Economic Botany

, Volume 44, Supplement 3, pp 79–91

Molecular Evidence and the Origin and Development of the Domesticated Sunflower (Helianthus annum, Asteraceae)

  • Loren H. Rieseberg
  • Gerald J. Seiler


The domesticated sunflower,Helianthus annuus, is an important economic crop, yet molecular data regarding its evolution are limited. Here we review morphological, geographical, archaeological, and molecular evidence pertaining to its origin and development. New isozyme and chloroplast DNA (cpDNA) evidence is also presented.

Morphological, geographical, and archaeological evidence has led to the hypothesis that the domesticated sunflower was derived from a wild/weedy form ofH. annuus possibly in the Midwest. Molecular evidence was concordant with this hypothesis. A high degree of enzymatic and cpDNA sequence similarity was observed between wild and domesticatedH. annuus, and domesticatedH. annuus contained a subset of the alleles and cpDNAs found in wildH. annuus. The extensive polymorphism in the wild plants and the virtual monomorphism in cultivated lines for both isozyme and cpDNA phenotypes further suggest a single origin of the domesticated sunflower from a very limited gene pool. In addition, Native American varieties of the domesticated sunflower were genetically more variable than other cultivated lines, possibly indicating that they gave rise to the other cultivated stocks. Molecular evidence did not, however, allow conclusions as to the exact geographic origin of the domesticated sunflower.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Anashchenko, A. 1974. On the taxonomy of the genusHelianthus L. Bot. Zhurn. 59:1472–1481.Google Scholar
  2. Anderson, E. 1952. Plants, man and life. Little, Brown and Co., Boston.Google Scholar
  3. Asch, D. L., and N. E. Asch. 1985. Prehistoric plant cultivation in west-central Illinois. Pages 149–204in R. Ford, ed., Prehistoric food production in North America. Anthrop. Pap. 75, Museum of Anthropology, Univ. of Michigan, Ann Arbor.Google Scholar
  4. Brown, G. G., H. Bussey, and L. J. DesRosiers. 1986. Analysis of mitochondrial DNA, chloroplast DNA, and double-stranded RNA in fertile and cytoplasmic male-sterile sunflower (Helianthusannum). Canad. J. Genet. Cytol. 28:121–129.Google Scholar
  5. Brown, W. M., M. George, Jr., and A. C. Wilson. 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. U.S.A. 76:1967–1971.CrossRefGoogle Scholar
  6. Chandler, J. M., C. Jan, and B. H. Beard. 1986. Chromosomal differentiation among the annualHelianthus species. Syst. Bot. 11:353–371.CrossRefGoogle Scholar
  7. Choumane, W., and P. Heizmann. 1988. Structure and variability of nuclear ribosomal genes in the genusHelianthus. Theor. Appl. Genet. 76:481–489.CrossRefGoogle Scholar
  8. Crawford, D. J. 1983. Phylogenetic and systematic inferences from electrophoretic studies. Pages 257–287in S. D. Tanksley and T. J. Orton, eds., Isozymes in plant genetics and breeding, Part A. Elsevier, Amsterdam.Google Scholar
  9. Crouzillat, D., P. Leroy, A. Perrault, and G. Ledoigt. 1987. Molecular analysis of the mitochondrial genome ofHelianthus annuus in relation to cytoplasmic male sterility and phylogeny. Theor. Appl. Genet. 74:773–780.CrossRefGoogle Scholar
  10. Doty, H. O. 1978. Future of sunflower as an economic crop in North America and the world. Pages 457-488in J. F. Carter, ed., Sunflower science and technology. American Society of Agronomy, Madison, WI.Google Scholar
  11. Dry, P. J., and J. J. Burdon. 1986. Genetic structure of natural populations of wild sunflowers (Helianthus annuus L.) in Australia. Austral. J. Biol. Sci. 30:255–270.Google Scholar
  12. Ellstrand, N., A. M. Torres, and D. A. Levin. 1978. Density and the rate of apparent outcrossing inHelianthus annum. Syst. Bot. 3:403–407.CrossRefGoogle Scholar
  13. Fick, G. N. 1978. Breeding and genetics. Pages 279–338in J. F. Carter, ed., Sunflower science and technology. American Society of Agronomy, Madison, WI.Google Scholar
  14. Gottlieb, L. D. 1981. Electrophoretic evidence and plant populations. Progr. Phytochem. 7:1–46.Google Scholar
  15. Hanson, M. R., and M. F. Conde. 1985. Functioning and variation of cytoplasmic genomes: lessons from cytoplasmic-nuclear interactions affecting male fertility in plants. Int. Rev. Cytol. 94:213–267.CrossRefGoogle Scholar
  16. Heiser, C. B. 1949. Study in the evolution of the sunflower speciesHelianthus annuus andH. bolanderi. Univ. Calif. Publ. Bot. 23:157–196.Google Scholar
  17. — 1951a. Hybridization in the annual sunflowers:Helianthus annuus xH. argophyllus. Amer. Naturalist 85:64–72.Google Scholar
  18. — 1951b. The sunflower among the North American Indians. Proc. Amer. Philos. Soc. 95:432–448.Google Scholar
  19. — 1951c. Hybridization in the annual sunflowers:Helianthus annuus xH. debilis var.cucumerifolius. Evolution 5:42–51.CrossRefGoogle Scholar
  20. — 1954. Variation and subspeciation in the common sunflower,Helianthus annuus. Amer. Midi. Naturalist 51:287–305.CrossRefGoogle Scholar
  21. — 1956. Biosystematics ofHelianthus debilis. Madroño 13:145–176.Google Scholar
  22. — 1958. Three new annual sunflowers (Helianthus) from the southwestern United States. Rhodora 60:271–283.Google Scholar
  23. — 1976a. Sunflowers. Pages 36–38in N. W. Simmonds, ed., Evolution of crop plants. Longman, London.Google Scholar
  24. — 1976b. The sunflower. University of Oklahoma Press, Norman.Google Scholar
  25. — 1978. Taxonomyof Helianthus and origin of domesticated sunflower. Pages 31–53in J. F. Carter, ed., Sunflower science and technology. American Society of Agronomy, Madison, WI.Google Scholar
  26. — 1982. Registration of Indiana— 1 cms sunflower germplasm. Crop Sei. (Madison) 22:1089.Google Scholar
  27. — 1985. Some botanical considerations of the early domesticated plants north of Mexico. Pages 5 7–72in R. Ford, ed., Prehistoric food production in North America. Anthrop. Pap. 75, Museum of Anthropology, Univ. of Michigan, Ann Arbor.Google Scholar
  28. — and D. M. Smith. 1955. New chromosome numbers inHelianthus and related genera. Proc. Indiana Acad. Sci. 64:250–253.Google Scholar
  29. —,—, S. Clevenger, and W. C. Martin. 1969. The North American sunflowers (Helianthus).Mem. Torrey Bot. Club 22:1–218.Google Scholar
  30. Kahler, A. L., and C. L. Lay. 1985. Genetics of electrophoretic variants in the annual sunflower. J. Heredity 76:335–340.Google Scholar
  31. Leclercq, P. 1969. Une sterilite male cytoplasmique chez le tournesol. Ann. Amélior. PI. 19:99–106.Google Scholar
  32. Leroy, P., S. Bazetoux, L. Quetier, J. Belbut, and A. Berville. 1985. A comparison between mitochondrial DNA of an isogenic male-sterile (S) and male-fertile (F) couple (HA89) of sunflower. Curr. Genet. 9:245–251.CrossRefGoogle Scholar
  33. Nabhan, G. 1982. Sunflower of Indians of the southwest. Sunflower 8:30–32.Google Scholar
  34. Nei, M. 1972. Genetic distance between populations. Amer. Naturalist 106:283–292.CrossRefGoogle Scholar
  35. — and W. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. U.S.A 76:5269–5273.CrossRefGoogle Scholar
  36. Putt, E. D. 1978. History and present world status. Pages 1–30in J. F. Carter, ed., Sunflower science and technology. American Society of Agronomy, Madison, WI.Google Scholar
  37. Rieseberg, L. H. 1987. A re-examination of introgression inHelianthus. Ph.D. Dissertation, Washington State Univ., Pullman.Google Scholar
  38. -, S. Beckstrom-Sternberg, and K. Doan. 1990a.Helianthus annuus ssp. texanus has chloroplast DNA and nuclear ribosomal RNA genes ofHelianthus debilis ssp.cucumerifolius. Proc. Natl. Acad. U.S.A. (in press).Google Scholar
  39. -, R. Carter, and S. Zona. 1990b. Molecular tests of the hypothesized hybrid origin of two diploidHelianthus species (Asteraceae). Evolution (in press).Google Scholar
  40. — and M. Doyle. 1989. Allozyme variation inHelianthus praecox ssp. {hirtus} a rare sunflower from southern Texas. Aliso 12:379–386.Google Scholar
  41. — and D. E. Soltis. 1987a. Phosphoglucomutase inHelianthus debilis a polymorphism for isozyme number. Biochem. Syst. Ecol. 15:545–548.CrossRefGoogle Scholar
  42. — and — 1987b. Allozymic differentiation betweenTolmiea menziesii andTellima grandiflora (Saxifragaceae). Syst. Bot. 12:154–161.CrossRefGoogle Scholar
  43. — and — 1989. Assessing the utility of isozyme number for determining ploidal level: evidence fromHelianthus andHeliomeris (Asteraceae). Aliso 12:277–286.Google Scholar
  44. —, —, and J. D. Palmer. 1988a. A molecular re-examination of introgression betweenHelianthus annuus andH. bolanderi (Compositae). Evolution 42:227–238.CrossRefGoogle Scholar
  45. —, —, and P. S. Soltis. 1988b. Genetic variation inHelianthus annuus andH. bolanderi. Biochem. Syst. Ecol. 16:393–399.CrossRefGoogle Scholar
  46. Schilling, E. E., and C. B. Heiser. 1981. An infrageneric classification ofHelianthus (Compositae). Taxon 30:393–403.CrossRefGoogle Scholar
  47. Siculella, L., and J. D. Palmer. 1988. Physical and gene organization of mitochondrial DNA in fertile and male sterile sunflower. CMS-associated alterations in structure and transcription of theatpA gene. Nucleic Acids Res. 16:3787–3799.CrossRefPubMedGoogle Scholar
  48. Sneath, P. H. A., and R. R. Sokal. 1973. Numerical taxonomy. W. H. Freeman, San Francisco.Google Scholar
  49. Soltis, D. E., C. H. Haufler, D. C. Darrow, and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. Amer. Fern J. 73:9–27.CrossRefGoogle Scholar
  50. Torres, A. M. 1974. Genetics of sunflower alcohol dehydrogenase:Adh-2 non-linkage toAdh-1 andAdh-1 early alleles. Biochem. Genet. 12:385–392.CrossRefPubMedGoogle Scholar
  51. — 1976. Dissociation-recombination of intergenic sunflower alcohol dehydrogenase isozymes and relative isozyme activities. Biochem. Genet. 14:87–98.CrossRefPubMedGoogle Scholar
  52. — 1983. Sunflowers (Helianthus annuus L.). Pages 329–338in S. D. Tanksley and T. J. Orton, eds., Isozymes in plant genetics and breeding, Part A. Elsevier, Amsterdam.Google Scholar
  53. —, and U. Diedenhofen. 1976. The genetic control of sunflower seed acid phosphatase. Canad. J. Genet. Cytol. 18:709–716.Google Scholar
  54. —, and —. 1979. Baker sunflower populations revisited. J. Heredity 70:275–276.Google Scholar
  55. —, —, and I. M. Johnstone. 1977. Theearly allele of alcohol dehydrogenase in sunflower populations. J. Heredity 68:11–16.Google Scholar
  56. Wain, R. P. 1982. Genetic differentiation in the Florida subspecies ofHelianthus debilis (Asteraceae). Amer. J. Bot. 69:1573–1578.CrossRefGoogle Scholar
  57. —. 1983. Genetic differentiation during speciation in theHelianthus debilis complex. Evolution 37:1119–1127.CrossRefGoogle Scholar
  58. Watson, P. J. 1985. The impact of early horticulture in the upland drainages of the Midwest and Midsouth. Pages 99–148in R. Ford, ed., Prehistoric food production in North America. Anthrop. Pap. 75, Museum of Anthropology, Univ. of Michigan, Ann Arbor.Google Scholar
  59. Whelan, E. D. P., and W. Dedio. 1980. Registration of sunflower germplasm composite crosses CMG-1, CMG-2 and CMG-3. Crop Sci. (Madison) 20:832.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden, Bronx, NY 10458 1990

Authors and Affiliations

  • Loren H. Rieseberg
    • 1
  • Gerald J. Seiler
    • 2
  1. 1.Rancho Santa Ana Botanic Garden Graduate Program in BotanyClaremont
  2. 2.U.S.D.A.-A.R.S.Northern Crop Science LaboratoryFargo

Personalised recommendations