Advertisement

Il Nuovo Cimento (1955-1965)

, Volume 16, Issue 2, pp 230–240 | Cite as

On the symmetries of strong and weak interactions

  • F. Gürsey
Article

Summary

A model of strong interactions is proposed which admits a group (G4×H) in the limit of a suitably defined doublet approximation,G4 being a 4-dimensional extension of the isotopic spin group andH the hypercharge gauge group. Weak interactions having phenomenological chirality invariance properties or obeying the ΔI=1/2 rule are shown to be invariant under an unitary subgroup of the group (G4×H).

Riassunto

Si propone per le interazioni forti un modello che, nei limiti di un’approssimazione di doppietto opportunamente definita, ammette un gruppo (G4×H), essendoG4 una estensione quadridimensionale del gruppo di spin isotopico eH il gruppo di gauge dell’ipercarica. Si dimostra che le interazioni deboli, che abbiano proprietà fenomenologiche d’invarianza della chiralità o obbediscano alla regola ΔI=1/2, sono invarianti rispetto a un sottogruppo unitario del gruppo (G4×H).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    B. D’Espagnat andJ. Prentki:Nucl. Phys.,11, 700 (1959);Phys. Rev.,114 1366 (1959).CrossRefGoogle Scholar
  2. (2).
    B. T. Feld:Hyperon decays and symmetry properties of the weak interactions, preprint.Google Scholar
  3. (3).
    J. C. Pati andS. Oneda:An attempt at universal four-fermion interaction, preprint.Google Scholar
  4. (4).
    R. L. Cool, B. Cork, J. W. Cronin andW. A. Wenzel:Phys. Rev.,119, 912 (1959).ADSCrossRefGoogle Scholar
  5. (5).
    F. S. Crawford, M. Cresti, R. L. Douglas, M. L. Good, G. R. Kalbfleisch, M. L. Stevenson andH. K. Ticho:Phys. Rev. Lett.,2, 266 (1959).ADSCrossRefGoogle Scholar
  6. (6).
    S. A. Bludman:Phenomenological analysis of hyperon decay rates and asym metries. Gatlinburg Conference on Weak Interactions (Oct. 1958);Bull. Am. Phys. Soc.,9, 83 (1959); alsoPhys. Rev.,115, 468 (1959).Google Scholar
  7. (7).
    A. Pais:Phys. Rev.,110, 1480 (1958).MathSciNetADSCrossRefGoogle Scholar
  8. (8).
    A. Pais:Phys. Rev.,110, 574 (1958);112, 624 (1958).MathSciNetADSCrossRefGoogle Scholar
  9. (9).
    K. Nishijima:Nuovo Cimento,11, 910 (1959).MathSciNetCrossRefGoogle Scholar
  10. (10).
    R. J. Glauber:Phys. Rev.,84, 395 (1951).ADSCrossRefMATHGoogle Scholar
  11. (11).
    R. Arnowitt andS. Deser:Phys. Rev.,100, 349 (1955).MathSciNetADSCrossRefMATHGoogle Scholar
  12. (12).
    J. S. R. Chisholm:Phil. Mag.,1, 338 (1956).MathSciNetADSCrossRefMATHGoogle Scholar
  13. (13).
    J. S. R. Chisholm andG. M. Dixon:Nuovo Cimento,9, 125 (1958).CrossRefMATHGoogle Scholar
  14. (14).
    W. Güttinger:Nuovo Cimento,10, 1 (1958).CrossRefGoogle Scholar
  15. (15).
    The groupG 4 has been previously introduced by the author:F. Gürsey:Bull. Am. Phys. Soc.,3, 10, 245 (1958); alsoNucl. Phys.,8, 675 (1958). It arose as a natural generalization of the Pauli transformations studied inF. Gürsey:Nuovo Cimento,7, 411 (1958). The subgroupG 3(1) has been considered byS. A. Bludman:Nuovo Cimento,9, 433 (1958).O. Hara, Y. Fujii andY. Ohnuci [Progr. Theor. Phys.,19, 129 (1958)] and further discussed byB. Touschek [Nuovo Cimento,8, 181 (1958)],A. Gamba andE. C. G. Sudarshan [Nuovo Cimento,10, 407 (1958)] andE. J. Schremp [Phys. Rev.,113, 936 (1959)].Google Scholar
  16. (16).
    J. J. Sakurai:Nuovo Cimento,7, 649 (1958).CrossRefGoogle Scholar
  17. (*).
    Note added in proff. — The unitary character of the general transformation (10) is clear forψ L andψ R. To see that it is true for the pion field, we use the operator identity given in Ref. (10) and in the appendix of a paper byG. Barton [Nuovo Cimento:13 363 (1959)]. Now introduce two sets of commuting Pauli operatorsτ andρ and defines=1/2(ρ+τ). Further putϕ =ϕ(x) andϕ′ =ϕ(x′).ADSCrossRefMATHGoogle Scholar
  18. (17).
    B. Stech, H. Rollnik andB. Stech:Zeits. f. Phys.,159, 564 (1959).Google Scholar
  19. (18).
    G. Feinberg andF. Gürsey:Phys. Rev.,114, 1153 (1959).MathSciNetADSCrossRefMATHGoogle Scholar
  20. (19).
    B. D’Espagnat andJ. Prentki:Nucl. Phys.,1, 33 (1956).MathSciNetCrossRefGoogle Scholar
  21. (20).
    See for instance,K. Nakagawa:Nucl. Phys.,10, 20 (1959) and ref. (6).CrossRefMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1960

Authors and Affiliations

  • F. Gürsey
    • 1
  1. 1.Brookhaven National LaboratoryUpton

Personalised recommendations