Il Nuovo Cimento (1955-1965)

, Volume 17, Issue 3, pp 288–303 | Cite as

A method for trapping muons in magnetic fields, and its application to a redetermination of the EDM of the muon

  • G. Charpak
  • L. M. Lederman
  • J. C. Sens
  • A. Zichichi


A method for trapping muons in magnetic fields is described together with its application to higher accuracy determination of the electric dipole moment of the muon. The value found is: EDM ≤e(5±5)·10−17 cm consistent with time reversal invariance.


Si descrive un metodo per la cattura di muoni in campi magnetici e la sua applicazione ad una più accurata determinazione del momento di dipolo elettrico del muone. Il valore trovato è: ≤e(5±5)·10−17 cm consistente con l’invarianza rispetto all’inversione del tempo.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    W. K. H. Louisell, R. W. Pidd andH. R. Crane:Phys. Rev.,94, 7 (1954).ADSCrossRefGoogle Scholar
  2. (2).
    L. Landau:Nucl. Phys.,3, 127 (1957);I. B. Zeldovich:Žurn. Ėksp. Teor. Fiz.,33, 1488 (1957). AlsoT. D. Lee andC. N. Yang:B.N.L.,443 (1957).CrossRefGoogle Scholar
  3. (3).
    D. Berley, R. L. Garwin, G. Gidal andL. M. Lederman:Phys. Rev. Lett.,1, 144 (1958);Annual International Conference on High Energy Physics, CERN (1958), p. 332;D. Berley, G. Gidal andL. M. Lederman:Kiev Conf., 1959 (to be published). See alsoR. L. Garwin andL. M. Lederman:Nuovo Cimento,11, 776 (1959).ADSCrossRefGoogle Scholar
  4. (4).
    R. L. Garwin:Numerical calculations of the stability bands and solutions of a Hill differential equation, CERN internal report (October 1959);W. K. H. Panofsky:Orbits in the linear magnet, CERN internal report (October 1959).Google Scholar
  5. (5).
    J. H. Smith, E. M. Purcell andN. F. Ramsey:Phys. Rev.,108, 120 (1957).ADSCrossRefGoogle Scholar
  6. (6).
    M. T. Burgy, V. E. Krohn, T. B. Novey, G. R. Ringo andV. L. Telegdi:Phys. Rev. Lett.,1, 324 (1958).ADSCrossRefGoogle Scholar
  7. (7).
    V. Bargmann, L. Michel andV. L. Telegdi:Phys. Rev. Lett.,2, 435 (1959).ADSCrossRefGoogle Scholar
  8. (*).
    This was measured in Carbon as stopping material. Although the stopping medium in this case is scintillating material which is partly depolarizing, it can be inferred from data on the re-establishment of the polarization in strong magnetic fields that in 13 kG the polarization is restored to 100%. See:J. C. Sens, R. A. Swanson, V. L. Telegdi andD. D. Yovanovitch:Phys. Rev.,107, 1465 (1957).ADSCrossRefGoogle Scholar
  9. (*).
    It must be noted that by assuming that the incoming beam has zero polarization transverse in the orbit plane, a value:f=(4±7)·10−4, s obtai ned in ref. (3). However, no errors are quoted as to the possible magnitude of the up-down asymmetry caused by misalignment of the cyclotron, etc. A partial discussion of these points is given byG. Gidal:Thesis (Columbia, 1960) (Nevis 83), Appendix II. We believe that the focal point of the beam transport system in this experiment has not been demonstrated not to be above or below the target, which would contribute a vertical component of polarization sufficient to vitiate the second result quoted.ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1960

Authors and Affiliations

  • G. Charpak
    • 1
  • L. M. Lederman
    • 1
  • J. C. Sens
    • 1
  • A. Zichichi
    • 1
  1. 1.CERNGeneva

Personalised recommendations