Economic Botany

, Volume 44, Supplement 3, pp 28–38 | Cite as

Biochemical evidence bearing on the domestication ofPhaseolus (Fabaceae) beans

  • Paul Gepts


The genusPhaseolus (Fabaceae) consists of some 50 species, all of which are distributed in the Americas. Four of these contain cultigens.P. vulgaris (common bean),P. lunatus (lima bean),P. acutifolius (tepary bean),P. coccineus subsp.coccineus (runner bean); andP. coccineus subsp.polyanthus (no English vernacular name). Biochemical markers—phaseolin seed storage protein and isozymes—have provided new evidence on the organization of the first three species. Domestication has possibly caused a strong reduction in genetic diversity inP. vulgaris andP. acutifolius. BothP. vulgaris andP. lunatus cultivars result from at least two independent domestications, in Mesoamerica and in the Andes. These two species consist of two gene pools, each of which includes wild ancestors and their respective cultivated descendants. Our findings suggest the need for additional emphasis on genetic conservation of wild ancestors and their use in breeding programs and for a comparison of inter-gene pool vs. intra-gene pool crosses in breeding programs.


Common Bean Economic Botany Lima Bean Phaseolin Wild Ancestor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Informatión bioquímica acerca de 1a domesticación de los frijolesPhaseolus


El géneroPhaseolus consta de unas 50 especies, distribuidas exclusivamente en las Américas; cuatro de estas especies incluyen a formas cultivadas:P. Vulgaris (frijol común),P. lunatus (frijol lima),P. acutifolius (frijol tepari o escomite),P. coccineus subsp. coccineus (frijol ayocote), yP. Coccineus subsp.polyanthus (frijol acalete). El uso de marcadores bioquímicos—faseolina e isozimas—ha producido nueva información acerca de la distribución de la variabilidad genética en las tres primeras especies. El proceso de domesticación causó una reducción marcada en la variabilidad genética para faseolina enP. vulgaris yP. acutifolius. Las formas cultivadas deP. vulgaris yP. lunatus resultaron de por lo menos dos domesticaciones distintas, en Mesoamérica y en los Andes. Estas dos especies constan de dos grupos de genotipos, cada cual incluye tanto a las formas silvestres ancestrales como a sus progenies cultivadas respectivas. Nuestros resultados sugieren que se ponga más enfasis tanto en la recolección y la preservación del germoplasma silvestre ancestral como en su uso en programas de mejoramiento; también sugieren que se compare en forma más detenida las cruzas entre grupos de genotipos con las cruzas adentro de estos grupos.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bassiri, A. and M. W. Adams. 1978. Evaluation of bean cultivar relationships by means of isozyme electrophoretic patterns. Euphytica 27:707–720.CrossRefGoogle Scholar
  2. Brown, J. W. S., Y. Ma, F. A. Bliss and T. C. Hall. 1981. Genetic variation in the subunits of globulin-1 storage protein of French bean. Theor. Appl. Genet. 59:83–86.Google Scholar
  3. —, and F. A. Bliss. 1983. Breeding common bean for improved quantity and quality of seed protein. Pl Breed. Rev. 1:59–102.Google Scholar
  4. Brücher, H. 1988. The wild ancestor ofPhaseolus vulgarisin South America. Pages 185–214in P. Gepts, ed., Genetic resourcesof Phaseolusbeans. Kluwer, Dordrecht, The Netherlands.Google Scholar
  5. Burkart, A. and H. Brücher. 1953.Phaseolus aborigineus Burkart, die mutmassliche andine Stammform der Kulturbohne. Züchter 23:65–72.Google Scholar
  6. Cheah, C. H. 1973. Evaluation of the genetic diversity in varieties ofPhaseolus vulgaris. Ph.D. thesis, Cambridge Univ.Google Scholar
  7. Coyne, D. P. 1966. A mutable gene system inPhaseolus vulgaris L. Crop Sci. 6:307–310.CrossRefGoogle Scholar
  8. —. 1967. A test to detect a mutator or mutable gene in field beans. J. Heredity 8:146–147.Google Scholar
  9. De Candolle, A. 1882. L’origine des plantes cultivees. English translation of 1908: The origin of cultivated plants. Appleton, New York.Google Scholar
  10. Delgado Salinas, A. O. 1985. Systematics of the genusPhaseolus (Leguminosae) in North and Central America. Ph.D. thesis, Univ. Texas, Austin.Google Scholar
  11. Delgado Salinas, A., A. Bonet, and P. Gepts. 1988. The wild relativeof Phaseolus vulgaris in Middle America. Pages 163–184in P. Gepts, ed., Genetic resourcesof Phaseolus beans. Kluwer, Dordrecht, The Netherlands.Google Scholar
  12. Enans A. M. 1973. Genetic improvement ofPhaseolus vulgaris. Pages 107–115in M. Milner,ed., Nutritional improvement of food legumes by breeding. Protein Advisory Group, United Nations, New York.Google Scholar
  13. —. 1976. Beans. Pages 168–172in N. W. Simmonds, ed., Evolution of crop plants. Longman, London.Google Scholar
  14. Gepts, P. 1984. Nutritional and evolutionary implications of phaseolin seed protein variability in common bean (Phaseolus vulgaris L.). Ph.D. thesis, Univ. Wisconsin, Madison.Google Scholar
  15. -, ed. 1988. Genetic resources ofPhaseolus beans. Kluwer, Dordrecht, The Netherlands.Google Scholar
  16. —, and F. A. Bliss. 1984. Enhanced available methionine concentration associated with higher phaseolin levels in common bean seeds. Theor. Appl. Genet. 69:47–53.CrossRefGoogle Scholar
  17. —, and —. 1985. F1 hybrid weakness in the common bean: differential geographic origin suggests two gene pools in cultivated common bean. J. Heredity 76:447–450.Google Scholar
  18. —, and —. 1986. Phaseolin variability among wild and cultivated common beans (Phaseolus vulgaris) from Colombia. Econ. Bot. 40:469–478.Google Scholar
  19. —, and —. 1988. Dissemination pathways of common bean(Phaseolus vulgaris Fabaceae) deduced from phaseolin electrophoretic variability. II. Europe and Africa. Econ. Bot. 42:86–104.Google Scholar
  20. -, and D. G. Debouck. Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.).In A. van Schoonhoven and O. Voysest, ed., Bean(Phaseolus vulgaris): production in the tropics. Centro International de Agriculture Tropical, Cali, Colombia. (In press)Google Scholar
  21. —, K. Kmiecik, P. Pereira, and F. A. Bliss. 1988. Dissemination pathways of common bean (Phaseolus vulgaris Fabaceae) deduced from phaseolin electrophoretic variability. I. The Americas. Econ. Bot. 42:73–85.Google Scholar
  22. —, T. C. Osborn, K. Rashka, and F. A. Bliss. 1986. Phaseolin seed proteins variability in wild forms and landraces of the common bean,Phaseolus vulgaris: evidence for multiple centers of domestication. Econ. Bot. 40:451–568.Google Scholar
  23. Ghaderi, A., M. W. Adams, and A. W. Saettler. 1982. Environmental response patterns in commercial classes of common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 63:17–22.CrossRefGoogle Scholar
  24. Glaszmann, J. C. 1987. Isozymes and classification of Asian rice varieties. Theor. Appl. Genet. 74: 21–30.CrossRefGoogle Scholar
  25. Johannsen, W. 1909. Elementen der exakten Erblichkeitslehre. Gustav Fisher, Jena.Google Scholar
  26. Harlan, J. R., and J. M. J. de Wet. 1971. Towards a rational classification of cultivated plants. Taxon 20:509–517.CrossRefGoogle Scholar
  27. Kaplan, L. 1956. The cultivated beans of the prehistoric Southwest. Ann. Missouri Bot. Gard. 43: 189–227.CrossRefGoogle Scholar
  28. —. 1965. Archaeology and domestication in AmericanPhaseolus (beans). Econ. Bot. 19:358–368.Google Scholar
  29. —. 1967. ArchaeologicalPhaseolus from Tehuacan. Pages 201–212in D. S. Byers, ed., The prehistory of the Tehuacan valley. Vol. 1. Environment and subsistence. Univ. of Texas Press, Austin.Google Scholar
  30. —. 1981. What is the origin of the common bean? Econ. Bot. 35:240–253.Google Scholar
  31. —, and L. N. Kaplan. 1988.Phaseolus in archaeology. Pages 125–142in P. Gepts, ed., Genetic resources ofPhaseolus beans. Kluwer, Dordrecht, The Netherlands.Google Scholar
  32. Koenig, R. L., S. P. Singh, and P. Gepts. 1990. Novel phaseolin types in wild and cultivated common bean(Phaseolus vulgaris Fabaceae). Econ. Bot. 44:50–60.Google Scholar
  33. Lamprecht, H. 1947. The inheritance of the slender-type ofPhaseolus vulgaris and some other results. Agri Hort. Genet. 5:72–84.Google Scholar
  34. Leakey, C. L. A. 1988. Genotypic and phenotypic markers in common bean. Pages 245–327in P. Gepts, ed., Genetic resources ofPhaseolus beans. Kluwer, Dordrecht, The Netherlands.Google Scholar
  35. Leyna, H., S. S. Korban, and D. P. Coyne. 1982. Changes in patterns of inheritance of flowering time of dry beans in different environments. J. Heredity 73:306–308.Google Scholar

Copyright information

© The New York Botanical Garden 1990

Authors and Affiliations

  • Paul Gepts
    • 1
  1. 1.Department of Agronomy and Range ScienceUniversity of CaliforniaDavis

Personalised recommendations