Advertisement

The Botanical Review

, Volume 38, Issue 3, pp 425–454 | Cite as

Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms

  • Kenneth D. Laser
  • Nels R. Lersten
Interpreting Botanical Progress

Conclusions

The studies reviewed date from 1925 to 1972 and contain extensive anatomical and cytological information all too often incomplete or vague. The terminology for microsporogenesis used is also often sketchy or inaccurate. An attempt therefore has been made to establish some consistency in microsporogenesis terminology via Fig. 1 and the tables. We have given, in convenient tabular form, CMS taxa, investigators, and the morphological and cytological events reported. By referring to a few keys, the reader can gain further insight into specific CMS taxa and can easily compare studies

The work of Laser (1972) is only part of a more extensive investigation of the anatomy, cytology, and histochemistry of N and CMSSorghum bicolor (Laser, unpub.). To date, only a small part is published (Christensen, Horner & Lersten, 1972), but when completed it probably will be the most complete study to date of these aspects of CMS. Hoefert (1969a, 1969b, 1971) has investigated only normal microsporogenesis so far, but her intention also is to make a detailed descriptive comparison of N and CMS development. Such comparative electron microscope studies will be needed to help answer questions raised in the Introduction of this review. Concerning the events within microspores at the beginning of abortion, for example, there is complete ignorance of what organelle shows the first sign of disintegration or whether there is a definite sequence or simply a simultaneous collapse. The answer to this question could yield valuable clues to the direct cause of abortion

Looking at the existing published studies and taking into account numerous examples of questionable technique and interpretation, we conclude that abortion has been shown to occur at almost every point in development, and that probably more than one mechanism is involved

Keywords

Botanical Review Male Sterility Cytoplasmic Male Sterility Tapetal Cell Pollen Sterility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alam, S. &P. C. Sandal. 1964. Anther morphology as related to cytoplasmic male-sterility in Sudangrass. Proc. North Dakota Acad. Sci.18: 72–73.Google Scholar
  2. ——. 1967. Cyto-histological investigations of pollen abortion in male-sterile Sudangrass. Crop Sci.7: 587–589.CrossRefGoogle Scholar
  3. Anderson, W. R. 1963. Cytoplasmic sterility in hybrids ofLycopersicon esculentum andSolanum penellii. Tomato Genet. Coop. Rept.13: 7–8.Google Scholar
  4. Artschwager, E. 1947. Pollen degeneration in male-sterile sugar beets, with special reference to the tapetal plasmodium. J. Agric. Res.75: 191–197.Google Scholar
  5. Atanasoff, D. 1971. The viral nature of cytoplasmic male sterility in plants. Phytopathol. Z.70: 306–322.Google Scholar
  6. Brooks, M. W., J. S. Brooks &L. Chien. 1966. The anther tapetum in cytoplasmic-genetic male sterileSorghum. Amer. J. Bot.53: 902–908.CrossRefGoogle Scholar
  7. Cech, M. &J. Pozdena. 1962. Untersuchungen uber die infektiose Sterilität des Hopfens. Phytopathol. Z.44: 273–281.Google Scholar
  8. Chang, T. T. 1954. Pollen sterility in maize. M. S. Thesis, Cornell Univ., Ithaca.Google Scholar
  9. Chauhan, S. V. S. &S. P. Singh. 1966. Pollen abortion in male sterile hexaploid wheat (Norin) havingAegilops ovata L. Cytoplasm. Crop Sci.6: 532–535.CrossRefGoogle Scholar
  10. ——. 1968. Studies on pollen abortion inCucumis melo L. Agra Univ. J. Res. Sci.17: 11–22.Google Scholar
  11. Chowdhury, J. B. &T. M. Varghese. 1968. Pollen sterility in crop plants—a review. Palynol. Bull.4: 71–86.Google Scholar
  12. Christensen, J. E., H. T. Horner, Jr. &N. R. Lersten. 1972. Pollen wall and tapetal orbicular wall development inSorghum bicolor (Gramineae). Amer. J. Bot.59: 43–58.CrossRefGoogle Scholar
  13. Curtis, G. J. 1967. Graft-transmission of male sterility in sugar beet (Beta vulgaris). Euphytica16: 419–424.CrossRefGoogle Scholar
  14. Davis, G. L. 1966. Systematic embryology of the angiosperms. John Wiley & Sons, Inc., New York. vii + 528 pp.Google Scholar
  15. De Vries, A. Ph. &T. S. Ie. 1970. Electron-microscopy on anther tissue and pollen of male sterile and fertile wheatTriticum aestivum L. Euphytica19: 103–120.CrossRefGoogle Scholar
  16. Diaconu, P. 1965. (Cytological investigations on corn cytoplasmic male sterilit.) Amelior., Genet. Fiziol. Technol. Agr.33: 227–228. (Russian with English summary).Google Scholar
  17. Dubey, D. K. &S. P. Singh. 1965. Mechanism of pollen abortion in three male sterile lines of flax (Linum usitatissimum L.). Crop Sci.5: 121–124.CrossRefGoogle Scholar
  18. Dubey, R. S. 1970. Pollen abortion in crape-jasmine. Indian J. Hort.27: 54–56.Google Scholar
  19. — &S. P. Singh. 1969. Pollen abortion in chemically induced male-sterile coriander. J. Indian Bot. Soc.48: 118–124.Google Scholar
  20. Edwardson, J. R. 1962. Cytoplasmic differences in T-type cytoplasmic malesterile corn and its maintainer. Amer. J. Bot.49: 184–187.CrossRefGoogle Scholar
  21. — 1967. Cytoplasmic male sterility and fertility restoration inCrotalaria mucronata. J. Heredity58: 266–268.Google Scholar
  22. — 1970. Cytoplasmic male-sterility. Bot. Rev. (Lancaster)36: 341–420.CrossRefGoogle Scholar
  23. — &M. K. Corbett. 1961. Asexual transmission of cytoplasmic male sterility. Proc. Natl. Acad. Sci. U. S. A.47: 390–396.PubMedCrossRefGoogle Scholar
  24. — &H. E. Warmke. 1967. Fertility restoration in cytoplasmic malesterile petunia. J. Heredity58: 195–196.Google Scholar
  25. Erichsen, A. W. &J. G. Ross. 1963. Inheritance of colchicine induced male sterility inSorghum. Crop Sci.3: 335–338.CrossRefGoogle Scholar
  26. Fedorova, T. N. &E. D. Nettevich. 1969. (Study of microsporogenesis in forms of common wheat with male sterility specified by the cytoplasm of some species.) Cytologiya11: 1121–1128. (Russian with English summary).Google Scholar
  27. Filion, W. G. &B. R. Christie. 1966. The mechanism of male sterility in a clone of orchard grass (Dactylis glomerata L.). Crop Sci.6: 345–347.CrossRefGoogle Scholar
  28. Frankel, R. 1956. Graft induced transmission to progeny of cytoplasmic male sterility inPetunia. Science124: 684–685.PubMedCrossRefGoogle Scholar
  29. — 1962. Further evidence of graft induced transmission to progeny of cytoplasmic male sterility inPetunia. Genetics47: 641–646.PubMedGoogle Scholar
  30. Fukasawa, H. 1953. Studies on restoration and substitution of nucleus inAegilotricum. I. Appearance of male-sterile durum in substitution crosses. Cytologia18: 167–175.Google Scholar
  31. — 1956. Studies on restoration and substitution of nucleus (genome) inAegilotricum. III. Cytohistological investigation of pollen degeneration in anthers of male-sterile plants. Cytologia21: 97–106.Google Scholar
  32. Gabelman, W. H. 1949. Reproduction and distribution of the cytoplasmic factor for male sterility in maize. Proc. Natl. Acad. Sci. U. S. A.35: 634–640.PubMedCrossRefGoogle Scholar
  33. Grun, P. &M. Aubertin. 1966. Cytological expressions of a cytoplasmic male sterility inSolanum. Amer. J. Bot.53: 295–301.CrossRefGoogle Scholar
  34. Herich, R. 1965. Nucleoli and cytoplasmic male sterility. Z. Vererbuhgsl.96: 22–27.Google Scholar
  35. Heslop-Harrison, J. 1957. The experimental modification of sex expression in flowering plants. Biol. Rev. Cambridge Phil. Soc.32: 38–90.CrossRefGoogle Scholar
  36. — &Y. Heslop-Harrison. 1958. Long-day and auxin induced male sterility inSilene pendula L. Port. Acta Biol.5: 79–94.Google Scholar
  37. Heyne, E. G. &R. W. Livers. 1968. Use of male sterility in the breeding of self pollinating crops. Proc. XII Int. Cong. Genet. 230–231.Google Scholar
  38. Hoeffert, L. L. 1969a. Ultrastructure ofBeta pollen. I. Cytoplasmic constituents. Amer. J. Bot.56: 363–368.CrossRefGoogle Scholar
  39. — 1969b. Fine structure of sperm cells in pollen grains ofBeta. Protoplasma68: 237–240.CrossRefGoogle Scholar
  40. — 1971. Ultrastructure of tapetal cell ontogeny inBeta. Protoplasma73: 387–406.CrossRefGoogle Scholar
  41. Horner, H. T., Jr. &N. R. Lersten. 1971. Microsporogenesis inCitrus limon (Rutaceae). Amer. J. Bot.58: 72–79.CrossRefGoogle Scholar
  42. Hosokawa, S., T. Takeda, Y. Otani &M. Ikehata. 1954. Cyto-histological studies on male sterility of sugar beets with special reference to pollen degeneration and tapetal plasmodium. Jap. J. Breed.4: 196–202.Google Scholar
  43. Izhar, S. &R. Frankel. 1971. Mechanism of male sterility inPetunia: The relationship between pH, callase activity in the anthers, and the breakdown of the microsporogenesis. Theor. Appl. Genet.44: 104–108.Google Scholar
  44. Jones, D. F., H. T. Stinson, Jr. &U. Khoo. 1957. Pollen restoring genes. Connecticut Agric. Exp. Sta. Bull. Immed. Inform. 610.Google Scholar
  45. Jones, H. A. &L. K. Mann. 1963. Onions and their allies. Interscience Publishers, New York. 286 pp.Google Scholar
  46. Joppa, H. A., F. H. McNeal &J. R. Walsh. 1966. Pollen and anther development in cytoplasmic male sterile wheatTriticum aestivum L. Crop Sci.6: 296–297.CrossRefGoogle Scholar
  47. Kaul, C. L. &S. P. Singh. 1967. Induction of male sterility inAllium cepa L. Curr. Sci.36: 676–677.Google Scholar
  48. Khoo, U. &H. T. Stinson, Jr. 1957. Free amino acid differences between cytoplasmic male sterile and normal fertile anthers. Proc. Natl. Acad. Sci. U. S. A.43: 603–607.PubMedCrossRefGoogle Scholar
  49. Kidd, H. J. 1961. The inheritance of restoration of fertility in cytoplasmic malesterile sorghum—a preliminary report. Sorghum Newslett.4: 47–49.Google Scholar
  50. Kinoshira, T. &S. Nagao. 1968. Use of male sterility in triploid sugar beets. Proc. XII. Int. Cong. Genet. 232–233.Google Scholar
  51. ——. 1966. Inheritance of pollen sterility induced by the irradiation. Bull. Sugar Beet Res. Suppl.7: 40–42.Google Scholar
  52. Lamm, R. 1941. Varying cytological behavior in reciprocalSolanum crosses. Hereditas27: 202–208.CrossRefGoogle Scholar
  53. Laser, K. D. 1972. A light and electron microscope study of the stamen vascular bundle in cytoplasmic male sterile and normalSorghum bicolor. Amer. J. Bot.59: 653 (abstract).Google Scholar
  54. -. (unpublished) A light and electron microscope study of microsporogenesis in cytoplasmic male sterileSorghum bicolor. Ph.D. Thesis, Iowa State Univ., Ames.Google Scholar
  55. Maunder, A. B. &R. C. Pickett. 1959. The genetic inheritance of cytoplasmicgenetic male sterility in grainSorghum. Agron. J.51: 47–49.CrossRefGoogle Scholar
  56. Monosmith, H. R. 1928. Male sterility inAllium cepa L. Ph.D. Thesis. Univ. Calif. (Not seen; cited by Jones & Mann, 1963).Google Scholar
  57. Moss, G. I. 1967. A cytochemical study of DNA, RNA, and protein in the developing maize anther. I. Methods. Ann. Bot.31: 545–553.Google Scholar
  58. — &J. Heslop-Harrison. 1967. A cytochemical study of DNA, RNA, and protein in the developing maize anther. II. Observations. Ann. Bot.31: 555–574.Google Scholar
  59. ——. 1968. Photoperiod and pollen sterility in maize. Ann. Bot.32: 833–846.Google Scholar
  60. Nagao, S. &T. Kinoshita. 1962. Causal agents and character expression of male sterility in beets. J. Fac. Agric. Hokkaido Univ.52: 51–69.Google Scholar
  61. Narkhede, M. N., B. A. Phadnis &M. V. Thombre. 1968. Cytological studies in some male sterile Jowars (Sorghum vulgare Pers.) and their maintainers and restorers. Cytologia33: 168–173.Google Scholar
  62. Nishi, S. &T. Hiraoka. 1958. (Histological studies on the degenerative process of male sterility in some vegetable crops.) Bull. Natl. Inst. Agric. Sci. Japan, Ser. E, No. 6. (Japanese with English summary).Google Scholar
  63. Nitsche, W. 1971. Cytoplasmatische mannliche Sterilität bei Weidelgras (Lolium sp.). Z. Pflanzenzucht.65: 206–220.Google Scholar
  64. Novak, F. 1971. Cytoplasmic male sterility in sweet pepper (Capsicum annuum L.) II. Tapetal development in male sterile anther. Z. Pflanzenzucht.65: 221–232.Google Scholar
  65. — &J. Betlach. 1970. Development and karyology of the tapetal layer of anther in sweet pepper (Capsicum annuum L.) Biol. Plantarum12: 275–280.Google Scholar
  66. —— &J. Dubovsky. 1971. Cytoplasmic male sterility in sweet pepper. I. Phenotype and inheritance of male sterile character. Z. Pflanzenzucht.65: 129–140.Google Scholar
  67. Nürnberg-Krüger, U. 1956. Die Beeinflussung des Geschlechts bei zwittrigen Fragaria-Arten durch Bastardierung. Ber. Deutsch Bot. Ges.68: 16.Google Scholar
  68. — 1958. Genetische Untersuchungen und Diploiden Fragaria-Arten, I. Die Kreuzung zwischen F.vesca und F.nilgerrensis, ihre Auswirkung auf die Morphologie der Pflanzen und die Ausbildung des Geschlechts. Z. Vererbungsl.89: 747–773.PubMedCrossRefGoogle Scholar
  69. Obehreuter, M. 1925. Untersuchung der Pollensterilität der reziprok verschiedenen Epilobiumbastarden. Ber. Deutsch Bot. Ges.43: 47–51.Google Scholar
  70. Ogura, H. 1968. Studies on the new male-sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Mem. Fac. Agric. Kagoshima Univ.6: 39–78.Google Scholar
  71. Orel, L. I. 1967. (A cytological study of maize pollen with cytoplasmic male sterility.) Genetika12: 3–11. (Russian with English summary.)Google Scholar
  72. Pakendorf, K. W. 1970. Male sterility inLupinus mutabilis Sweet. Z. Pflanzenzucht.63: 227–236.Google Scholar
  73. Palmer, R. 1971. Cytological studies of ameiotic and normal maize with reference to premeiotic pairing. Chromosoma (Berl.)35: 233–246.CrossRefGoogle Scholar
  74. Peterson, P. A. 1958. Cytoplasmically inherited male sterility inCapsicum. Amer. Natur.90: 111–119.Google Scholar
  75. Raj, A. Y. 1968. Histological studies in male sterile and male fertileSorghum. Indian J. Genet. Pl. Breed.28: 335–341.Google Scholar
  76. Rhoades, M. M. 1933. The cytoplasmic inheritance of male sterility inZea mays. J. Genet.27: 71–95.CrossRefGoogle Scholar
  77. Rogers, J. S. &J. R. Edwardson. 1952. The utilization of cytoplasmic male sterile inbreds in the production of corn hybrids. Agron. J.44: 8–13.CrossRefGoogle Scholar
  78. Rohrbach, U. 1965. Beitrage zum Problem der Pollensterilität beiBeta vulgaris L. I. Untersuchungen uber die Ontogenese des Phanotyps. Z. Pflanzenzucht.53: 105–124Google Scholar
  79. Savchenko, N. I. 1967. (Microsporogenesis and pollen grain development in cytoplasmic male sterile lines of winter wheat.) Citol. Genet.1: 28–37. (Russian with English summary).Google Scholar
  80. Savchenko, N. I. &A. S. Lastovych. 1965. (Morphological and cytological peculiarities of wheat forms with cytoplasmic male sterility). Ukrajins’ K. Bot. Zum.22: 35–42. (Russian with English summary).Google Scholar
  81. Schooler, A. B. 1967. A form of male sterility in barley hybrids. J. Heredity58: 206–211.Google Scholar
  82. Singh, S. P. &H. H. Hadley. 1961. Pollen abortion in cytoplasmic male sterile sorghum. Crop Sci.1: 430–432.CrossRefGoogle Scholar
  83. — &Y. P. Sharma. 1963. Preliminary observations on the breeding ofPennisetum at B. R. College, Bichpuri, Agra, India. Sorghum Newslett.6: 26–28.Google Scholar
  84. Skalinska, M. 1928. Sur les causes d’une disjunction non typique des hybrides du genreAquilegia. Acta Soc. Bot. Poloniae5: 141–173.Google Scholar
  85. -. 1931. A new case of unlike reciprocal hybrids inAquilegia. Rep. Fifth Int. Bot. Congr., p. 250.Google Scholar
  86. Spasojevic, V. 1966. Contribution to the study of cytoplasmic male sterility in maize. J. Sci. Agric. Res.19: 30–42.Google Scholar
  87. Stephens, J. C. 1937. Male sterility in sorghum: Its possible utilization in production of hybrid seed. J. Amer. Soc. Agron.29: 690–696.Google Scholar
  88. Tatebe, T. 1957. Cytological studies on pollen degeneration in male-sterile onions. J. Hort. Assoc. Japan21: 73–75. (Japanese with English summary).Google Scholar
  89. Thompson, D. J. 1960. Studies on the inheritance of male-sterility and other characters in the carrot,Daucus carota L. var.sativa. Proc. Am. Soc. Hort. Sci.78: 332–338.Google Scholar
  90. Tsikova, E. 1969. Cytological investigations on the cytoplasmic male sterility inNicotiana: IV. Changes in the tapetum. Genet. Pl. Breed.2: 461–467.Google Scholar
  91. Turbin, N. V., A. N. Palilova, A. V. Smol’skaya &L. S. Serpokrylova. 1969. The influence of sterile cytoplasm on the course of microsporogenesis in maize lines. Dokl. Akad. Nauk SSSR.188: 108–111.Google Scholar
  92. Vasil, I. K. 1967. Physiology and cytology of anther development. Biol. Rev. Cambridge Phil. Soc.42: 327–373.CrossRefGoogle Scholar
  93. Virnich, H. 1967. Untersuchungen über das verhalten der männlichen Sterilität und anderer Eigenschaften bei polyploiden Zweibein (Allium cepa L.) als Grundlage für eine Nutzung in der Hybridüchtung. Z. Pflanzenzucht.58: 205–244.Google Scholar
  94. Wilson, J. A. 1968. Problems in hybrid wheat breeding. Euphytica17: 13–33.Google Scholar
  95. Yamaguchi, T. &C. Kanno. 1963. (Studies on the differences of character manifestation in reciprocal crosses of Rape (Brassica napus L.) VI.) 1st Agron. Div. Tokai-Kinki Natl. Agric. Exp. Sta. Bull. No.9: 162–182. (Japanese with English summary).Google Scholar
  96. Zenkteler, M. 1962. Microsporogenesis and tapetal development in normal and male sterile carrots (Daucus carota). Amer. J. Bot.49: 341–348.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1972

Authors and Affiliations

  • Kenneth D. Laser
    • 1
  • Nels R. Lersten
    • 1
  1. 1.Department of Botany and Plant PathologyIowa State UniversityAmes

Personalised recommendations