ann. Rev. Pl. Physiol.22: 23–44.CrossRefGoogle Scholar
  252. Main, A. R. 1979. The fauna. Pages 77–99in B. J. O’Brien (ed.). Environment and science. University of Western Australia Press, Perth.Google Scholar
  253. —. 1981. Ecosystem theory and management. J. Roy. Soc. Western Australia64: 1–4.Google Scholar
  254. Malajczuk, N. andG. D. Bowen. 1974. Proteoid roots are microbially induced. Nature251: 316–317.CrossRefGoogle Scholar
  255. — andT. Grove. 1977. Legume understorey biomass, nutrient content and nitrogen fixation in eucalypt forests of southwestern Australia. Pages 36–39in Nutrient cycling in indigenous forest ecosystems. CSIRO, Div. Land Resources Management, Perth.Google Scholar
  256. — andF. J. Hingston. 1981. Ectomycorrhizae associated with Jarrah. Austral. J. Bot.29: 453–462.CrossRefGoogle Scholar
  257. — andB. B. Lamont. 1981. Specialized roots of symbiotic origin in heathlands. Pages 165–182in R. L. Specht (ed.). Heathlands and related shrublands of the world. B. Analytical studies. Elsevier Sci. Pub., Amsterdam.Google Scholar
  258. —,A. J. McComb andJ. F. Loneragan. 1975. Phosphorus uptake and growth of mycorrhizal and uninfected seedlings ofEucalyptus calophylla R. Br. Austral. J. Bot.23: 231–238.CrossRefGoogle Scholar
  259. Malloch, D. W., K. A. Pirozynski andP. H. Raven. 1980. Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (a review). Proc. Natl. Acad. U.S.A.77: 2113–2118.CrossRefGoogle Scholar
  260. Marais, W. 1970. Cruciferae. Pages 1–117in L. E. Codd, B. De Winter, D. J. Killick and H. B. Rycroft (eds.). Flora of southern Africa. Dept. Agri. Tech. Serv. Pretoria.Google Scholar
  261. Marloth, R. 1913, 1925. The flora of South Africa. Vol. 1, 2/1 Darter Bros &Co., Cape Town.Google Scholar
  262. Marsh, J. A. 1966. Cupressaceae. Pages 43–48in L. E. Codd, B. De Winter and H. B. Rycroft (eds.). Flora of southern Africa 1. Dept. Agri. Tech. Services, Pretoria.Google Scholar
  263. Martin, H. A. 1978. Evolution of the Australian flora and vegetation through the Tertiary: Evidence from pollen. Alcheringa2: 181–202.Google Scholar
  264. Martin, P. G. 1979. First approaches to the study of the Australian flora using protein sequencing. Page 14in Symposium on the biology of native Australian plants. University of Western Australia, Perth (abstract).Google Scholar
  265. Marx, D. H. andW. C. Bryan. 1971. Influence of ectomycorrhizae on survival and growth of aseptic seedlings of loblolly pine at high temperature. Forest Sci.17: 37–41.Google Scholar
  266. McLuckie, J. 1924. Studies in parasitism. I. A contribution to the physiology of the genusCassytha. Proc. Linn. Soc. New South Wales49: 55–78.Google Scholar
  267. Mejstrik, V. K. 1972. Vesicular-arbuscular mycorrhizas of the species of a molinietum coeruleae L. I. Association: The ecology. New Phytol.71: 883–890.CrossRefGoogle Scholar
  268. Menge, J. A., D. Steirle, D. J. Bagyaraj, E. L. Johnson andR. T. Leonard. 1978. Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol.80: 575–578.CrossRefGoogle Scholar
  269. Menzies, B. P. 1954. Seedling development and haustorial system ofLoranthus micranthus Hook. F. Phytomorphology4: 397–409.Google Scholar
  270. Meredith, D. (ed.). 1955. The grasses and pastures of South Africa. Central News Agency, Cape Town.Google Scholar
  271. Milewski, A. V. 1981. A comparison of vegetation height in relation to the effectiveness of rainfall in the mediterranean and adjacent arid parts of Australia and South Africa. J. Biogeog.8: 107–116.CrossRefGoogle Scholar
  272. Mitchell D. T. andD. J. Read. 1980. Utilization of inorganic and organic phosphates by the mycorrhizal endophytes ofVaccinium macrocarpon andRhododendron ponticum. Trans. Brit. Mycol. Soc.76: 255–260.Google Scholar
  273. Moore, C. W. andK. Keraitis. 1971. Effect of nitrogen source on growth of eucalypts in sand culture. Austral. J. Bot.19: 125–141.CrossRefGoogle Scholar
  274. Monk, D., J. S. Pate andW. A. Loneragan. 1981. Biology ofAcacia pulchella R. Br. with special reference to nitrogen fixation. Austral. J. Bot.29: 579–592.CrossRefGoogle Scholar
  275. Morrison, T. M. 1956. Mycorrhiza of silver beech. New Zealand J. Forest.7: 47–60.Google Scholar
  276. Moss, C. E. andR. S. Adamson. 1954. The species ofArthrocnemum andSalicornia in Southern Africa. J. South African Bot.20: 1–22.Google Scholar
  277. —. 1975. Specificity in VA mycorrhizas. Pages 469–484in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.Google Scholar
  278. —,C. L. Powell andD. S. Hayman. 1976. Plant growth responses to vesiculararbuscular mycorrhiza. IX. Interactions between VA mycorrhiza, rock phosphate and symbiotic nitrogen fixation. New Phytol.76: 331–342.CrossRefGoogle Scholar
  279. Muir, B. G. 1977. Biological survey of the western Australian wheatbelt. Part 2: Vegetation and habitat of Bendering Reserve. Records Western Australian Mus. Suppl. No. 3.Google Scholar
  280. Mullette, J. J., N. J. Hannon andA. G. Elliot. 1974. Insoluble phosphorus usage byEucalyptus. Pl. &Soil41: 199–205.CrossRefGoogle Scholar
  281. Munteanu-Deliu, C. 1974. Unele aspecte ale nutritiei minerale la plantele semi-paraziti. Continutul in compusi fosforici. Stud. Univ. Babes-Bolyai.1: 59–65.Google Scholar
  282. Murdoch, C. K., J. A. Jacobs andJ. W. Gerdemann. 1967. Utilization of phosphorus sources of different availability by mycorrhizal and non-mycorrhizal maize. Pl. &Soil27: 329–334.CrossRefGoogle Scholar
  283. Nakos, G. 1977. Acetylene reduction (N2-fixation) by nodules ofAcacia cyanophylla. Soil Biol. Biochem.9: 131–133.CrossRefGoogle Scholar
  284. Nambiar, E. K. 1976. Uptake of Zn65 from dry soil by plants. Pl. &Soil44: 267–271.CrossRefGoogle Scholar
  285. —. 1977. The effects of drying of the topsoil and of micro-nutrients in the subsoil on micro-nutrient uptake by an intermittently defoliated ryegrass. Pl. &Soil46: 185–193.CrossRefGoogle Scholar
  286. Nathanielsz, C. P. andI. A. Staff. 1975. A mode of entry of blue-green algae into the apogeotropic roots ofMacrozamia communis. Amer. J. Bot.62: 232–235.CrossRefGoogle Scholar
  287. Nelson, E. C. 1978. A taxonomic revision of the genusAdenanthos (Proteaceae). Brunonia1: 303–405.CrossRefGoogle Scholar
  288. Nicolson, T. H. 1960. Mycorrhiza in the Gramineae. II. Development in different habitats, particularly sand dunes. Trans. Brit. Mycol. Soc.43: 132–145.Google Scholar
  289. —. 1975. Evolution of vesicular-arbuscular mycorrhizas. Pages 25–34in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.Google Scholar
  290. Nicoloff, T. 1923. Contribution à la physiologie de la nutrition des parasites végéteaux supérieurs. Rev. Gen. Bot.35: 545–552.Google Scholar
  291. Nieuwdorp, P. J. 1972. Some observations with light and electron microscope on the endotrophic mycorrhiza of orchids. Acta Bot. Neerl.21: 128–144.Google Scholar
  292. Nordin, A. 1977. Effects of low root temperature on ion uptake and ion translocation in wheat. Physiol. Pl.39: 305–310.CrossRefGoogle Scholar
  293. Nutman, P. S. (ed.). 1976. Symbiotic nitrogen fixation in plants. Cambridge University Press, Cambridge.Google Scholar
  294. Nye, P. H. 1979. Soil properties controlling the supply of nutrients to the root surface. Pages 39–49in J. L. Harley and R. S. Russell (eds.). The soil-root interface. Academic Press, London.Google Scholar
  295. Obermeyer, A. A. 1970. Droseraceae, Roridulaceae. Pages 187–204in L. E. Codd, B. De Winter, D. J. Killick and H. B. Rycroft (eds.). Flora of southern Africa. 13. Dept. Agri. Tech. Services, Pretoria.Google Scholar
  296. Okahara, K. 1933. Physiological studies onDrosera, IV. On the function of micro-organisms in the digestion of insect bodies by insectivorous plants. Sci. Rep. Tohoku Imp. Univ., Ser. 4, Biol.8: 151–168.Google Scholar
  297. Okonkwo, S. N. andF. I. Nwoke. 1978. Initiation, development and structure of the primary haustorium inStriga gesnerioides (Scrophulariaceae). Ann. Bot.42: 455–463.Google Scholar
  298. O’Neill, R. V., B. M. Ross-Todd andF. G. O’Neill. 1980. Synthesis of terrestrial microcosm studies. Pages 239–257in W. F. Harris (ed.). Microcosms as potential screening tools for evaluating transport and effects of toxic substances. Final Rep. ORNL/TM-7028. Oakridge Nat. Lab., Tennessee.Google Scholar
  299. Owusu-Bennoah, E. andA. Wild. 1979. Autoradiography of the depletion zone of phosphate around onion roots in the presence of vesicular-arbuscular mycorrhiza. New Phytol.82: 133–140.CrossRefGoogle Scholar
  300. ——. 1980. Effects of vesicular-arbuscular mycorrhiza on the size of the labile pool of soil phosphate. Pl. &Soil54: 233–242.CrossRefGoogle Scholar
  301. Pairunan, A. K., A. D. Robson andL. K. Abbott. 1980. The effectiveness of vesiculararbuscular mycorrhizas in increasing growth and phosphorus uptake of subterranean clover from phosphorus sources of different solubilities. New Phytol.84: 327–338.CrossRefGoogle Scholar
  302. Parkes, D. 1973. Adaptive mechanisms in the carnivorous habit of pitcher plants. Hons. Thesis, Monash University, Victoria.Google Scholar
  303. Pate, J. S. andK. W. Dixon. 1978. Mineral nutrition ofDrosera erythrorhiza Lindl. with special reference to its tuberous habit. Austral. J. Bot.26: 455–464.CrossRefGoogle Scholar
  304. Pathmaranee, N. 1974. Observations on proteoid roots. M.Sc. Thesis, University of Sydney, N.S.W.Google Scholar
  305. Pearson, V. andD. J. Read. 1973a. The physiology of the mycorrhizal endophyte ofCalluna vulgaris. Trans. Brit. Mycol. Soc.64: 1–7.Google Scholar
  306. ——. 1973b. The biology of mycorrhiza in the Ericaceae. II. The transport of carbon and phosphorus by the endophyte and the mycorrhiza. New Phytol.72: 1325–1331.CrossRefGoogle Scholar
  307. Pillans, N. S. 1942. The genusPhylica. Linn. J. South African Bot.8: 1–164.Google Scholar
  308. —. 1947. A revision of Bruniaceae. J. South African Bot.13: 121–206.Google Scholar
  309. Pirozynski, K. A. andO. W. Malloch. 1975. The origin of land plants: A matter of mycotrophism. Bio Systems6: 153–164.PubMedGoogle Scholar
  310. Pittman, H. A. 1929. Note on the morphology and endotrophic mycorrhiza ofRhizanthella gardneri Rogers, and certain other Western Australian orchids. J. Roy. Soc. Western Australia15: 71–79.Google Scholar
  311. Powell, C. L. 1975. Rushes and sedges are non-mycotrophic. Pl. &Soil42: 481–484.CrossRefGoogle Scholar
  312. —. 1976. Development of mycorrhizal infections fromEndogone spores and infected root segments. Trans. Brit. Mycol. Soc.66: 439–445.CrossRefGoogle Scholar
  313. —. 1977. Effect of phosphate fertilizer and plant density on phosphate inflow into ryegrass roots in soil. Pl. &Soil47: 383–393.CrossRefGoogle Scholar
  314. Pringsheim, E. G. andO. Pringsheim. 1962. Axenic culture ofUtricularia. Amer. J. Bot.49: 898–901.CrossRefGoogle Scholar
  315. Puff, C. B. 1978. The genusGalium L. (Rubiaceae) in Southern Africa. J. South African Bot.44: 203–279.Google Scholar
  316. Purnell, H. M. 1960. Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Austral. J. Bot.8: 38–50.CrossRefGoogle Scholar
  317. Purves, S. andG. Hadley. 1975. Movement of carbon compounds between the partners in orchid mycorrhiza. Pages 175–194in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.Google Scholar
  318. Read, D. J., H. K. Koucheki andJ. Hodgson. 1976. Vesicular-arbuscular mycorrhiza in natural vetetation systems. I. The occurrence of infection. New Phytol.77: 641–653.CrossRefGoogle Scholar
  319. — andD. P. Stribley. 1973. Effect of mycorrhizal infection on nitrogen and phosphorus nutrition of ericaceous plants. Nature (New Biol.)244: 81–82.Google Scholar
  320. Reid, C. P. andG. D. Bowen. 1979. Effects of soil moisture on VA mycorrhiza formation and root development inMedicago. Pages 211–219in J. L. Harley and R. S. Russell (eds.). The soil-root interface. Academic Press, London.Google Scholar
  321. Renaudin, S. 1975. Mise en évidence d’activités enzymatiques au niveau des sucoirs deLathraea clandestina L. Bull. Soc. Bot. France124: 419–425.Google Scholar
  322. Renbuss, M. A., G. A. Chilvers andL. D. Pryor. 1972. Microbiology of an ashbed. Proc. Linn. Soc. New South Wales97: 302–316.Google Scholar
  323. Rice, E. L. 1971. Inhibition of nodulation of inoculated legumes by leaf leachates from pioneer plant species from abandoned fields. Amer. J. Bot.58: 368–371.CrossRefGoogle Scholar
  324. Riley, D. andS. A. Barber. 1971. Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root-induced pH changes at the root-soil interface. Soil Sci. Soc. Amer. Proc.35: 301–306.CrossRefGoogle Scholar
  325. Riopel, J. L. andL. J. Musselman. 1979. Experimental initiation of haustoria inAgalinis purpurea (Scrophulariaceae). Amer. J. Bot.66: 570–575.CrossRefGoogle Scholar
  326. Robinson, R. K. 1973. Mycorrhiza in certain Ericaceae native to Southern Africa. J. South African Bot.39: 123–129.Google Scholar
  327. Robson, A. D., G. W. O’Hara andL. K. Abbott. 1981. Involvement of phosphorus in nitrogen fixation by subterranean clover (Trifolium subterraneum L.). Austral. J. Plant Physiol.8: 427–436.Google Scholar
  328. Rodríguez-Barrueco, C., A. H. Mackintosh andG. Bond. 1970. Some effects of combined nitrogen on the nodule symbioses ofCasuarina andAeanothus. Pl. &Soil33: 129–139.CrossRefGoogle Scholar
  329. Ross, J. P. andJ. A. Harper. 1973. Hosts of a vesicular-arbuscularEndogone species. J. Elisha Mitchell Sci. Soc.89: 1–3.Google Scholar
  330. Rourke, J. P. 1969. Taxonomic studies onSorocephalus andSpatalla Salisb. J. South African Bot. (Suppl.)7: 1–124.Google Scholar
  331. —. 1972. Taxonomic studies onLeucospermum. J. South African Bot. (Suppl.)8: 1–194.Google Scholar
  332. —. 1975. Proteaceae. Pages 40–47in R. A. Dyer (ed.). The genera of South African flowering plants 1. Dept. Agri. Tech. Services, Pretoria, South Africa.Google Scholar
  333. —. 1980. The proteas of southern Africa. Purnell, Cape Town.Google Scholar
  334. Rowell, D. L., M. W. Martin andP. H. Nye. 1967. The measurement and mechanism of ion diffusion in soils. III. The effect of moisture content and soil solution concentration on the self-diffusion of ions in soils. J. Soil Sci.18: 204–222.CrossRefGoogle Scholar
  335. Safir, G. R., J. S. Boyer andJ. W. Gerdemann. 1972. Nutrient status and mycorrhizal enhancement of water transport in soybean. Pl. Physiol.49: 700–703.CrossRefGoogle Scholar
  336. Salter, T. M. 1944. The genusOxalis in South Africa. J. South African Bot. (Suppl.)1: 1–355.Google Scholar
  337. Sanders, F. E. andP. B. Tinker. 1973. Phosphate flow into mycorrhizal roots. Pesticide Sci.4: 385–395.CrossRefGoogle Scholar
  338. Schalke, J. H. 1973. The upper Quaternary of the Cape Flats area (Cape Province, South Africa). Scrip. Geol.15: 1–57.Google Scholar
  339. Schnepf, E. 1974. Gland cells. Pages 331–359in A. W. Robards (ed.). Dynamic aspects of plant ultrastructure. McGraw Hill, London.Google Scholar
  340. Schulze, R. E. andO. S. McGee. 1978. Climatic indices and classifications in relation to the biogeography of southern Africa. Pages 19–52in M. J. Werger (ed.). Biogeography and ecology of Southern Africa. W. Junk, The Hague.Google Scholar
  341. Seddon, G. 1972. Sense of place. Western Australian University Press, Perth.Google Scholar
  342. Shea, S. R. andB. Dell. 1981. Structure of the surface root system ofEucalyptus marginata Sm, and its infection byPhytophthora cinnamomi Rands. Austral. J. Bot.29: 49–58.CrossRefGoogle Scholar
  343. -and R. J. Kitt. 1976. The capacity of Jarrah forest native legumes to fix nitrogen. Forests Dept. West. Austr. Res. Paper 21.Google Scholar
  344. Siddiqi, M. Y. andR. C. Carolin. 1976. Studies on the ecology of coastal heath in New South Wales. II. The effects of water supply and phosphorus uptake on the growth ofBanksia serratifolia, B. aspleniifolia andB. ericifolia. Proc. Linn. Soc. New South Wales101: 38–52.Google Scholar
  345. Skinner, M. F. andG. D. Bowen. 1974. The uptake and translocation of phosphate by mycelial strands of pine mycorrhizas. Soil Biol. Biochem.6: 53–56.CrossRefGoogle Scholar
  346. Small, E. 1973. Xeromorphy in plants as a genetic basis for migration between arid and nutrient deficient environments. Bot. Not.126: 534–539.Google Scholar
  347. Small, J. G., A. Onraet, O. S. Grierson andG. Reynolds. 1977. Studies on insect-free growth, development and nitrate-assimilating enzymes ofDroseraaliciae Hamet. New Phytol.79: 127–133.CrossRefGoogle Scholar
  348. Smith, S. E. 1966. Physiology and ecology ofOrchis mycorrhizal fungi with reference to seedling nutrition. New Phytol.65: 488–499.CrossRefGoogle Scholar
  349. Snowball, K., A. D. Robson andJ. F. Loneragan. 1980. The effect of copper on nitrogen fixation in subterranean clover (Trifolium subterraneum). New Phytol.85: 63–72.CrossRefGoogle Scholar
  350. So, H. B. 1979. Water potential gradients and resistances of a soil-root system measured with the root and soil psychrometer. Pages 99–113in J. L. Harley and R. S. Russell (eds.). The soil-root interface. Academic Press, London.Google Scholar
  351. Sorensen, D. andW. T. Jackson. 1968. Utilization ofParamecium byUtricularia gibba. Planta83: 166–170.CrossRefGoogle Scholar
  352. Specht, R. L. 1979. Heathlands and related shrublands of the world. Pages 1–19in R. L. Specht (ed.). Heathlands and related shrublands of the world. A. Descriptive studies. Elsevier, Amsterdam.Google Scholar
  353. —. 1981. Nutrient release from decomposing leaf litter ofBanksiaornata, Dark Island Heathland, South Australia. Austral. J. Ecol.6: 59–63.CrossRefGoogle Scholar
  354. — andR. H. Groves. 1966. Comparison of the phosphate nutrition of Australian heath plants and introduced economic plants. Austral. J. Bot.14: 201–221.CrossRefGoogle Scholar
  355. — andP. Rayson. 1957. Dark Island Heath (Ninety-Mile Plain, South Australia). III. The root systems. Austral. J. Bot.5: 103–114.CrossRefGoogle Scholar
  356. Speck, N. J. 1953. Atmospheric pollen in the city of Perth and environs. J. Roy. Soc. Western Australia37: 119–125.Google Scholar
  357. Sperber, J. I. 1958. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Austral. J. Agric. Res.9: 282–287.Google Scholar
  358. Sporne, K. R. 1980. A reinvestigation of character correlations among dicotyledons. New Phytol.85: 419–449.CrossRefGoogle Scholar
  359. Sprent, J. I. 1972. The effects of water stress on nitrogen-fixing root nodules. IV. Effects on whole plants ofVicia faba andGlycine max. New Phytol.71: 603–611.CrossRefGoogle Scholar
  360. Stewart, W. D. 1963. The effect of combined nitrogen on growth and nodule development ofMyrica andCasuarina. Z. Allg. Mikrobiol.3: 152–156.CrossRefGoogle Scholar
  361. Stock, W. and O. A. Lewis. 1980. An investigation on cycling and processing of nitrogen in the fynbos biome. CSIR, Fynbos Biome Ann. Rep. No. 2.Google Scholar
  362. Straker, C. J. andD. T. Mitchell. 1980. Phosphatase activity and polyphosphate accumulation in ericoid mycorrhizas. Fourth international conference of mediterranean ecosystems. University of Stellenbosch, South Africa (abstract).Google Scholar
  363. Stribley, D. P. andD. J. Read. 1974a. The biology of mycorrhiza in the Ericaceae. IV. The effect of mycorrhizal infection on uptake of15N from labelled soil byVaccinium macrocarpon Ait. New Phytol.73: 1149–1155.CrossRefGoogle Scholar
  364. ——. 1974b. The biology of mycorrhiza in the Ericaceae. III. Movement of carbon-14 from host to fungus. New Phytol.73: 731–741.CrossRefGoogle Scholar
  365. ——. 1975. Some nutritional aspects of the biology of ericaceous mycorrhizas. Pages 195–208in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.Google Scholar
  366. ——. 1976. The biology of mycorrhiza in the Ericaceae. VI. The effects of mycorrhizal infection and concentration of ammonium nitrogen on growth of cranberry (Vaccinium macrocarpon Ait.) in sand culture. New Phytol.77: 63–72.CrossRefGoogle Scholar
  367. Strzemska, J. 1975. Occurrence and intensity of mycorrhiza and deformation of roots without mycorrhiza in cultivated plants. Pages 537–543in F. E. Sanders, B. Mosse and P. E. Tinker (eds.). Endomycorrhizas. Academic Press, London.Google Scholar
  368. Sward, R. J. 1978a. Studies on vesicular-arbuscular mycorrhizas of some Australian heathland plants. Ph.D. Thesis, Monash University, Victoria, Aust.Google Scholar
  369. —. 1978b. Infection of Australian heathland plants byGigaspora margarita (a vesicular-arbuscular mycorrhizal fungus). Austral. J. Bot.26: 253–264.CrossRefGoogle Scholar
  370. Sydenham, P. H. andF. P. Findlay. 1973. The rapid movement of the bladder ofUtricularia sp. Austral. J. Biol. Sci.26: 1115–1126.Google Scholar
  371. Tacey, W. H. 1977. Nitrogen fixation rate ofAlbizia lophantha. Pages 59–63in Nutrient cycling in indigenous forest ecosystems. CSIRO, Div. Land Resources Management, Perth.Google Scholar
  372. Taylor, H. C. 1961. Ecological account of a remnant coastal forest near Stanford, Cape Province. J. South African Bot.27: 153–165.Google Scholar
  373. Taylor, P. 1964. The genusUtricularia L. in Africa (south of the Sahara) and Madagascar. Kew Bull.18: 1–245.CrossRefGoogle Scholar
  374. Thiergart, F., F. Franz andK. Baukopf. 1963. Palynologische Untersuchungen von Tertiärkohlen und einer Oberflächenprobe nahe Knysna, Südafrika. Advancing Frontiers Pl. Sci.4: 151–178.Google Scholar
  375. Titze, J. F., G. Craig andB. B. Lamont. 1980. Vesicular-arbuscular mycorrhizae in jarrah forest—A preliminary note. Mulga Res. Centre Ann. Rep.3: 29–33.Google Scholar
  376. Torrey, J. G. 1976. Initiation and development of root nodules ofCasuarina (Casuarinaceae). Amer. J. Bot.63: 335–344.CrossRefGoogle Scholar
  377. Trappe, J. 1962. Fungus associates of ectotrophic mycorrhizae. Bot. Rev.28: 538–606.Google Scholar
  378. Trinick, M. J. 1977. Vesicular-arbuscular infection and soil phosphorus utilizat: inLupinus spp. New Phytol.78: 297–304.CrossRefGoogle Scholar
  379. Tsivion, Y. 1978. Loading of assimilates and some sugars into the translocation system ofCuscuta. Austral. J. Pl. Physiol.5: 851–857.CrossRefGoogle Scholar
  380. Tyson, J. H. andW. S. Silver. 1979. Relationship of ultrastructure of acetylene reduction (N2 fixation) in root nodules ofCasuarina. Bot. Gaz.140 (Suppl.): 44–48.CrossRefGoogle Scholar
  381. UNESCO-FAO. 1963. Ecological study of the mediterranean zone. Bioclimatic map of the mediterranean zones: Explanatory notes. Arid Zone Res.21: 1–26.Google Scholar
  382. van Daalen, J. C. 1980. The colonisation of fynbos and disturbed sites by indigenous forest communities in the Southern Cape. M.Sc. Thesis, University of Cape Town, South Africa.Google Scholar
  383. van Voris, P., R. V. O’Neill, W. R. Emanual andH. H. Shugart. 1980. Functional complexity and ecosystem stability. Ecology61: 1352–1360.CrossRefGoogle Scholar
  384. van Zinderen Bakker, E. M. 1976. The evolution of late Quaternary palaeoclimates of southern Africa. Pages 160–202in van Zinderen Bakker (ed.). Palaeoecology of Africa, the surrounding islands and Antarctica. IX. Balkema, Cape Town.Google Scholar
  385. Walker, D. andG. Singh. 1981. Vegetation history. Pages 26–43in R. H. Groves (ed.). Australian vegetation. Cambridge Univeristy Press, Cambridge.Google Scholar
  386. von Breitenbach, F. 1974. Southern Cape forests and trees. Govt. Printer, Pretoria.Google Scholar
  387. Walters, C. M. andJ. H. Jooste. 1980. Aspekte van di minerale voeding van lede van die Proteaceae as verteenwoordigers van die fynbosgemeenskap. CSIR, S. Africa. Fynbos Biome Ann. Rep. No. 2.Google Scholar
  388. Warcup, J. H. 1975. A culturableEndogone associated with eucalypts. Pages 53–63in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.Google Scholar
  389. — andP. H. Talbot. 1971. Perfect states of rhizoctonias associated with orchids. II. New Phytol.70: 35–40.CrossRefGoogle Scholar
  390. Weatherley, P. E. 1979. The hydraulic resistance of the soil-root interface—A cause of water stress in plants. Pages 275–286in J. L. Harley and R. S. Russell (eds.). The soilroot interface. Academic Press, London.Google Scholar
  391. Webb, L. J. 1954. Aluminium accumulation in the Australian-New Guinea flora. Austral. J. Bot.2: 176–196.CrossRefGoogle Scholar
  392. Weber, H. C. 1980. Untersuchungen an australischen und neuseelandischen Loranthaceae/Viscaceae 1. Zur Morphologie und Anatomie der unterirdischen Organe vonNuytsia floribunda (Labill.) R. Br. Beitr. Biol. Pflanzen.55: 77–99.Google Scholar
  393. Weijman, A. C. andH. L. Meuzelaar. 1979. Biochemical contributions to the taxonomic status of the Endogonaceae. Canad. J. Bot.57: 284–291.CrossRefGoogle Scholar
  394. Weimark, H. 1948. The genusCliffortia: A taxonomical survey. Bot. Not.90: 167–203.Google Scholar
  395. Werger, M. J. (ed.). 1978. Biogeography and ecology of southern Africa. W. Junk, The Hague.Google Scholar
  396. Westman, W. 1978. Evidence for the distinct evolutionary histories of canopy and understorey in theEucalyptus forest-heath alliance of Australia. J. Biogeog.5: 365–376.CrossRefGoogle Scholar
  397. White, F. 1978. The afromontane region. Pages 463–513in M. J. Werger (ed.). Biogeography and ecology of southern Africa. W. Junk, The Hague.Google Scholar
  398. White, J. A. andM. F. Brown. 1979. Ultrastructure and X-ray analysis of phosphorus granules in a vesicular-arbuscular mycorrhizal fungus. Canad. J. Bot.57: 2812–2818.CrossRefGoogle Scholar
  399. Whitney, P. J. 1972. The carbohydrate and water balance of beans (Vicia faba) attacked by broomrape (Orobanche crenata). Ann. Appl. Biol.70: 59–66.CrossRefGoogle Scholar
  400. Wiens, D. andH. R. Tolken. 1979. Loranthaceae, Viscaceae. Pages 1–59in O. A. Leistner (ed.). Flora of southern Africa. Vol. 10. Dept. Agri. Tech. Serv., Pretoria, South Africa.Google Scholar
  401. Wild, A. 1958. The phosphate content of Australian soils. Austral. J. Agric. Res.9: 193–204.CrossRefGoogle Scholar
  402. Williams, I. J. 1972. A revision of the genusLeucadendron (Proteaceae). Contr. Bolus Herb.3: 1–425.Google Scholar
  403. Williams, S. E., A. G. Wollum andE. F. Aldon. 1974. Growth ofAtriplex canescens (Pursh) Nutt. improved by formation of vesicular-arbuscular mycorrhizae. Proc. Soil Sci. Soc. Amer.38: 962–965.CrossRefGoogle Scholar
  404. Williamson, B. 1973. Acid phosphatase and esterase activity in orchid mycorrhiza. Planta112: 149–158.CrossRefGoogle Scholar
  405. Wolswinkel, P. 1974. Complete inhibition of setting and growth of fruits ofVicia faba L., resulting from the draining of the phloem system byCuscuta species. Acta Bot. Neerl.23: 48–60.Google Scholar
  406. Wood, J. G. 1924. The relations between distribution, structure and transpiration of South Australian plants. Trans. Proc. Roy. Soc. South Australia48: 226–235.Google Scholar
  407. Woolhouse, H. W. 1969. Differences in the properties of acid phosphatases of plant roots and their significance in the evolution of edaphic ecotypes. Pages 357–380in I. H. Rorison (ed.). Ecological aspects of the mineral nutrition of plants. Blackwell, Oxford.Google Scholar
  408. Wright, C. H. 1904. Solanaceae. Pages 87–121in W. T. Thiselton-Dyer (ed.). Flora Capensis. 5. Reeve, London.Google Scholar
  409. —. 1912. Chenopodiaceae. Pages 433–454in W. T. Thiselton-Dyer (ed.). Flora Capensis. 5. Reeve, London.Google Scholar
  410. Wullstein, L. H. andS. A. Pratt. 1981. Scanning electron microscopy of rhizosheaths ofOryzopsis hymenoides. Amer. J. Bot.68: 408–419.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1982

Authors and Affiliations

  • Byron Lamont
    • 1
  1. 1.School of BiologyWestern Australian Institute of TechnologyPerthAustralia

Personalised recommendations