The Botanical Review

, Volume 27, Issue 2, pp 165–220 | Cite as

Histochemistry and function of the endodermis

  • D. S. van Fleet


Botanical Review Bundle Sheath Endodermal Cell Scopoletin Radial Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Andreae, W. A. 1948. The isolation of a blue fluorescent compound scopoletin from Green Mountain potato tubers, infected with leaf roll virus. Canad. Jour. Res. C.26(1): 31–34.Google Scholar
  2. Andreae, Shirley R., andW. A. Andreae. 1949. The metabolism of scopoletin by healthy and virus infected potato tubers. Canad. Jour. Res. C.27(2): 14–22.Google Scholar
  3. Arnold, A. 1952. Über den Funktionsmechanismus der Endodermiszellen der Wurzeln. Protoplasma41: 189–211.CrossRefGoogle Scholar
  4. Arisz, W. H. 1945. Contribution to a theory on the absorption of salts by the plant and their transport in parenchymatous tissue. Proc. Kon. Ned. Akad. Wetensch.48: 420–446.Google Scholar
  5. Armacost, R. R. 1944. The structure and functions of the border parenchyma and vein-ribs of certain dicotyledon leaves. Proc. Iowa Acad. Sci.51: 157–169.Google Scholar
  6. Barker, W. G. 1953. Proliferative capacity of the medullary sheath region in the stem ofTilia americana. Amer. Jour. Bot.40: 773–778.CrossRefGoogle Scholar
  7. Bäsecke, P. 1908. Beiträge zur Kenntnis der physiologischen Scheiden der Achsen und Wedel der Filicinen, sowie über den Ersatz des Korkes bei dieser Pflanzengruppe. Bot. Ztg.66: 25–87.Google Scholar
  8. Best, Rupert J. 1944. Studies on a fluorescent substance present in plants. II. Isolation of the substance in a pure state and its identification as 6-methoxy-7 hydroxy 1: 2 benzopyrone. Austral. Jour. Exp. Biol. & Med. Sci.22(4): 251–255.CrossRefGoogle Scholar
  9. — 1948. Studies on a fluorescent substance present in plants. The distribution of scopoletin in tobacco plants and some hypotheses on its part in metabolism. Austral. Jour. Exp. Biol. & Med. Sci.26(3): 223–230.CrossRefGoogle Scholar
  10. Behrisch, R. 1926. Zur Kenntniss der Endodermiszelle. Ber. Deut. Bot. Ges.44(3): 162–164.Google Scholar
  11. Birdel, M., etC. Charaux. 1930. Recherches sur les variations de coloration des plantes au cours de leur dessiccation. Sur un nouveau chromogène, l’oroberol retiré deOrobus tuberosus L. Bull. Soc. Chim. Biol.12: 317–331.Google Scholar
  12. Bond, G. 1930. The occurrence of cell division in the endodermis. Proc. Roy. Soc. of Edinb.50(1): 38–50.Google Scholar
  13. — 1931. The stem endodermis in the genusPiper. Trans. Roy. Soc. Edinb.56: 695–724.Google Scholar
  14. — 1935. The endodermis in light-grown and etiolated shoots ofLeguminosae: a contribution to the causal study of differentiation in the plant. Trans. Roy. Soc. Edinb.58(2): 409–425.Google Scholar
  15. Borrissow, G. 1924. Über die eigenartigen Kieselkorper in der Wurzelendodcrmis beiAndropogon. Ber. Deut. Bot. Ges.42: 366–380.Google Scholar
  16. Browne, Isabel, M. P. 1939. Anatomy of the aerial axes ofEquisetum kansanum. Bot. Gaz.101(1): 35–50.CrossRefGoogle Scholar
  17. Bryant, A. E. 1934. A demonstration of the connection of the protoplasts of the endodermal cells with the Casparian strips in roots of barley. New Phyt.33(3): 231.CrossRefGoogle Scholar
  18. Bünning, E., andHelmut Ilg. 1954. Polaritätsstorüngen bei Pflanzenzellen durch Äthylen. Planta43: 472–476.CrossRefGoogle Scholar
  19. Caspary, R. 1865/66. Bemerkungen über die Schutzscheide und die Bildung des Stammes und der Wurzeln. Jahrb. wiss. Bot.4: 101–124.Google Scholar
  20. Chasson, R. M. 1957. The relationship of the endodermis to salt accumulation in the xylem. [Unpublished personal communication].Google Scholar
  21. Christiansen-Weniger, E. 1955. Versuche zur Stoffwechsel physiologischen Beeinflussung der Reaktion der Kartoffelknolle aufPhytophora infestans. Phytopath. Zeit.25: 153–180.Google Scholar
  22. Conway, E. J. 1953. A redox pump for the biological performance of osmotic work, and its relation to the kinetics of free ion diffusion across membranes. Int. Rev. Cytology. II. Vol.2: 419–445.CrossRefGoogle Scholar
  23. Cordes, W. 1956. Histochemical studies of the localization of phosphorylase [Personal communication].Google Scholar
  24. Crafts, A. S., andS. Yamaguchi. 1960. Absorption of herbicides by roots. Amer. Jour. Bot.47: 248–255.CrossRefGoogle Scholar
  25. Dickson, J. G. 1956. Diseases of field crops. McGraw Hill Co. 2nd ed.Google Scholar
  26. Drabble, E., andM. Nierenstein. 1906. On the role of phenols, tannic acids and oxybenzoic acids in cork formation. Biochem. Jour.2: 96–102.Google Scholar
  27. Dufrenoy, J. 1936. Cellular immunity. Amer. Jour. Bot.23: 70–79.CrossRefGoogle Scholar
  28. Dunlop, D. W. 1949. Casparian strips inIsoetes macrospora. Bull. Torrey Bot. Club76(2): 134–135.CrossRefGoogle Scholar
  29. Elisei, Flavio G. 1941. Ricerche microfluoroscopiche sui punti di Caspary. Atti. Inst. Bot. “Giovanni Briosi” e Lab. Crittogamico Ital. Univ. Pavia IV13: 3–66.Google Scholar
  30. Epstein, E. 1960. Spaces, barriers, and ion carriers: ion absorption by plants. Amer. Jour. Bot.47: 393–399.CrossRefGoogle Scholar
  31. Frazer, Helen L. 1942. The occurrence of endodermis in leguminous root nodules and its effect upon nodule formation. Proc. Roy Soc. Edinb.61B(Pt 3.#24): 328–343.Google Scholar
  32. Fritz, G., andH. Beevers. 1955. Oxidation of 2,3′,6-trichloroindophenol by the lipoxidase system. Plant Physiol.30: 67–69.PubMedGoogle Scholar
  33. Fuchs, W. H. 1956. Ein Beitrag zur pathologischen Physiologie. Ang. Bot.30(4/5): 141–146.Google Scholar
  34. Gatin, C. L. 1912. Le goudronnage des routes et son action sur la végétation avoisinante. Ann. Sci. Nat. IX. Bot.15: 165–252.Google Scholar
  35. Goodwin, R. H., andB. M. Pollock. 1954. Studies on roots. I. Properties and distribution of fluorescent constituents inAvena roots. Amer. Jour. Bot.41:(6): 516–520.CrossRefGoogle Scholar
  36. von Guttenberg, H. 1943a. Die physiologischen Scheiden. Handbuch der Pflanzenanatomie. Abt. 1., Teil 2:Histologie Band V.Google Scholar
  37. —. 1943b. Die Aufgaben der Endodermis. Biol. Zentralblatt63: 236–251.Google Scholar
  38. Hackett, D. P. andH. A. Schneiderman andK. V. Thimann. 1953. Terminal oxidases and growth in plant tissues. II. The terminal oxidase mediating water uptake by potato tissue. Archives of Bioch. and Biophys.47: 205–214.CrossRefGoogle Scholar
  39. Hardy, W. B. 1927. Molecular orientation in living matter. Jour. Gen. Physiol.8(6): 641–643.CrossRefGoogle Scholar
  40. Harvey-Gibson, R. J. 1894. Anatomy ofSelaginella. Ann. Bot.8: 133–206.Google Scholar
  41. Hattori, Shizuo, andMichi Shiroya. 1955. Studies on the browning and blackening of plant tissues. II. On the interaction of dopa and a specific oxidase in the leaves ofStizolobium hassjoo. Physiol. Plant.8(1): 63–70.CrossRefGoogle Scholar
  42. Hoffman-Ostenhof, O. 1947. Die Biochemie der Chinone. Experientia3: 176–184.CrossRefGoogle Scholar
  43. — andH. Fellner-Feldegg. 1949. Die Hemmung des Hefewachstums durch verschiedene Chinone. XIV. Mitteilung über bakteriostatische Chinone und andere Antibiotica. Akad. Wiss. Wien Math.-Naturwiss Kl. Sitzungsber. Abt. 11b158: 648–654.Google Scholar
  44. —. 1949. Die Hemmung des Wachstums verschiedener Bakterienerten durch Chinone. XVI. Mitteilung über bakteriostatische Chinone und andere Antibiotica. Akad. Wiss. Wien Math.-Naturwiss. Kl. Sitzungsber. Abt. 11b158: 720–729.Google Scholar
  45. —. 1950. Vorkommen und biochemisches Verhalten der Chinone. Fortschr. Chem. Org. Naturstoffe6: 154–241.Google Scholar
  46. Hosbach, O. 1928. Beiträge zur Frage nach der Durchlassigkeit der Endodermiszellen. Beitr. Biol. Pflanzen16(1): 81–128.Google Scholar
  47. Hurst, Fannie Mae. 1956. The vegetative anatomy of the genusSmilax with particular reference to the endodermis. Diss. Absts.16(1): 14–15. Purdue Univ.Google Scholar
  48. Hylmö, B. 1953. Transpiration and ion absorption. Physiol. Plant.6:333–405.CrossRefGoogle Scholar
  49. Jacobson, L., R. J. Hannapel andD. P. Moore. 1958. Non-metabolic uptake of ions by barley roots. Plant Physiol.33: 278–282.PubMedGoogle Scholar
  50. Janczewski, E. de. 1882. Études comparées sur les tubes cribreux. Ann. Sci. Nat. IV Bot.14: 50–166.Google Scholar
  51. Kertész, D. 1950. Sur la prémiere phase de la melanogenèse: formation du “corps rouge” (Hallochrome). Bull. Soc. Chim. Biol.32: 587–600.PubMedGoogle Scholar
  52. Kolda, Anna. 1937. Zur Anatomie etiolierter und periodisch belichteter Pflanzen und über die Wirkung nachtraglicher Kulter am Lichte. Beih. Bot. Centralb. Abt. A.57(3): 319–380.Google Scholar
  53. Kramer, H., andWindrum, G. M. 1955. The metachromatic staining reaction. Jour. Histochem. Cytochem.3: 227–237.Google Scholar
  54. Kramer, P. J. 1949. Plant and soil water relationships. McGraw-Hill Book Co., New York.Google Scholar
  55. —. 1956. The uptake of salts by plant cells. Handbuch der Pflanzenphysiologie. Vol.2: 290–315.Google Scholar
  56. Kroemer, K. 1903. Wurzelhaut, Hypodermis und Endodermis der Angiospermenwurzel. Bibl. Bot.12 (59): 1–159.Google Scholar
  57. Levan, A., andJ. H. Tjio. 1949. Induction of chromosome fragmentation by phenols. Hereditas34: 453–483.CrossRefGoogle Scholar
  58. Levitt, J. 1957. The significance of “Apparent Free Space” (A.F.S.) in ion absorption. Physiol. Plant.10: 882–888.CrossRefGoogle Scholar
  59. Lomasson, R. C. 1957. Vascular bundle sheaths in the genusAristida. Phytomorph.7: 364–370.Google Scholar
  60. Luhan, Maria. 1947. Die Goldendodermis der Farne. Fluoreszenmikroskopische Untersuchungen zur vergleichenden Anatomie der Filicinen. Wien Akad. Wiss. Sitzung. Math.-Nat. Klasse Abt.1: 1–56.Google Scholar
  61. Lundegardh, H. 1958. Relation between peroxidase and cytochrome dh in wheat roots. Nature181: 28–30.CrossRefGoogle Scholar
  62. Mager, H. 1933. Die Endodermis als Grenze für Stoffwanderungen. Zeits. Wiss. Biol. Abt. E Planta19(3): 534–546.Google Scholar
  63. Maheshwari, P. 1945. An endodermal phellogen in the stem ofPaederia foetida. Linn. Nature [London]156(3952): 116–117.CrossRefGoogle Scholar
  64. McNew, G. L., andH. P. Burchfield. 1951. Fungitoxicity and biological activity of quinones. Contr. Boyce Thompson Inst.16: 357–374.Google Scholar
  65. Menon, R., andL. Schachinger. 1957. Die Rolle des Phenols bei der Widerstandsfahigkeit von Tomatenpflanzen gegen Infektionen. Ber. Deut. Bot. Ges.70: 11–20.Google Scholar
  66. Mirskaja, Ljuba. 1926. Veränderungen an Pflanzen, hervorgerufen durch Entfernung der Bluten. Osterreich. Bot. Zeitschr.75(4/6): 85–95.CrossRefGoogle Scholar
  67. Molisch, H. 1923. Mikrochemie der Pflanze. Dritte Aufl.Google Scholar
  68. Müller, H. 1906. Über die Metakutisierung der Wurzelspitze und über die verkorkten Scheiden in den Achsen der Monokotyledonen. Bot. Zeit.64: 53–84.Google Scholar
  69. Mylius, G. 1913. Das Polyderm. Eine vergleichende Untersuchung über die physiologischen Scheiden: Polyderm, Periderm und Endodermis. Bibl. Bot.18(79): 1–119.Google Scholar
  70. Napp-Zinn, K. 1953. Studien zur Anatomie einiger Luftwurzeln. Österreich. Bot. Zeits.100: 322–330.CrossRefGoogle Scholar
  71. Nishio, Kozo. 1958. Histochemical studies of lignification. Ronso1: 1–13.Google Scholar
  72. Olivier, L. 1880. Apparil tegumentaire des racines. Ann. Sci. Nat. VI11: 1–131.Google Scholar
  73. Peche, K. 1913. Mikrochemischer Nachweis des Myrosins. Ber. Deut. Bot. Ges.31: 458–462.Google Scholar
  74. Plaut, M. 1910. Untersuchungen zur Kenntnis der physiologischen Scheiden bei den Gymnospermen, Equiseten and Bryophyten. Jahrb. Wiss. Bot.1910: 121–185.Google Scholar
  75. Plowman, A. B. 1906. The comparative anatomy and phylogeny of theCyperaceae. Ann. Bot.20: 1–35.Google Scholar
  76. Plowman, A. B. 1906. The comparative anatomy and phylogeny of theCyperaceae. Ann. Bot.20: 1–35.Google Scholar
  77. Pollock, B. M., R. H. Goodwin, andSusan Greene. 1954. Studies on roots. II. Effects of coumarin, scopoletin and other substances on growth. Amer. Jour. Bot.41(6): 421–529.CrossRefGoogle Scholar
  78. Poznanski, F. 1929. Über die Raciborskische Nitrit- und Diazoreaktion der pflanzlichen Zellmembranen. Bull. Acad. Polon. Ser. Bl.1929: 219–235.Google Scholar
  79. Priestley, J. H. 1920. The mechanism of root pressure. New Phyt.19: 189–200.CrossRefGoogle Scholar
  80. —. 1921. Suberin and cutin. New Phyt.20: 17–29.CrossRefGoogle Scholar
  81. —. 1922. The toxic action of traces of coal gas upon plants. Ann. App. Biol.9: 146–155.CrossRefGoogle Scholar
  82. —. 1922. Physiological studies in plant anatomy. Introduction. New Phyt.21: 58–61.CrossRefGoogle Scholar
  83. — andNorth, E. E. 1922. Physiological studies in plant anatomy. III. The structure of the endodermis in relation to its function. New Phyt.21: 113–139.CrossRefGoogle Scholar
  84. —. 1923. Light and growth I. The effect of brief light exposure upon etiolated plants. New Phyt.24: 271–283.CrossRefGoogle Scholar
  85. — andEwing, J. 1923. Etiolation. New Phyt.22: 30–44.CrossRefGoogle Scholar
  86. —. 1924. The fundamental fat metabolism of the plant. New Phyt.23: 1–19.CrossRefGoogle Scholar
  87. — andRadcliffe, F. M. 1924. Endodermis in Filicineae. New Phyt.23: 161–193.CrossRefGoogle Scholar
  88. —. 1926. Light and growth. II. On the anatomy of etiolated plants. New Phyt.25(3): 145–170.CrossRefGoogle Scholar
  89. — andEdgar Rhodes. 1926. On the macro-chemistry of the endodermis. Proc. Roy. Soc. [London] B100(701): 119–128.Google Scholar
  90. Rajkowski, S. 1934. Badania histologiczne i morfologiczne nad scrodskornia w lodygach roslin kwiatowych. [Histology and morphology of endodermis in stems of flowering plants] Acta Soc. Bot. Poloniae11: 19–50.Google Scholar
  91. Rhoades, M. M., andAlcides Carvalho. 1944. The function and structure of the parenchyma sheath plastids of the maize leaf. Bull. Torrey Bot. Club71(4): 335–346.CrossRefGoogle Scholar
  92. Rorerts, L. W. 1957. Eliminating technically induced variations of the tetrazolium reaction in plant material. Stain Tech.32: 98–99.Google Scholar
  93. Rufz de Lavison, J. de. 1910. Du mode de pénétration de quelques sels dans la plante vivante. Rôle de l’endoderme. Rev. Gén. de Bot.22: 225–241.Google Scholar
  94. Schmidt, Roswitha. 1954. Über die histologische Spezialisierung von Blatt-und Rindpilzen, mit besonderer Berucksichtigung ihre Beziehungs um Phloem. Phytopath. Zeits.21: 407–432.Google Scholar
  95. Scott, L. I. andPriestley, J. H. 1925. The anatomy and development of leaf and shoot ofTradescantia fluminensis Vell. Jour. Linn. Soc. Bot.47: 1–28.CrossRefGoogle Scholar
  96. — andPriestley, J. H. 1928. The root as an absorbing organ. I. A reconsideration of the entry of water and salts in the absorbing region. New Phyt.27: 125–140.Google Scholar
  97. —. 1928. The root as an absorbing organ. II. The delimitation of the absorbing zone. New Phyt.27: 141–174.Google Scholar
  98. Schwendener, S. 1890. Die Mestomscheiden der Gramineenblätter. Sitzungsber. König. Preuss. Akad. Wiss.1890. 405–426.Google Scholar
  99. Sexton, W. A. 1949. Chemical constitution and biological activity. Industrial Chemical Series.Google Scholar
  100. Slatyer, R. O. 1960. Absorption of water by plants. Bot. Rev.26: 331–392.CrossRefGoogle Scholar
  101. Soar, I. 1922. Structure and function of the endodermis in leaves of Abietineae. New Phyt.21: 269–292.CrossRefGoogle Scholar
  102. Söding, Hans. 1952. Die Wuchsstofflehre. Berlin.Google Scholar
  103. Tomaszewski, M. 1957. Das Phenol /Phenoloxydase-System der Blätter einiger Obstgeholze und sein Beziehung zur Winterruhebereitschaff. Flora145: 146–166.Google Scholar
  104. Trapp, G. 1932/33. Foliar endodermis ofPlantago. Trans. Proc. Roy. Bot. Soc. Edin.57(2): 523–546.Google Scholar
  105. Uphof, J. C. T. 1924. Physiological anatomy ofMayaca fluviatilis. Annals Bot.38: 389–393.Google Scholar
  106. Uritani, I., andT. Akazawa. 1953. Phytopathological chemistry of black-rotten sweet potato. Part 12. Activation of the respiratory enzyme systems of the rotten sweet potato. Jour. Agr. Chem. Soc. Japan27: 789–796.Google Scholar
  107. — andI. Hoshiya. 1953. Phytopathological chemistry of the blackrotten sweet potato. Part 6. Isolation of coumarin substances from sweet potato and their physiology. Jour. Agr. Chem. Soc. Japan27: 161–164.Google Scholar
  108. Ursprung, A., andG. Blum. 1921. Zur Kenntnis der Saugkraft IV. Die Absorptionszone der Wurzel. Der Endodermissprung. Ber. d. Deut. Bot. Ges.39: 70–79.Google Scholar
  109. —. 1929. The osmotic quantities of the plant cell. Proc. Int. Cong. Plant Sci. vol.2: 1081–1094.Google Scholar
  110. Vallance, K. B., andD. A. Coult. 1951. Observations on the gaseous exchanges which take place betweenMenyanthes trifoliata L. and its environment. Jour. Exp. Bot.2(5): 212–222.CrossRefGoogle Scholar
  111. Van Fleet, D. S. 1942a. The development and distribution of the endodermis and an associated oxidase system in monocotyledonous plants. Amer. Jour. Bot.29: 1–15.CrossRefGoogle Scholar
  112. —. 1942b. The significance of oxidation in the endodermis. Amer. Jour. Bot.29: 747–755.CrossRefGoogle Scholar
  113. —. 1943a. Unsaturated fat oxidase: distribution, function and histochemical identification in plant tissues. Jour. Amer. Chem. Soc.65: 740.CrossRefGoogle Scholar
  114. —. 1943b. The enzymatic and vitagen properties of unsaturated fats as they influence the differentiation of certain plant tissues. Amer. Jour. Bot.30: 678–685.CrossRefGoogle Scholar
  115. —. 1945. Redox potentials of fat emulsions under the action of light. Biodynamica5: 297–307.Google Scholar
  116. —. 1946a. The sequence of glucosidase and oxidase associated with the development of dermal and perivascular tissues. Amer. Jour. Bot.33S: 232.Google Scholar
  117. —. 1946b. An oxidation and absorption method for differentiating the endodermis and the collenchyma. Stain Tech.21: 95–98.Google Scholar
  118. —. 1947. The distribution of peroxidase in differentiating tissues of vascular plants. Biodynamica6: 125–140.Google Scholar
  119. —. 1948. Cortical gradients and patterns in vascular plants. Amer. Jour. Bot.35: 219–227.CrossRefGoogle Scholar
  120. —. 1950a. The cell forms, and their common substance reactions, in the parenchymal-vascular boundary. Bull. Torrey Bot. Club77: 340–353.CrossRefGoogle Scholar
  121. —. 1950b. A comparison of histochemical and anatomical characteristics of the hypodermis with the endodermis in vascular plants. Amer. Jour. Bot.37: 721–725.CrossRefGoogle Scholar
  122. —. 1952. The histochemical localization of enzymes in vascular plants. Bot. Rev.18: 354–398.Google Scholar
  123. -. 1954. VI. Cell and tissue differentiation in relation to growth (Plants). Dynamics of Growth Processes (p. 111–129) (ed. by Boell) Univ. of Princeton Press.Google Scholar
  124. —. 1955. The significance of the histochemical localization of quinones in the differentiation of plant tissues. Phytomorph.4: 300–310.Google Scholar
  125. —. 1957. Histochemical studies of phenolase and polyphenols in the development of the endodermis in the genusSmilax. Bull. Torrey Bot. Club84: 9–28.CrossRefGoogle Scholar
  126. —. 1959. An analysis of the histochemical localization of peroxidase related to the differentiation of plant tissues. Canad. Jour. Bot.37: 449–458.CrossRefGoogle Scholar
  127. Venning, Frank. 1954. The relation of illumination to the differentiation of a morphologically specialized endodermis in axis of potato. Phytomorph.4: 132–139.Google Scholar
  128. Warden, W. M. 1935. On the structure, development and distribution of the endodermis and its associated ducts inSenecio vulgaris. New Phyt.34: 361–384.CrossRefGoogle Scholar
  129. Watkins, G. M., andM. O. Watkins. 1940. A study of the pathogenic action ofPhymatotrichum omnivorum. Amer. Jour. Bot.27: 251–262.CrossRefGoogle Scholar
  130. Wilcox, H. 1954. Primary organization of active and dormant roots of noble firAbies procera. Amer. Jour. Bot.10: 812–821.CrossRefGoogle Scholar
  131. Wilhelm, A. F. 1930. Untersuchungen über das Chromogen inVicia faba. Jahrb. Wiss. Bot.72 (2): 203–253.Google Scholar
  132. Wille, F. 1915. Anatomische-physiologische Untersuchungen am Gramineenrhizom. Beih. Bot. Cent.33: 1–70.Google Scholar
  133. Williams, B. C. 1947. The structure of the meristematic root tip and origin of the primary tissues in the roots of vascular plants. Amer. Jour. Bot.34: 455–462.CrossRefGoogle Scholar
  134. Williams, Bert. 1947. The cylindrical layer of cells which surrounds the plerome, and which later differentiates into the endodermis, acts like a cambium giving rise to the tissue between the endodermis and the hypodermis in the primary root tip of vascular plants. [Personal Communication].Google Scholar
  135. van Wisselingh, C. 1924. Die Zellmembran. Handb. Pflanzenanatomie I. Abt., 1. Teil. [Inner and outer endodermis page 155]. Springer-Verlag.Google Scholar
  136. —. 1926. Beitrag zur Kenntnis der inneren Endodermis. Zeits. Wiss. Biol. Abt. E. Planta2(1): 27–43.Google Scholar
  137. Wodziczko, A. 1916. Über eine chemische Reaktion der lebenden Endodermiszellen. Bull. Acad. Sci. de Cracovie, B.1916: 31–44.Google Scholar
  138. —. 1930. Gibt es Unterscheide in der mikrochemischen Natur des Casparyschen Streifens bei verschiedenen Pflanzengruppen. Acta Soc. Bot. Poloniae7: 47–53.Google Scholar
  139. Wylie, R. B. 1952. The bundle sheath extension in leaves of dictotyledons. Amer. Jour. Bot.39: 645–651.CrossRefGoogle Scholar
  140. Yin, H. C., andC. N. Sun. 1948. A histochemical study on the distribution of phosphorylase and starch formation in seeds. Sci. Rec.2(2): 192–195.Google Scholar
  141. — andC. N. Sun. 1949. Localization of phosphorylase and of starch formation in seeds. Plant Physiol.24(1): 103–110.PubMedCrossRefGoogle Scholar
  142. Ziegenspeck, H. 1921. Über die Rolle des Casparyschen Streifens der Endodermis und analoge Bildungen. Ber. Deut. Bot. Ges.39: 302–311.Google Scholar
  143. —. 1952. Die Wegsamkeit der Pigmentschicht der Getreidekörner (Endoderminischict) für Fluorochrome. Protoplasma41: 425–431.CrossRefGoogle Scholar
  144. —. 1952/53. Vorkommen und Bedeutung von Endodermen und Endodermoiden bei oberirdischen Organen der Phanerogamen im Lichte der Fluoroskopie (Mikroskopie BD. 7, H.5/6, 1952, S. 202 bis 208) Zeit. Wiss. Mikros.61: 227–228.Google Scholar

Copyright information

© The New York Botanical Garden 1961

Authors and Affiliations

  • D. S. van Fleet
    • 1
  1. 1.University of MassachusettsAmherst

Personalised recommendations