Advertisement

The Botanical Review

, Volume 38, Issue 3, pp 343–424 | Cite as

Phytoalexins and other natural products as factors in plant disease resistance

  • John L. Ingham
Interpreting Botanical Progress

Conclusion

In recent years studies of plant disease resistance have concentrated on active resistance rather than on those mechanisms which rely on structural barriers such as the cuticle. This change has led to the detection and isolation of several post-infectional antifungal compounds, known collectively as phytoalexins, and to their implication as major factors in the disease resistance of several plant species. These substances were first discussed by Müller & Börger (1940) although it is only during the last decade that concerted attempts have been made by plant pathologists and biochemists to support or refute their hypothesis.

As a result of this research numerous reports in the literature are concerned with production of phytoalexins or phytoalexin-like substances by diseased plants, and of these the phytoalexins from the Leguminosae constitute one of the more important groups. However, even in this extremely large Family only a few species have been studied in detail, and as a result there is great scope for the extensive screening of many more genera in order to detect antifungal metabolites of both pre- and post-infectional origin, research which would be of considerable value to chemotaxonomy as well as plant pathology. With the advanced analytical techniques now available it should also be possible to characterise many of the phytoalexin-like compounds produced by members of other plant Families in order to compare and contrast their structures with those of known antifungal metabolites.

The detection and characterisation of phytoalexins and other related natural products, the elucidation of their biosynthetic pathways and where appropriate their antifungal mechanisms, and the development of these substances or synthetic analogues for use in crop protection provides a new and exciting field of plant pathology which without doubt will be greatly expanded in the years that lie ahead.

Keywords

Gossypol Botanical Review Sweet Potato Plant Disease Resistance Coumestrol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Adams, R., T. A. Geissman, &J. D. Edwards. 1960. Gossypol, a pigment of cottonseed. Chem. Rev.60: 555–574.PubMedGoogle Scholar
  2. —,R. C. Morris, T. A. Geissman, D. J. Butterbaugh, &E. C. Kdrkpatbick. 1938. Structure of gossypol. XV. An interpretation of its reactions. J. Amer. Chem. Soc.60: 2193–2204.Google Scholar
  3. Adebayo, A. A. 1969. Studies on the diseases ofPrimulas caused byRamularia primulae Thuman andCercosporella primulae Allescher. Ph.D. Thesis, University of Exeter, U.K. 385p.Google Scholar
  4. Adityachaudhury, N. &P. K. Gupta. 1970a. Flemichapparin B, a new pterocarpanoid fromFlemingia chappar Ham. Chemy. Ind. 745–746.Google Scholar
  5. - & -. 1970b. Flemichapparin C: a new coumestan derivative fromFlemingia chappar Ham. Chemy. Ind. 1113–1114.Google Scholar
  6. Akazawa, T. 1960. Chromatographic isolation of pure ipomeamarone and reinvestigation on its chemical properties. Arch. Biochem. Biophys.90: 82–89.PubMedGoogle Scholar
  7. —. 1964. Biosynthesis of ipomeamarone. II. Synthetic mechanism. Arch. Biochem. Biophys.105: 512–516.PubMedGoogle Scholar
  8. — &I. Uritani. 1955. Phytopathological chemistry of black rotted sweet potato. Part XIX. Inhibitory effect of bitter substances in the rotted sweet potato onCeratostomella fimbriata. J. Agric. Chem. Soc. Japan29: 377–381.Google Scholar
  9. ——. 1961. Influence of environmental temperatures on metabolic alterations related to disease resistance in sweet potato roots infected by black rot. Phytopathology51: 668–674.Google Scholar
  10. ——. 1962a. Pattern of carbohydrate breakdown in sweet potato roots infected withCeratocystis fimbriata. Pl. Physiol. (Lancaster).37: 662–670.Google Scholar
  11. ——. 1962b. Biosynthesis of ipomeamarone. The incorporation of acetate-2-C14 into ipomeamarone. Agric. Biol. Chem.26: 131–133.Google Scholar
  12. — &K. Wada. 1961. Analytical study of ipomeamarone and chlorogenic acid alterations in sweet potato roots infected byCeratocystis fimbriata. Pl. Physiol. (Lancaster).36: 139–144.Google Scholar
  13. —,I. Uritani, &Y. Akazawa. 1962. Biosynthesis of ipomeamarone. I. The incorporation of acetate-2-C14 and mevalonate-2-C14 into ipomeamarone. Arch. Biochem. Biophys.99: 52–59.PubMedGoogle Scholar
  14. ——, &T. Hirai. 1957. Phytopathological chemistry of black rotted sweet potato. Part XXIV. The relation of metabolic activation to resistance in black rotten sweet potato. J. Agric. Chem. Soc. Japan31: 182–185.Google Scholar
  15. —— &H. Kubota. 1960. Isolation of ipomeamarone and two coumarin derivatives from sweet potato roots injured by the weevilCylas formicarius elegantulus. Arch. Biochem. Biophys.88: 150–156.PubMedGoogle Scholar
  16. Akisanya, A., C. W. L. Bevan, &J. Hirst. 1959. West African timbers. Part II. Heartwood constituents of the genusPterocarpus. J. Chem. Soc. 2679–2681.Google Scholar
  17. Alcubilla, M. 1970a. Extraction, Chromatographic separation and isolation of fungistatic substances from the inner bark of Norway spruce. Z. Pflanz. Bodenk.127: 64–74.Google Scholar
  18. —. 1970b. Fungus inhibitors in spruce bark. Landwirt. Forsch. Sonderh.25: 96–101.Google Scholar
  19. Aldridge, D. C., S. Galt, D. Giles, &W. B. Turner. 1971. Metabolites ofLasiodiplodia theobromae. J. Chem. Soc. (C). 1623–1627.Google Scholar
  20. -,J. F. Grove, &W. B. Turner. 1966. 4-acetyl-6,8-dihydroxy-5-methyI-2-benzopyran-l-one, a metabolite ofAspergillus viridinutans. J. Chem. Soc. (C). 126–129.Google Scholar
  21. Aldwinckle, H. S. 1969. Phytoalexin-like activity in diffusates from safflower leaves inoculated withPhytophthora drechsleri. Phytopathology59: 1015 (Abstr.).Google Scholar
  22. Allen, E. H. 1965. Steroid-glycoalkaloids in the disease resistance of white potato tubers. Ph.D. Thesis, Purdue University, U.S.A. 83p.Google Scholar
  23. —. 1970. The nature of antifungal substances in the peel of Irish potato tubers. Phytopathol. Z.69: 151–159.Google Scholar
  24. — &J. Kuć. 1968. α-solanine and α-chaconine as fungitoxic compounds in extracts of Irish potato tubers. Phytopathology58: 776–781.Google Scholar
  25. Amici, A. &R. Locci. 1968. Possible phytopathological implications of the behaviour ofHelminthosporium carbonum in presence of α-solanine. Rivista Patol. Veg. Ser. 4.4: 51–62.Google Scholar
  26. Anderson, T. 1876. Educts fromBaphia nitida (barwood). J. Chem. Soc.30: 582–586.Google Scholar
  27. Angell, H. R., J. C. Walker, &K. P. Link. 1930. The relation of protocatechuic acid to disease resistance in the onion. Phytopathology20: 431–438.Google Scholar
  28. Anonymous. 1967. Fungal diseases of apples. Study ofNectria galligena. Ann. Rep. Res. Tech. Work Minist. Agric. N. Ireland 87.Google Scholar
  29. -. 1969. Fungal diseases of apples. Study ofNectria galligena. Ann. Rep. Res. Tech. Work Minist. Agric. N. Ireland 98–99.Google Scholar
  30. Arneson, P. A. &R. D. Durbin. 1967. Hydrolysis of tomatine bySeptoria lycopersici: a detoxification mechanism. Phytopathology57: 1358–1360.Google Scholar
  31. Aue, R., R. Mauli, &H. P. Sigg. 1966. Production of 6-methoxymellein bySporormia bipartis Cain. Experientia22: 575.PubMedGoogle Scholar
  32. Averre, C. W. &A. Kelman. 1964. Severity of bacterial wilt as influenced by ratio of virulent to avirulent cells ofPseudomonas solanacearum in inoculum. Phytopathology54: 779–783.Google Scholar
  33. Bailey, J. A. 1969a. Phytoalexin production by leaves ofPisum sativum in relation to senescence. Ann. Appl. Biol.64: 315–324.Google Scholar
  34. —. 1969b. Effects of antimetabolites on production of the phytoalexin pisatin. Phytochemistry8: 1393–1395.Google Scholar
  35. —. 1970. Pisatin production by tissue cultures ofPisum sativum L. J. Gen. Microbiol.61: 409–415.Google Scholar
  36. - &B. J. Deverall. 1971. Formation and activity of phaseollin in the interaction between bean hypocotyls (Phaseolus vulgaris) and physiological races ofColletotrichum lindemuthianum. Physiol. Pl. Pathol. (In press).Google Scholar
  37. - &J. L. Ingham. 1971. Phaseollin accumulation in bean in response to infection by tobacco necrosis virus and the rustUromyces appendiculatus. Physiol. Pl. Pathol. (In press).Google Scholar
  38. Baker, C. J. 1969. Studies onLeptosphaeria nodorum Müller andSeptoria tritici Desm. on wheat. Ph.D. Thesis, University of Exeter, U.K. 172p.Google Scholar
  39. Barnes, R. A. &N. N. Gerber. 1955. The antifungal agent from osage orange wood. J. Amer. Chem. Soc.77: 3259–3262.Google Scholar
  40. Baslas, K. K. 1967. Chemistry of Indian essential oils. Part I. Perfumery, Essential Oil Rec.58: 437–440.Google Scholar
  41. Bassett, C., R. T. Sherwood, J. A. Kepler, &P. B. Hamilton. 1967. Production and biological activity of fomannosin, a toxic sesquiterpene metabolite ofFomes annosus. Phytopathology57: 1046–1052.Google Scholar
  42. Bate-Smith, E. C., T. Swain, &G. S. Pope. 1953. The isolation of 7-hydroxy-4′-methoxyisoflavone (formononetin) from red clover (Trifolium pratense) and a note on the identity of pratol. Chemy. Ind. 1127.Google Scholar
  43. Baugher, W. L. &T. C. Campbell. 1969. Gossypol detoxification by fungi. Science164: 1526–1527.PubMedGoogle Scholar
  44. Beck, S. D. &J. F. Stauffer. 1957. The European corn borer,Pyrausta nubilalis (Hiibn.) and its principal host plant. III. Toxic factors influencing larval establishment. Ann. Entomol. Soc. Amer.50: 166–170.Google Scholar
  45. Bedi, P. S. 1966. Studies on the biological control ofVerticillium wilt of okra. Diss. Abstr.27B: 1045.Google Scholar
  46. Bell, A. A. 1967. Formation of gossypol in infected or chemically irritated tissues ofGossypium species. Phytopathology57: 759–764.Google Scholar
  47. —. 1969. Phytoalexin production andVerticillium wilt resistance in cotton. Phytopathology59: 1119–1127.Google Scholar
  48. —. 1970. 4-hydroxybenzaldehyde and vanillin as toxins formed in leaf wound sap ofPhaseolus lunatus. Phytopathology60: 161–165.PubMedGoogle Scholar
  49. — &J. T. Presley. 1969a. Temperature effects upon resistance and phytoalexin synthesis in cotton inoculated withVerticillium albo-atrum. Phytopathology59: 1141–1146.Google Scholar
  50. ——. 1969b. Heat-inhibited or heat-killed conidia ofVerticillium albo-atrum induce disease resistance and phytoalexin synthesis in cotton. Phytopathology59: 1147–1151.Google Scholar
  51. BeMiller, J. N. &A. J. Pappelis. 1965. 2,4-dihydroxy-7-methoxy-l,4-benzoxazin-3-one glucoside in corn. I. Relation of water-soluble, 1-butanol soluble glycoside fraction content of pith cores and stalk rot resistance. Phytopathology55: 1237–1240.Google Scholar
  52. Bendixen, O., J. Lam, &F. Kaufmann. 1969. Polyacetylenes ofDahlia pinnata. Phytochemistry8: 1021–1024.Google Scholar
  53. Benz, G. 1959. 8-hydroxy-3-methyl-isocoumarin isolated from the culture medium ofMarasmius ramealis. Arkiv. Kemi.14: 511–518.Google Scholar
  54. —. 1960. A study of the chemistry of someMarasmius species. Arkiv. Kemi15: 131–148.Google Scholar
  55. Benesová, V., V. Herout, &F. Sorm. 1959. On terpenes. CII. The structure and absolute configuration of costol. Collect. Czech. Chem. Commun.24: 2365–2370.Google Scholar
  56. -,V. Sýkora, V. Herout, &F. Sorm. 1958. The absolute configuration of costol (sesquibenihiol) and alantolactone. Chemy. Ind. 363–364.Google Scholar
  57. Benjamin, C. R. &F. H. Stodola. 1960. Ramulosin, a C10H14O3 compound produced by the fungusPestalotia ramulosa. Nature188: 662–663.Google Scholar
  58. Berardi, L. C. &L. A. Goldblatt. 1969. Gossypol.In: Toxic constituents of plant foodstuffs. Liener, I. E. (Ed.), Academic Press, New York & London, p. 211–266.Google Scholar
  59. Bergman, B. H. H. 1966. Presence of a substance in the white skin of young tulip bulbs which inhibits growth ofFusarium oxysporum. Netherlands J. Pl. Pathol.72: 222–230.Google Scholar
  60. —. 1968. Problemen rond het optreden en de bestrijding vanFusarium oxysporum in tulpen. Meded. Directeur Tuinb.31: 274–277.Google Scholar
  61. —&J. C. M. Beijersbergen. 1968. A fungitoxic substance extracted from tulips and its possible role as a protectant against disease. Netherlands J. Pl. Pathol.74: 157–162 (Suppl.1).Google Scholar
  62. ——J. C. Overeem, &A. K. Sijpesteijn. 1967. Isolation and identification of α-methylenebutyrolactone, a fungitoxic substance from tulips. Recl. Trav. Chim. Pays-Bas.86: 709–714.Google Scholar
  63. Berlin, J. &W. Barz. 1971. Stoffwechsel von Isoflavonen und Cumöstanen in Zell- und Callussuspensionskulturen vonPhaseolus aureus Roxb. Planta (Berlin)98: 300–314.Google Scholar
  64. Bernard, N. 1909. L’évolution dans la symbiose. Les orchidées et leurs champignons commensaux. Ann. Sci. Nat. Bot.9: 1–196.Google Scholar
  65. —. 1911. Sur la fonction fungicide des bulbes d’ Ophrydées. Ann. Sci. Nat. Bot.14: 221–234.Google Scholar
  66. Bevan, C. W. L. 1958. Wood extractives. W. African J. Biol. Chem.2: 36–41.Google Scholar
  67. -,A. J. Birch, B. Moore, &S. K. Mukerjee. 1964. A partial synthesis of (±)-pisatin; some remarks on the structure and reactions of pterocarpin. J. Chem. Soc. 5991–5995.Google Scholar
  68. Bhargava, K. K., N. R. Krishnaswamy, &T. R. Seshadri. 1970. Isolation of desmethylwedelolactone and its glucoside fromEclipta alba. Indian J. Chem.8: 664.Google Scholar
  69. Bhrara, S. C., A. C. Jain, &T. R. Seshadri. 1964. A new examination of the special components ofPterocarpus indicus heartwood. Curr. Sci.33: 303.Google Scholar
  70. Bickoff, E. M., A. N. Booth, R. L. Lyman, A. L. Livingston, C. R. Thompson, &F. DeEds. 1957. Coumestrol, a new estrogen isolated from forage crops. Science126: 969–970.PubMedGoogle Scholar
  71. ————— &G. O. Kohler. 1958a. Isolation of a new estrogen from ladino clover. J. Agric. Food Chem.6: 536–539.Google Scholar
  72. —,A. L. Livingston, S. C. Witt, B. E. Knuckles, J. Guggolz, &R. R. Spencer. 1964. Isolation of coumestrol and other phenolics from alfalfa by countercurrent distribution. J. Pharm. Sci.53: 1496–1499.PubMedGoogle Scholar
  73. ———,R. E. Lundin, &R. R. Spencer. 1965. Isolation of 4′-0-methylcoumestrol from alfalfa. J. Agric. Food Chem.13: 597–599.Google Scholar
  74. —,R. L. Lyman, A. L. Livingston, &A. N. Booth. 1958b. Characterization of coumestrol, a naturally occurring plant estrogen. J. Amer. Chem. Soc.80: 3969–3971.Google Scholar
  75. —,R. R. Spencer, B. E. Knuckles, &R. E. Lundin. 1966. 3′-methoxy-coumestrol from alfalfa: isolation and characterization. J. Agric. Food Chem.14: 444–446.Google Scholar
  76. —,G. M. Loper, C. H. Hanson, J. H. Graham, S. C. Witt, &R. R. Spencer. 1967. Effect of common leafspot on coumestans and flavones in alfalfa. Crop Sci. (Madison)7: 259–261.Google Scholar
  77. Biehn, W. L., J. Kuć, &E. B. Williams. 1968a. Fungitoxicity of phenols accumulating inGlycine max-fungi interactions. Phytopathology58: 1261–1264.Google Scholar
  78. ———. 1968b. Accumulation of phenols in resistant plant/fungi interactions. Phytopathology58: 1255–1260.Google Scholar
  79. Birch, A. J. 1966. Some natural antifungal agents. Chemy. Ind. 1173–1176.Google Scholar
  80. -,L. Loh, A. Pelter, J. H. Birkinshaw, P. Chaplen, A. H. Manchanda, &M. Riano-Martin. 1965. The structure of canescin. Tetrahedron Lett. 29–32.Google Scholar
  81. —,R. Massy-Westropp, &S. E. Wright. 1953. Natural derivatives of furan. I. Ngaione. Austral. J. Chem.6: 385–390.Google Scholar
  82. -, -, -,T. Kubota, T. Matsuura, &M. D. Sutherland. 1954. Ipomeamarone and ngaione. Chemy. Ind. 902.Google Scholar
  83. -,B. Moore, S. K. Mukerjee, &C. W. L. Bevan. 1962. A partial synthesis of (±)-pisatin from pterocarpin. Tetrahedron Lett. 673–676.Google Scholar
  84. Blackburne, I. D., R. J. Park, &M. D. Sutherland. 1971. Terpenoid chemistry. XVIII. Myodesmone and isomyodesmone, toxic furanoid ketones fromMyoporum deserti andM. acuminatum. Austral. J. Chem.24: 995–1007.Google Scholar
  85. Blair, J. &G. T. Newbold. 1955a. The structure of mellein. Chemy. Ind. 93–94.Google Scholar
  86. - & -. 1955b. Lactones. Part II: The structure of mellein. J. Chem. Soc. 2871–2875.Google Scholar
  87. Bohlmann, F., S. Köhn, &C. Arndt. 1966. Polyacetylenverbindungen. CXIV. Die polyine der GattungCarthamus L. Chem. Ber.99: 3433–3436.Google Scholar
  88. Boller, A., H. Cprrodi, E. Gäumann, E. Hardegger, H. Kern, &N. Winterhalter-Wild. 1957. Über induzierte Abwehrstoffe bei Orchideen. I. Helv. Chim. Acta40: 1062–1066.Google Scholar
  89. Borecka, H. &J. Pieniażek. 1968. Stimulatory effect of abscisic acid on spore germination ofGloeosporium album Osterw. andBotrytis cinerea Pers. Bull. Acad. Polon. Sci. Ser. Sci. Biol.16: 657–661.Google Scholar
  90. —,A. Bielenin, &R. Rudnicki. 1969. Some factors influencing strawberry flowers infection byBotrytis cinerea Pers. Acta Agrobot.22: 245–252.Google Scholar
  91. Bose, J. L. &S. Siddiqui. 1945. Studies in the constituents of chana (Cicer arietinum Linn.). Part II. The constitution of biochanin A. J. Sci. Ind. Res. India4: 231–235.Google Scholar
  92. Bose, S. R. 1938. The nature of “Agaru” formation. Sci. & Cult.4: 89–91.Google Scholar
  93. Bottger, G. T., E. T. Sheehan, &M. J. Lukefahr. 1964. Relation of gossypol content of cotton plants to insect resistance. J. Econ. Entomol.57: 283–285.Google Scholar
  94. Bouwer, D., C. v. d. M. Brink, J. P. Engelbrecht, &G. J. H. Rall. 1968.Neorautanenia isoflavanoids. Part III. 4-methoxypterocarpin a new pterocarpan fromNeorautanenia ficifolia (Benth. ex Harv.) C. A. SM. J. S. African Chem. Inst.21: 159–163.Google Scholar
  95. Bowyer, W. J., J. N. Chatterjea, S. P. Dhoubhadel, B. O. Handford, &W. B. Whalley. 1964. The chemistry of the “Insoluble Red Woods.” Part IX. Homopterocarpin and pterocarpin. J. Chem. Soc. 4212–4216.Google Scholar
  96. Brandt, C. W. &D. J. Ross. 1949. The constitution of ngaione. J. Chem. Soc. 2778–2781.Google Scholar
  97. Braun, R. 1963. Orchinol.In: Modern Methods of Plant Analysis. Linskens, H. F. & M. V. Tracey (Eds.).6: 130–134.Google Scholar
  98. Bredenberg, J. B. 1961. Identification of an antifungal factor in red clover as biochanin A. Acta Chem. Fenn.34B: 23.Google Scholar
  99. — &P. K. Hietala. 1961a. Investigation of the structure of trifolirhizin, an antifungal compound fromTrifolium pretense L. Acta Chem. Scand.15: 696–699.Google Scholar
  100. ——. 1961b. Confirmation of the structure of trifolirhizin. Acta Chem. Scand.15: 936–937.Google Scholar
  101. - &J. N. Skoolery. 1961. A revised structure for pterocarpin. Tetrahedron Lett. 285–288.Google Scholar
  102. Brian, P. W., H. G. Hemming, J. S. Moffatt, &C. H. Unwin. 1953. Canescin, an antibiotic produced byPenicillium canescens. Trans. Brit. Mycol. Soc.36: 243–247.Google Scholar
  103. Bridge, M. &W. L. Klarman. 1970. Ultra-violet induction of an antifungal chemical in soybeans. Phytopathology60: 1013 (Abstr.).Google Scholar
  104. Brink, C. v. d. M., J. P. Engelbrecht, &D. E. Graham. 1970.Neorautanenia isoflavanoids. Part IV. Ficifolinol, folitenol and folinin, three new pterocarpans from the root bark ofNeorautanenia ficifolia (Benth. ex Harv.) C. A. SM. J. S. African Chem. Inst.23: 24–33.Google Scholar
  105. —,W. Nel, G. J. H. Rall, J. C. Weitz, &K. G. R. Pachler. 1966.Neorautanenia isoflavanoids. Part II Neofolin and ficinin, two new furoisoflavanoids fromNeorautanenia ficifolia (Benth. ex Harv.) C. A. SM. J. S. African Chem. Inst.19: 24–37.Google Scholar
  106. Brooks, B. T. 1910. The natural dyes and coloring matters of the Philippines. Philippine J. Sci.5A: 439–452.Google Scholar
  107. Bukhari, S. T. K. &R. D. Guthrie. 1969. Structure of rishitin. An example of the use of cuprammonium complexing in structural elucidation. J. Chem. Soc. (C). 1073.Google Scholar
  108. Burges, A. 1936. On the significance of mycorrhiza. New Phytol.35: 117–131.Google Scholar
  109. —. 1939. The defensive mechanism in orchid mycorrhiza. New Phytol.38: 273–283.Google Scholar
  110. Burkhardt, H. J., J. V. Maizel, &H. K. Mitchell. 1964. Avenacin, an antimicrobial substance isolated fromAvena sativa. II. Structure. Biochemistry3: 426–431.Google Scholar
  111. Burton, H. S. 1950. Antibiotics fromAspergillus melleus. Nature165: 274–275.PubMedGoogle Scholar
  112. Calpouzos, L. 1962. Inhibition ofMycosphaerella musicola by water extracts of susceptible banana leaves. Rep. Long Ashton Agric. Hort. Res. Sta. 111–115.Google Scholar
  113. Campbell, K. N., R. C. Morris, &R. Adams. 1937. The structure of gossypol. I. J. Amer. Chem. Soc.59: 1723–1728.Google Scholar
  114. Carlton, B. C., C. E. Peterson, &N. E. Tolbert. 1961. Effects of ethylene and oxygen on the production of a bitter compound by carrot roots. Pl. Physiol. (Lancaster)36: 550–552.Google Scholar
  115. Cazeneuve, P. &L. Hugounenq. 1887. Sur deux principes cristallisés extraits du santal rouge, la ptérocarpine et l’homoptérocarpine. Comp. Rend. Hebd. Séances Acad. Sci.104: 1722–1725.Google Scholar
  116. ——. 1888. Sur l’ homoptérocarpine et la ptérocarpine du bois de santal rouge. Comp. Rend. Hebd. Séances Acad. Sci.107: 737–740.Google Scholar
  117. ——. 1889. Sur deux principes cristallisés extraits du bois de santal rouge, l’ homoptérocarpine et la ptérocarpine. Annal. Chim. Phys. Ser. VI.17: 113–128.Google Scholar
  118. Chakravarty, D. K. &D. N. Srivastava. 1967. Mechanism of resistance of carrot roots toPythium aphanidermatum (Eds.) Fitz. Phytopathol. Z. 259–261.Google Scholar
  119. Chalova, L. I., N. I. Vasyukova, O. L. Ozeretskovskaya, &L. V. Metlitskii. 1971. Chemical identification of one of the potato phytoalexins. Prikl. Biokhim. Mikrobiol.7: 55–58.Google Scholar
  120. Chalutz, E. &J. E. DeVay. 1969. Production of ethylene in vitro and in vivo byCeratocystis fimbriata in relation to disease development. Phytopathology59: 750–755.Google Scholar
  121. — &M. A. Stahmann. 1969. Induction of pisatin by ethylene. Phytopathology59: 1972–1973.PubMedGoogle Scholar
  122. —,J. E. DeVay, &E. C. Maxie. 1969a. Production of ethylene byCeratocystis fimbriata, and the role of ethylene in the induction of 3-methyl-6-methoxy-8-hydroxy-3,4-dihydroisocoumarin. Phytopathology59: 10 (Abstr.).Google Scholar
  123. ——— 1969b. Ethylene-induced isocoumarin formation in carrot root tissue. Pl. Physiol. (Lancaster)44: 235–241.Google Scholar
  124. Chamberlain, D. W. 1970. Temperature ranges inducing susceptibility toPhytophthora megasperma var.sojae in resistant soybeans. Phytopathology60: 293–294.Google Scholar
  125. — &J. W. Gerdemann. 1966. Heat induced susceptibility of soybeans toPhytophthora megasperma var.sojae, Phytophthora cactorum andHelminthosporium sativum. Phytopathology56: 70–73.Google Scholar
  126. — &J. D. Paxton. 1968. Protection of soybean plants by phytoalexin. Phytopathology58: 1349–1350.Google Scholar
  127. Chang, C. F., A. Suzuki, S. Kumai, &S. Tamura. 1969. Chemical studies on “clover sickness.” Part II. Biological functions of isoflavanoids and their related compounds. Agric. Biol. Chem.33: 398–404.Google Scholar
  128. Chatterjea, J. N. &K. Achari. 1970. Synthesis of furano compounds: Part-XXXIII. Synthesis of some pterocarpans. J. Indian Chem. Soc.47: 541–546.Google Scholar
  129. Chin, C., M. C. Cutler, E. R. H. Jones, J. Lee, S. Safe, &V. Thaller. 1970. Natural acetylenes. Part XXXI. C14-tetrahydropyranyl and other polyacetylenes from the CompositaeDahlia coccinea Cav. var.coccinea. J. Chem. Soc.(C). 314–322.Google Scholar
  130. Chiu, K. Y., S. Akai, &M. Fukutomi. 1969. Studies on the host selectivity ofCochliobolus miyabeanus. Conidium germination and appressorium formation of the fungus on leaves of various plants. Mem. Coll. Agric. Kyoto Univ.95: 1–6.Google Scholar
  131. Chou, M. C. &T. F. Preece. 1968. The effect of pollen grains on infections caused byBotrytis cinerea Fr. Ann. Appl. Biol.62: 11–22.PubMedGoogle Scholar
  132. Christenson, J. A. 1969. The degradation of pisatin by pea pathogens. Phyto-pathology59: 10(Abstr.).Google Scholar
  133. Clark, R. S., J. Kuc, R. E. Henze, &F. W. Quackenbush. 1959. The nature and fungitoxicity of an amino acid addition product of chlorogenic acid. Phytopathology49: 594–597.Google Scholar
  134. Clauss, E. 1961. Die phenolischen Inhaltsstoffe der Samenschalen vonPisum sativum L. und ihre Bedeutung fur die Resistenz gegen die Erreger der Fusskrankheit. Naturwissenschaften48: 106.Google Scholar
  135. Cocker, W., T. Dahl, C. Dempsey, &T. B. H. McMurry. 1962a. Inermin, an extractive ofAndira inermis. Chemy. Ind. 216–217.Google Scholar
  136. -, -, -, & -. 1962b. Extractives from woods. Part I. Extractives fromAndira inermis (Wright) H.B.K. J. Chem. Soc. 4906.Google Scholar
  137. -,T. B. H. McMurry, &P. A. Staniland. 1965. A synthesis of demethyl-homopterocarpin. J. Chem. Soc. 1034–1037.Google Scholar
  138. Condon, P. &J. Kuć. 1960. Isolation of a fungitoxic compound from carrot root tissues inoculated withCeratocystis fimbriata. Phytopathology50: 267–270.Google Scholar
  139. ——. 1962. Confirmation of the identity of a fungitoxic compound produced by carrot root tissues. Phytopathology52: 182–183.Google Scholar
  140. —— &H. N. Draudt. 1963. Production of 3-methyl-6-methoxy-8-hydroxy-3,4-dihydroisocoumarin by carrot root tissue. Phytopathology53: 1244–1250.Google Scholar
  141. Cooke, R. G. &I. D. Rae. 1964. Isoflavonoids. I. Some new constituents ofPterocarpus indicus heartwood. Austral. J. Chem.17: 379–384.Google Scholar
  142. Cross, J. E. &B. W. Kennedy. 1964. Variability in pathogenicity inPseudomonas glycinea. Phytopathology54: 890–891.Google Scholar
  143. Cruickshank, I. A. M. 1962. Studies on phytoalexins. IV. The antimicrobial spectrum of pisatin. Austral. J. Biol. Sci.15: 147–159.Google Scholar
  144. —. 1963a. Phytoalexins. Annual Rev. Phytopathol.1: 351–374.Google Scholar
  145. —. 1963b. Disease resistance in plants. A review of some recent developments. J. Austral. Inst. Agric. Sci.29: 23–30.Google Scholar
  146. —. 1965a. Phytoalexins in the Leguminosae with special reference to their selective toxicity. TagBer. dt. Akad. Landw. Wiss. Berlin74: 313–332.Google Scholar
  147. —. 1965b. Pisatin studies: the relationship of phytoalexins to disease reaction in plants.In: Ecology of soil-borne plant pathogens. Prelude to biological control. Baker, K. F. & W. C. Snyder. (Eds.). p. 325–336. Univ. Calif. Press, Berkeley.Google Scholar
  148. —. 1966. Defense mechanisms in plants. World Rev. Pest Control5: 161–175.Google Scholar
  149. — &M. Mandryk. 1960. The effect of stem infestation of tobacco withPeronospora tabacina Adam on foliage reaction to blue mould. J. Austral. Inst. Agric. Sci.26: 369–372.Google Scholar
  150. — &D. R. Perrin. 1960. Isolation of a phytoalexin fromPisum sativum L. Nature187: 799–800.PubMedGoogle Scholar
  151. ——. 1961. Studies on phytoalexins. III. The isolation, assay and general properties of a phytoalexin fromPisum sativum L. Austral. J. Biol. Sci.14: 336–348.Google Scholar
  152. ——. 1963a. Studies on phytoalexins. VI. Pisatin; the effect of some factors on its formation inPisum sativum L. and the significance of pisatin in disease resistance. Austral. J. Biol. Sci.16: 111–128.Google Scholar
  153. ——. 1963b. Phytoalexins of the Leguminosae. Phaseollin fromPhaseolus vulgaris. Life Sci.2: 680–682.Google Scholar
  154. ——. 1964. Pathological function of phenolic compounds in plants.In: Biochemistry of Phenolic Compounds. Harborne, J. B. (Ed.). p. 511–544. Academic Press, London.Google Scholar
  155. ——. 1965a. Studies on phytoalexins. VIII. The effect of some further factors on the formation, stability and localization of pisatin in vivo. Austral. J. Biol. Sci.18: 817–828.Google Scholar
  156. —— 1965b. Studies on phytoalexins. IX. Pisatin formation by cultivars ofPisum sativum L. and several otherPisum species. Austral. J. Biol. Sci.18: 829–835.Google Scholar
  157. ——. 1967. Studies on phytoalexins. X. Effect of oxygen tension on the biosynthesis of pisatin and phaseollin. Phytopathol. Z.60: 335–342.Google Scholar
  158. ——. 1968. The isolation and partial characterization of monili-colin A, a polypeptide with phaseollin-inducing activity fromMonilinia fructicola. Life Sci.7: 449–458.Google Scholar
  159. ——. 1971. Studies on phytoalexins. XI. The induction, antimicrobial spectrum and chemical assay of phaseollin. Phytopathol. Z.70: 209–229.Google Scholar
  160. Csupor, L. 1970. Desoxy-rhaponticin, ein neues natürliches Stilbenderivat in RhizomaRhei rhapontici L. Arch. Pharm. & Ber. Deutsch. Pharm. Ges.304: 681–687.Google Scholar
  161. Curtis, J. T. 1939. The relation of specificity of orchid mycorrhizal fungi to the problem of symbiosis. Amer. J. Bot.26: 390–399.Google Scholar
  162. Curtis, R. F. 1968. 6-methoxymellein as a phytoalexin. Experientia24: 1187–1188.Google Scholar
  163. -,P. C. Habries, C. H. Hassall, J. D. Levi, &D. M. Phillips. 1966. The biosynthesis of phenols. Part X. Mutation and radioactive tracer studies relating to the biosynthesis of sulochrin J. Chem. Soc. (C). 168–174.Google Scholar
  164. Davis, D. 1967. Cross protection inFusarium wilt diseases. Phytopathology57: 311–314.Google Scholar
  165. De Laey, P. &A. I. Virtanen. 1957. On antifungal factors in carrots. Acta Chem. Fenn.30B: 218.Google Scholar
  166. Denz, F. A. &W. C. Hanger. 1961. The liver toxin inMyoporum laetum. J. Pathol. Bacteriol.81: 91–99.PubMedGoogle Scholar
  167. Desai, H. K., D. H. Gawad, T. R. Govindachari, B. S. Joshi, V. N. Kamat, J. D. Modi, P. A. Mohamed, P. C. Parthasarathy, S. J. Patankar, A. R. Sidhaye, &N. Viswanathan. 1970. Chemical investigation of some Indian plants: Part V. Indian J. Chem.8: 851–853.Google Scholar
  168. Deverall, B. J. 1967. Biochemical changes in infection droplets containing spores ofBotrytis spp. incubated in the seed cavities of pods of bean (Vida faba L.). Ann. Appl. Biol.59: 375–387.Google Scholar
  169. — &J. C. Vessey. 1969. Role of a phytoalexin in controlling lesion development in leaves ofVicia faba after infection byBotrytis spp. Ann. Appl. Biol.63: 449–458.Google Scholar
  170. —,I. M. Smith, &S. Makris. 1968. Disease resistance inVicia faba andPhaseolus vulgaris. Netherlands J. Pl. Pathol.74: 137–148 (Suppl. 1).Google Scholar
  171. Dewick, P. M., W. Barz, &H. Grisebach. 1970. Biosynthesis of coumestrol inPhaseolus aureus. Phytochemistry9: 775–783.Google Scholar
  172. Dieterle, H. &H. Leonhardt. 1929. Beitrag zur Kenntnis der Inhaltsstoffe des roten Sandelholzes. Homopterokarpin und Pterokarpin. Arch. Pharm. & Ber. Deutsch. Pharm. Ges.267: 81–116.Google Scholar
  173. Dodson, A. R., H. N. Fukui, C. D. Ball, R. L. Carolus, &H. M. Sell. 1956. Occurrence of a bitter principle in carrots. Science124: 984–985.PubMedGoogle Scholar
  174. Dolejs, L., V. Herout, F. Sorm. 1961. On terpenes. CXX. Sesquiterpenic compounds ofBaccharis genistelloides PERS.; Structure of palustrol. Collect. Czech. Chem. Commun.26: 811–817.Google Scholar
  175. Duttagupta, P. C., H. N. Khastgir, &P. Sengupta. 1960. Structure of psoralidin. Chemy. Ind. 937–938.Google Scholar
  176. Eagle, E. 1960. A review of some physiological effects of gossypol and cotton-seed pigment glands. J. Amer. Oil Chem. Soc.37: 40–43.Google Scholar
  177. Eaton, M. A. W. &D. W. Hutchinson. 1971. Isocoumarins fromStreptomyces mobaraensis. Tetrahedron Lett. 1337–1340.Google Scholar
  178. Edwards, J. D. 1970. Synthesis of gossypol and gossypol derivatives. J. Amer. Oil Chem. Soc.47: 441–442.Google Scholar
  179. Egli, C. 1964. Synthese von Orchinol und neuen Phenolen. Diss. Eidgenössischen Technischen Hochschule, Zürich. Nr. 3589. 56p.Google Scholar
  180. Eisenbeiss, J. &H. Schmid. 1959. Struktur des Erosnin (Norton & Hansberry’s «Compound I»). Helv. Chim. Acta42: 61–66.Google Scholar
  181. Elnaghy, M. A. &P. Linko. 1962. The role of 4-0-glucosyl-2,4-dihydroxy-7-methoxy-l,4-benzoxazin-3-one in resistance of wheat to stem rust. Physiol. Pl. (Copenhagen)15: 764–771.Google Scholar
  182. — &M. Shaw. 1966. Correlation between resistance to stem rust and the concentration of a glucoside in wheat. Nature210: 417–418.Google Scholar
  183. El-Nockrashy, A. S., C. M. Lyman, &J. W. Dollahite. 1963. The acute oral toxicity of cottonseed pigment glands and intraglandular pigments. J. Amer. Oil Chem. Soc.40: 14–17.Google Scholar
  184. —,J. G. Simmons, &V. L. Frampton. 1969. A chemical survey of seeds of the genusGossypium. Phytochemistry8: 1949–1958.Google Scholar
  185. Emerson, O. H. &E. M. Bickoff. 1958. Synthesis of coumestrol, 3,9-dihydroxy-6H-benzofuro(3,2-C)(1)benzopyran-6-one. J. Amer. Chem. Soc.80: 4381–4383.Google Scholar
  186. Erdtman, H., B. Kimland, &T. Norin. 1966. Pine phenolics and pine classification. Bot. Mag. (Tokyo)79: 499–505.Google Scholar
  187. Falk, J. E. 1966. Chemistry and fungal diseases of plants. Austral. J. Sci.28: 259–263.Google Scholar
  188. Fawcett, C. H. &D. M. Spencer. 1966. Antifungal compounds in apple fruit infected withSclerotinia fructigena. Nature211: 548–549.PubMedGoogle Scholar
  189. ——. 1967. Antifungal phenolic acids in apple fruits after infection withSclerotinia fructigena. Ann. Appl. Biol.60: 87–96.PubMedGoogle Scholar
  190. ——. 1968.Sclerotinia fructigena infection and chlorogenic acid content in relation to antifungal compounds in apple fruits. Ann. Appl. Biol.61: 245–253.PubMedGoogle Scholar
  191. ——. 1969. Phytoalexin production and brown rot in apples. Phytochemistry8: 6(Abstr.).Google Scholar
  192. —,R. D. Firn, &D. M. Spencer. 1971. Wyerone increase in leaves of broad bean (Vicia faba L.) after infection byBotrytis fabae. Physiol. Pl. Pathol.1: 163–166.Google Scholar
  193. —,D. M. Spencer, &R. L. Wain. 1969. The isolation and properties of a fungicidal compound present in the seedlings ofVicia faba. Netherlands J. Pl. Pathol.75: 72–81.Google Scholar
  194. -, -, -,A. G. Faixis, E. R. H. Jones, M. Le Quan, C. B. Page, V. Thaller, D. C. Shubrook, &P. M. Whitham. 1968. Natural acetylenes. Part XXVII. An antifungal acetylenic furanoid keto-ester (wyerone) from shoots of the broad bean (Vicia faba L; Fam. Papilionaceae). J. Chem. Soc. (C). 2455–2462.Google Scholar
  195. -, -, -,E. R. H. Jones, M. Le Quan, C. B. Page, &V. Thaller. 1965. An antifungal acetylenic keto-ester from a plant of the Papilionaceae family. Chem. Commun. 422–423.Google Scholar
  196. Floss, H. G., H. Guenther, &L. A. Hadwiger. 1969. Biosynthesis of furano coumarins in diseased celery. Phytochemistry8: 585–588.Google Scholar
  197. Fokkema, N. J. 1968. The influence of pollen on the development ofCladosporium herbarum in the phyllosphere of rye. Netherlands J. Pl. Pathol.74: 159–165.Google Scholar
  198. Francis, C. M. &A. J. Millington. 1971. The presence of methylated coumestans in annualMedicago species: response to a fungal pathogen. Austral. J. Agric. Res.22: 75–80.Google Scholar
  199. Frank, J. A. &J. D. Paxton. 1970. Time sequence for phytoalexin production in Harosoy and Harosoy 63 soybeans. Phytopathology60: 315–318.Google Scholar
  200. Fujise, Y., T. Toda, &S. Ito. 1965. Isolation of trifolirhizin fromOnonis spinosa Chem. Pharm. Bull.13: 93–95.PubMedGoogle Scholar
  201. Fukui, K. &M. Nakayama. 1965. Total synthesis of erosnin. Tetrahedron Lett. 2559–2562.Google Scholar
  202. - & -.1966. Total synthesis of (±)-pterocarpin and (±)- pisatin. Tetrahedron Lett. 1805–1808.Google Scholar
  203. ——, &T. Harano. 1969a. The synthesis of 3-hydroxy-8,9-dimethoxypterocarpan. Bull. Chem. Soc. Japan42: 233–236.Google Scholar
  204. ——,H. Tsuge, &K. Tsuzuki. 1968. The synthesis of (±)-maackiain. Experientia24: 536–537.PubMedGoogle Scholar
  205. ——, &K. Tsuzuki. 1969b. The synthesis of (±)-4-methoxyptero-carpin. Experientia25: 122–123.Google Scholar
  206. Furuya, T. 1968. Metabolic products and their chemical regulations in plant tissue cultures. Kitasato Archs. Exp. Med.41: 47–64.Google Scholar
  207. — &A. Ikuta. 1968. The presence of 1-maackiain and pterocarpin in callus tissue ofSophora angustifolia. Chem. Pharm. Bull.16: 771.PubMedGoogle Scholar
  208. Gadiev, R. 1969. Antibiotical substances of grape leaves forming during mildew infection. Sel’ Skokhoz Biol.4: 885–890.Google Scholar
  209. Gäumann, E. 1960. Nouvelles données sur les réactions chimiques de défense chez les Orchidées. Comp. Rend. Hebd. Séances Acad. Sci.250: 1944–1947.Google Scholar
  210. —. 1963. Sur les réactions de défense chimique les Orchidées. Comp. Rend. Hebd. Séances Acad. Sci.257: 2372–2376.Google Scholar
  211. Gäumann, E.. 1964. Weitere Untersuchungen über die chemische Infektabwehr der Orchideen. Phytopathol. Z.49: 211–232.Google Scholar
  212. — &H. R. Hohl. 1960. Weitere Untersuchungen über die chemischen Abwehrreaktionen der Orchideen. Phytopathol. Z.38: 93–104.Google Scholar
  213. — &O. Jaag. 1945. Über induzierte Abwehrreaktionen bei Pflanzen. Experientia1: 21–22.Google Scholar
  214. — &H. Kern. 1959a. Sur les réactions de défense chimiques chez les Orchidées. Comp. Rend. Hebd. Séances Acad. Sci.248: 2542–2544.Google Scholar
  215. ——. 1959b. Über die Isolierung und den chemischen Nachweis des Orchinols. Phytopathol. Z.35: 347–356.Google Scholar
  216. ——. 1959c. Über chemische Abwehrreaktionen bei Orchideen. Phytopathol. Z.36: 1–26.Google Scholar
  217. —,R. Braun, &G. Bazzigher. 1950. Über induzierte Abwehrreaktionen bei Orchideen. Phytopathol. Z.17: 36–62.Google Scholar
  218. —,E. Müller, J. Nüesch, &R. H. Rimpau. 1961. Über die Wurzelpilze vonLoroglossum hircinum (L.) Rich. Phytopathol. Z.41: 89–96.Google Scholar
  219. —,J. Nüesch, &.R. H. Rimpau. 1960. Weitere Untersuchungen über die chemischen Abwehrreaktionen der Orchideen. Phytopathol. Z.38: 274–308.Google Scholar
  220. Goode, M. J. 1967. Radioautographic evidence for induced resistance to anthracnose in cucumber. Phytopathology57: 1028–1030.Google Scholar
  221. Goto, R. 1937. Ethereal oil ofPerilla frutescens Brit. J. Pharm. Soc. Japan57: 77–91.Google Scholar
  222. Govindachari, T. R., K. Nagabajan, &B. R. Pai. 1956. Wedelolactone fromEclipta alba. J. Sci. Ind. Res. India15B: 664–665.Google Scholar
  223. -, -, -,Govindachari, T. R., K. Nagabajan, B. R. Pai, &P. C. Parthasarathy. 1957. Chemical investigation ofWedelia calendulacea. Part II. The position of the methoxyl group in wedelolactone. J. Chem. Soc. 545–547.Google Scholar
  224. —,S. J. Patankar, &N. Viswanathan. 1971. Isolation and structure of two new dihydroisocoumarins fromKigelia pinnata. Phytochemistry10: 1603–1606.Google Scholar
  225. Gray, G. &W. L. Klarman. 1967. Comparison of phytoalexin produced by two soybean varieties differing by a single gene. Phytopathology57: 645(Abstr.).Google Scholar
  226. —— &M. Bridge. 1968. Relative quantities of antifungal metabolites produced in resistant and susceptible soybean plants inoculated withPhytophthora megasperma var.sojae and closely related non-pathogenic fungi. Canad. J. Bot.46: 285–288.Google Scholar
  227. Greathouse, G. A. 1939. Alkaloids fromSanguinaria canadensis and their influence on growth ofPhymatotrichum omnivorum. Pl. Physiol. (Lancaster).14: 377–380.Google Scholar
  228. — &N. E. Rigler. 1941. Alkaloids fromZephyranthes texana, Cooperia Pedunculata and other Amaryllidaceae and their toxicity toPhymatotrichum omnivorum. Amer. J. Bot.28: 702–704.Google Scholar
  229. — &G. M. Watkins. 1938. Berberine as a factor in the resistance ofMahonia trifoliolata andMahonia swaseyi toPhymatotrichum root rot. Amer. J. Bot.25: 743–748.Google Scholar
  230. Grove, J. F. 1968. The role of phytoaIexins in the resistance of higher plants to fungal infection. Pest Art. News Summ. Sec. B. Pl. Disease Contr.14: 25–30.Google Scholar
  231. Hadwiger, L. A. 1966. The biosynthesis of pisatin. Phytochemistry5: 523–525.Google Scholar
  232. —. 1967. Changes in phenylalanine metabolism associated with pisatin production. Phytopathology57: 1258–1259.Google Scholar
  233. —. 1968. Changes in plant metabolism associated with phytoalexin production. Netherlands J. Pl. Pathol.74: 163–169 (Suppl. 1).Google Scholar
  234. — &M. E. Schwochau. 1968. Stimulation of pisatin production inPisum sativum by actinomycin D and other compounds. Arch. Biochem. Biophys.126: 731–733.PubMedGoogle Scholar
  235. ——. 1969. Host resistance responses—an induction hypothesis. Phytopathology59: 223–227.Google Scholar
  236. ——. 1970. Induction of phenylalanine ammonia-lyase and pisatin in pea pods by poly-lysine, spermidine or histone fractions. Biochem. Biophys. Res. Commun.38: 683–691.PubMedGoogle Scholar
  237. —,S. L. Hess, &S. Von Broembsen. 1970. Stimulation of phenylalanine ammonia-lyase activity and phytoalexin production. Phytopathology60: 332–336.Google Scholar
  238. Hammerschlag, F. &W. L. Klarman. 1969. An antifungal principle produced by soybean plants inoculated with tobacco necrosis virus. Phytopathology59: 1557 (Abstr.).Google Scholar
  239. Hampton, R. 1962. Changes in phenolic compounds in carrot root tissue infected withThielaviopsis basicola. Phytopathology52: 413–415.Google Scholar
  240. Hanson, C. H., G. M. Loper, G. O. Kohler, E. M. Bickoff, K. W. Taylor, W. R Kehr, E. H. Stanford, J. W. Dudley, M. W. Pedersen, E. L. Sorensen, H. L. Carnahan, &C. P. Wilsie. 1965. Variation in coumestrol content of alfalfa as related to location, variety, cutting, year, stage of growth and disease. U. S. D. A. Tech. Bull. No. 1333.Google Scholar
  241. Harano, T. 1970. Syntheses of demethoxyisoelliptone and some related compounds. J. Sci. Hiroshima Univ.34(A-II): 77–95.Google Scholar
  242. Hardegger, E., H. R. Biland, &H. Corrodi. 1963a. Synthese von 2,4-dimethoxy-6-hydroxyphenanthren und Konstitution des orchinols. Helv. Chim. Acta46: 1354–1360.Google Scholar
  243. —,N. Rigassi, J. Seres, C. Egli, P. Müller, &K. O. Fitzi. 1963b. Synthese von 2,4-dimethoxy-6-hydroxy-9,10-dihydrophenanthren. Helv. Chim. Acta46: 2543–2551.Google Scholar
  244. —,M. Schellenbaum, &H. Corrodi. 1963c. Über induzierte Abwehrstoffe bei Orchideen. II. Helv. Chim. Acta46: 1171–1180.Google Scholar
  245. Hare, R. C. 1966. Physiology of resistance to fungal diseases in plants. Bot. Rev.32: 95–137.Google Scholar
  246. Harper, S. H., A. D. Kemp, &W. G. E. Underwood. 1965a. Heartwood constituents ofSwartzia madagascariensis. Chemy. Ind. 562–563.Google Scholar
  247. -, -, & -. 1965b. Heartwood constituents ofSwartzia madagascariensis. Chem. Commun. 309–310.Google Scholar
  248. -, -, -, &R. V. M. Campbell. 1969. Pterocarpanoid constituents of the heartwoods ofPericopsis angolensis andSwartzia madagascariensis. J. Chem. Soc. (C). 1109–1116.Google Scholar
  249. Hassall, C. H. &D. W. Jones. 1962. The biosynthesis of phenols. Part IV. A new metabolic product ofAspergillus terreus Thom. J. Chem. Soc. 4189–4191.Google Scholar
  250. Hathway, D. E. &J. W. T. Seakins. 1959. Hydroxystilbenes ofEucalyptus wandoo. Biochem. J.72: 369–374.PubMedGoogle Scholar
  251. Hegarty, B. F., J. R. Kelly, R. J. Park, &M. D. Sutherland. 1970. Terpenoid chemistry. XVII. (-)-ngaione, a toxic constituent ofMyoporum deserti. The absolute configuration of (-)-ngaione. Austral. J. Chem.23: 107–117.Google Scholar
  252. Heinstein, P. F., D. L. Herman, S. B. Tove, &F. H. Smith. 1970. Biosynthesis of gossypol. Incorporation of mevalonate-2-14C and isoprenyl pyrophosphates. J. Biol. Chem.245: 4658–4665.PubMedGoogle Scholar
  253. —,F. H. Smith, &S. B. Tove. 1962. Biosynthesis of C14 labelled gossypol. J. Biol. Chem.237: 2643–2646.PubMedGoogle Scholar
  254. Hendershot, W. F., C. W. Hesseltine, T. G. Pridham, R. G. Benedict, &R. W. Jackson. 1962. Ramulosin: Inhibitory effect against plant seeds and various fungi. Arch. Biochem. Biophys.96: 166–170.PubMedGoogle Scholar
  255. Herndon, B. A., J. Kuć, &E. B. Williams. 1966. The role of 3-methyl-6-methoxy-8-hydroxy-3,4-dihydroisocoumarin in the resistance of carrot root toCeratocystis fimbriata andThielaviopsis basicola. Phytopathology56: 187–196.Google Scholar
  256. Hess, S. L. &M. E. Schwochau. 1969. Induction, purification and biosynthesis of phaseollin in excised pods ofPhaseolus vulgaris. Phytopathology59: 1030 (Abstr.).Google Scholar
  257. —,L. A. Hadwigeh, &M. E. Schwochau. 1971. Studies on biosynthesis of phaseollin in excised pods ofPhaseolus vulgaris. Phytopathology61: 79–82.Google Scholar
  258. Hietala, P. K. 1960. A countercurrent distribution method for separation of chemical compounds. Ann. Acad. Sci. Fenn. Ser. A. II. Chemica100: 1–69.Google Scholar
  259. — &A. I. Virtanen. 1960. Precursors of benzoxazolinone in rye plants. II. Precursor I, the glucoside. Acta Chem. Scand.14: 502–504.Google Scholar
  260. Higgins, V. J. 1969. Comparative abilities ofStemphylium botryosum and other fungi to induce and degrade phytoalexin from alfalfa. Ph.D. Thesis, Cornell University, U. S. A. 130p.Google Scholar
  261. — &R. L. Millar. 1968. Phytoalexin production by alfalfa in response to infection byColletotrichum phomoides, Helminthosporium turcicum, Stemphylium loti and S.botryosum. Phytopathology58: 1377–1383.Google Scholar
  262. ——. 1969a. Comparative abilities ofStemphylium botryosum andHelminthosporium turcicum to induce and degrade a phytoalexin from alfalfa. Phytopathology59: 1493–1499.PubMedGoogle Scholar
  263. ——. 1969b. Degradation of alfalfa phytoalexin byStemphylium botryosum. Phytopathology59: 1500–1506.PubMedGoogle Scholar
  264. ——. 1970. Degradation of alfalfa phytoalexin byStemphylium loti andColletotrichum phomoides. Phytopathology60: 269–271.Google Scholar
  265. ——,D. G. Smith, &A. G. McInnes. 1970. Purification and identification of alfalfa phytoalexin. Phytopathology60: 1295 (Abstr.).Google Scholar
  266. Hillis, W. E. &T. Inoue. 1968. The formation of polyphenols in trees-IV. The polyphenols formed inPinus radiata after Sirex attack. Phytochemistry7: 13–22.Google Scholar
  267. — &K. Isoi. 1965. Variation in the chemical composition ofEucalyptus sideroxylon. Phytochemistry4: 541–550.Google Scholar
  268. Hirose, Y. &T. Nakatsuka. 1959a. Terpenoids. Part IV. The structure of occidol, a new sesquiterpene alcohol fromThuja occidentalis L. Bull. Agric. Chem. Soc. Japan23: 143–144.Google Scholar
  269. ——. 1959b. Terpenoids. Part V. The synthesis of occidol. Bull. Agric. Chem. Soc. Japan23: 253–256.Google Scholar
  270. ——. 1959c. Terpenoids. Part VI. Further investigation on the constitution of occidentalol. Bull. Agric. Chem. Soc. Japan23: 140–141.Google Scholar
  271. —,M. Abu, &Y. Sekiya. 1961. The constituents of sweet potato fusel oil. J. Chem. Soc. Japan82: 725–730.Google Scholar
  272. Hiura, M. 1943. Studies on storage and rot of sweet potato. Rep. Gifu Agric. Coll.50: 1–5.Google Scholar
  273. Ho, H. H. 1969. Effects of root substances on the growth and sporulation ofPhytophthora megasperma var.sojae. J. Elisha Mitchell Sci. Soc.85: 97–100.Google Scholar
  274. Hocking, D. 1968. Cross-protection of green coffee berries from virulentGlomerella cingulata. Proc. Canad. Phytopathol. Soc. Winnipeg35: 18 (Abstr.).Google Scholar
  275. Honkanen, E., P. Karvonen, &A. I. Virtanen. 1969. On the biosynthesis of 2,4-dihydroxy-2H-1,4-benzoxazin-3-one in rye seedlings. Acta Chem. Fenn.42B: 445–447.Google Scholar
  276. Hortmann, A. G. &J. B. De Roos. 1969. The structure of (+)-occidentalol. A revision. J. Org. Chem.34: 736–738.Google Scholar
  277. Howell, C. R. 1967. Biochemical changes in onion seedlings associated with resistance to the onion smut fungus,Urocystis colchici. Diss. Abstr.28B: 421.Google Scholar
  278. Hubert, J. J. &A. W. Helton. 1967. A translocated resistance phenomenon inPrunus domestica induced by initial infection withCytospora cincta. Phytopathology57: 1094–1098.Google Scholar
  279. Hunter, L. D. &A. H. M. Kirby. 1968. Chemically based disease resistance in plants. Repts. Prog. Appl. Chem.53: 322–329.Google Scholar
  280. —,D. S. Kirkham, &R. C. Hignett. 1968. Active resistance to apple scab. J. Gen. Microbiol.53: 61–67.PubMedGoogle Scholar
  281. Hutchinson, C. R. &E. Leete. 1970. Biosynthesis of α-methylene-γ-butyrolactone, the cyclized aglycone of tuliposide A. Chem. Commun. 1189–1190.Google Scholar
  282. Imai, K. 1956. Studies on the essential oil ofArtemisia capillaris Thunb. III. Antifungal activity of the essential oil. (3). Structure of the antifungal principle capillin. J. Pharm. Soc. Japan76: 405–408.Google Scholar
  283. —,N. Ikeda, K. Tanaka, &S. Sugawara. 1956. Studies on the essential oil ofArtemisia capillaris Thunb. II. Antifungal activity of the essential oil. (2). Isolation of the antifungal principle. J. Pharm. Soc. Japan76: 400–404.Google Scholar
  284. Imaseki, H. &I. Uritani. 1964. Ipomeamarone accumulation and lipid metabolism in sweet potato infected by the black rot fungus. II. Accumulation mechanism of ipomeamarone in the infected region with special regard to contribution of the non-infected tissue. Pl. Cell Physiol.5: 133–143.Google Scholar
  285. Ina, K. &I. Ogura. 1970. Studies on the components ofPerilla essential oil. Part I. Neutral essential oil. J. Agric. Chem. Soc. Japan44: 209–212.Google Scholar
  286. — &I. Suzuki. 1971. Studies on the components ofPerilla essential oil. Part II. Furan derivatives in neutral essential oil. J. Agric. Chem. Soc. Japan45: 113–117.Google Scholar
  287. Irving, G. W. 1947. The significance of tomatin in plant and animal disease. J. Wash. Acad. Sci.37: 293–296.Google Scholar
  288. Ishizaka, N., K. Tomiyama, N. Katsui, A. Murai, &T. Masamune. 1969. Biological activities of rishitin, an antifungal compound isolated from diseased potato tubers and its derivatives. Pl. Cell Physiol.10: 183–192.Google Scholar
  289. Jain, T. C. &S. C. Bhattacharyya. 1959. Structure, stereochemistry and absolute configuration of agarol, a new sesquiterpene alcohol from agarwood oil. Tetrahedron Lett. No. 9, 13–17.Google Scholar
  290. —,M. L. Maheshwari, &S. C. Bhattacharyya. 1962. Terpenoids. XXX. The composition of the oil from uninfected agarwood (Aquilaria agallocha Roxb.). Perfumery, Essential Oil Rec.53: 294–298.Google Scholar
  291. Jerome, S. M. R. &K. O. Müller. 1958. Studies on phytoalexins. II. Influence of temperature on resistance ofPhaseolus vulgaris towardsSclerotinia fructicola with reference to phytoalexin output. Austral. J. Biol. Sci.11: 301–314.Google Scholar
  292. Johann, H. &A. D. Dickson. 1945. A soluble substance in cornstalks that retards growth ofDiplodia zeae in culture. J. Agric. Res.71: 89–110.Google Scholar
  293. Johnson, G. &L. A. Schaal. 1952. Relation of chlorogenic acid to scab resistance in potato. Science115: 627–629.PubMedGoogle Scholar
  294. Johnson, L. B. 1970a. Symptom development and resistance in safflower hypocotyls toPhytophthora drechsleri. Phytopathology60: 534–537.Google Scholar
  295. —. 1970b. Influence of infection byPhytophthora drechsleri on inhibitory materials in resistant and susceptible safflower hypocotyls. Phytopathology60: 1000–1004.Google Scholar
  296. — &J. M. Klisiewicz. 1969. Environmental effects on safflower reaction toPhytophthora drechsleri. Phytopathology59: 469–472.Google Scholar
  297. Jorgensen, E. 1961. The formation of pinosylvin and its monomethyl ether in the sapwood ofPinus resinosa Ait. Canad. J. Bot.39: 1765–1772.Google Scholar
  298. Jurd, L. 1959. Plant polyphenols. X. 7- and 4′-0-methylcoumestrol. J. Org. Chem.24: 1786–1788.Google Scholar
  299. -. 1963. The synthesis of coumestrol from a flavylium salt. Tetrahedron Lett. 1151–1153.Google Scholar
  300. —. 1965. Synthesis of 7-hydroxy-5′,6′-methylenedioxy-benzofurano (3′,2′: 3,4) coumarin (medicagol). J. Pharm. Sci.54: 1221–1222.PubMedGoogle Scholar
  301. Kalra, V. K., A. S. Kukla, &T. R. Seshadri. 1966. Synthesis of racemic 8-methoxyhomopterocarpin. Indian J. Chem.4: 201.Google Scholar
  302. ———. 1967. Synthesis of new types of pterocarpans. Indian J. Chem.5: 607–609.Google Scholar
  303. Kalyanasundaram, R. 1963. The physiology of toxic action and defence reactions in infectious diseases of plants. J. Madras Univ.33B: 137–178.Google Scholar
  304. Kato, N., H. Imaseki, N. Nakashima, &I. Uritani. 1971. Structure of a new sesquiterpenoid, ipomeamaronol in diseased sweet potato root tissue. Tetrahedron Lett. 843–846.Google Scholar
  305. Katsui, N., A. Matsunaga, K. Imaizumi, T. Masamune, &K. Tomiyama. 1971. The structure and synthesis of rishitinol, a new sesquiterpene alcohol from diseased potato tubers (1). Tetrahedron Lett. 83–86.Google Scholar
  306. -,A. Murai, M. Takasugi, K. Imaizumi, &T. Masamune. 1968. The structure of rishitin, a new antifungal compound from diseased potato tubers. Chem. Commun. 43.Google Scholar
  307. Katsura, S. 1942a. Studies on the constituents of the volatile oil from the root ofChamaecyparis formosensis Matsum. Part II. J. Chem. Soc. Japan63: 1465–1469.Google Scholar
  308. —. 1942b. Studies on the constituents of the volatile oil from the root ofChamaecyparis formosensis Matsum. Part VI. J. Chem. Soc. Japan63: 1483–1485.Google Scholar
  309. Kawamura, S. 1938. Constitution of rhapontin. J. Pharm. Soc. Japan58: 83–85.Google Scholar
  310. Kawase, Y. 1959. Reactions of active methylene compounds. VI. A new synthesis of coumestrol, 6,7′-dihydroxy-coumarino (3′,4′: 3,2) coumarone. Bull. Chem. Soc. Japan32: 690–691.Google Scholar
  311. Keeling, B. L. 1967. Studies on the nature of barley resistance toHelminthosporium teres. Diss. Abstr.27B: 4208–4209.Google Scholar
  312. Keen, N. T. 1971. Hydroxyphaseollin production by soybeans resistant and susceptible toPhytophthora megasperma var.sojae. Physiol. Pl. Pathol.1: 265–275.Google Scholar
  313. Kepler, J. A., M. E. Wall, J. E. Mason, C. Bassett, A. T. McPhail, &G. A. Sim. 1967. The structure of fomannosin, a novel sesquiterpene metabolite of the fungusFomes annosus. J. Amer. Chem. Soc.89: 1260–1261.Google Scholar
  314. Khastgir, H. N., P. C. Duttagupta, &P. Sengupta. 1961. The structure of psoralidin. Tetrahedron14: 275–283.Google Scholar
  315. King, F. E. &M. F. Grundon. 1949. The constitution of chlorophorin, a constituent of Iroko, the timber ofChlorophora excelsa. Part I. J. Chem. Soc. 3348–3352.Google Scholar
  316. -,C. B. Cotterill, D. H. Godson, L. Jurd, &T. J. King. 1953. The chemistry of extractives from heartwoods. Part XIII. Colourless constituents ofPterocarpus species. J. Ohem. Soc. 3693–3697.Google Scholar
  317. -,M. F. Grundon, &K. G. Neill. 1952. The chemistry of extractives from heartwoods. Part IX. Constituents of the heartwood ofFerreirea spectabilis. J. Chem. Soc. 4580–4584.Google Scholar
  318. King, T. J. &L. B. De Silva. 1968. Optically active gossypol fromThespesia populnea. Tetrahedron Lett. 261–263.Google Scholar
  319. Kiyosawa, S. &H. Fujimaki. 1967. Studies on mixture inoculation ofPyricularia oryzae on rice. I. Effects of mixture inoculation and concentration on the formation of susceptible lesions in the injection inoculation. Bull. Natl. Inst. Agric. Sci. Ser. D. Pl. Physiol.17: 1–19.Google Scholar
  320. Klarman, W. L. 1965. Heat induced susceptibility of soybeans to non-pathogenic fungi. Phytopathology55: 505(Abstr.).Google Scholar
  321. —. 1968. The importance of a phytoalexin in determining resistance of soybeans to three isolates ofPhytophthora. Netherlands J. Pl. Pathol.74: 171–175 (Suppl. 1).Google Scholar
  322. — &J. W. Gerdemann. 1963a. Induced susceptibility in soybean plants genetically resistant toPhytophthora sojae. Phytopathology53: 863–864.Google Scholar
  323. ——. 1963b. Resistance of soybeans to threePhytophthora species due to the production of a phytoalexin. Phytopathology53: 1317–1320.Google Scholar
  324. — &J. B. Sanford. 1968. Isolation and purification of an antifungal principle from infected soybeans. Life Sci.7: 1095–1103.PubMedGoogle Scholar
  325. Klement, Z. &L. Lovrekovich. 1961. Defence reactions induced by phytopathogenic bacteria in bean pods. Phytopathol. Z.41: 217–227.Google Scholar
  326. ——. 1962. Studies on host-parasite relations in bean pods infected with bacteria. Phytopathol. Z.45: 81–88.Google Scholar
  327. Klinkowski, M. 1966a. Phytoalexine: Begriff und methodische Fragen. Ein Beitrag zur Phytoalexin-Theorie von K. O. Müller. Forsch. & Fortschr.40: 321–327.Google Scholar
  328. -. 1966b. Die Phytoalexin-theorie von K. O. Müller. Abh. Sächs. Acad. Wiss. Leipzig, Math—Naturwiss. Kl. 49 No. 3: 1–23.Google Scholar
  329. Klisiewicz, J. M. &L. B. Johnson. 1968. Host parasite relationship in safflower resistant and susceptible toPhytophthora root rot. Phytopathology58: 1022–1025.Google Scholar
  330. Klun, J. A. &T. A. Brindley. 1966. Role of 6-methoxybenzoxazolinone in inbred resistance of host plant (maize) to first-brood larvae of European corn borer. J. Econ. Entomol.59: 711–718.Google Scholar
  331. — &J. F. Robinson. 1969. Concentration of two 1,4-benzoxazinones in dent corn at various stages of development of the plant and its relation to resistance of the host plant to the European corn borer. J. Econ. Entomol.62: 214–220.Google Scholar
  332. —,W. D. Guthrie, A. R. Hallauer, &W. A. Russell. 1970. Genetic nature of the concentration of 2,4-dihydroxy-7-methoxy-2H-l,4-benzoxazin-3 (4H)-one and resistance to the European corn borer in a diallel set of eleven maize inbreds. Crop Sci. (Madison)10: 87–90.Google Scholar
  333. —,C. L. Tipton, &T. A. Brindley. 1967. 2,4-dihydroxy-7-methoxy-l,4-benzoxazin-3-one (DIMBOA), an active agent in the resistance of maize to the European corn borer. J. Econ. Entomol.60: 1529–1533.Google Scholar
  334. Kojima, R., S. Fukushima, A. Ueno, &Y. Saiki. 1970. Antitumor activity of Leguminosae plants constituents. I. Antitumor activity of constituents ofSophora subprostrata. Chem. Pharm. Bull.18: 2555–2563.PubMedGoogle Scholar
  335. Komatsu, M., T. Tomimori, K. Hatayama, &Y. Makiguchi. 1970. Studies on the constituents ofSophora species. III. Constituents of the root ofSophora subprostrata Chun et T. Chen (3). J. Pharm. Soc. Japan90: 459–462.Google Scholar
  336. Koshimizu, K., E. Y. Spencer, &A. Stoessl. 1963. The antifungal factor in barley. Canad. J. Bot.41: 744–746.Google Scholar
  337. Koyama, T. 1955. Constituents ofCoix species. II. Chemical structure of coixol. J. Pharm. Soc. Japan75: 702–704.Google Scholar
  338. — &M. Yamato. 1955. Constituents ofCoix species. I. Constituents of the root ofCoix lachryma-jobi. J. Pharm. Soc. Japan75: 699–701.Google Scholar
  339. —— &K. Kubota. 1956. Constituents ofCoix species.III. Syntheses of coixol and its related compounds. J. Pharm. Soc. Japan76: 1002–1005.Google Scholar
  340. Krishnaswamy, N. R. &S. Prasanna. 1970. Occurrence of desmethylwedelolactone and 2-formyl-α-terthienyl inEclipta alba and the facile oxidation of αterthienylmethanol. Indian J. Chem.8: 761–762.Google Scholar
  341. — &T. R. Seshadri. 1962. Naturally occurring phenylcoumarins. In: Recent Progress in the Chemistry of Natural and Synthetic Colouring Matters and Related Fields. Gore, T. S., B. S. Joshi, S. V. Sunthankar, & B. D. Tilak. (Eds.). Academic Press, New York, 235–253.Google Scholar
  342. Krzywanski, Z. 1970. Phytoalexins. Wiad. Bot.14: 109–124.Google Scholar
  343. Kubota, T. 1958. Volatile constituents of black-rotted sweet potato and related substances. Tetrahedron4: 68–86.Google Scholar
  344. -, &N. Ichikawa. 1954a. On the chemical constitution of ipomeanine, a new ketone from the black-rotted sweet potato. Chemy. Ind. 902–903.Google Scholar
  345. ——, 1954b. Studies on the black rot disease of sweet potato. IX. On the chemical constitution of ipomeanine. J. Chem. Soc. Japan75: 450–456.Google Scholar
  346. - &K. Naya. 1954. On the chemical constitution of batatic acid. A new furan keto-acid from the black rotted sweet potato. Chemy. Ind. 1427.Google Scholar
  347. — &T. Matsuuba. 1952a. Investigation on the chemical constitution of ipomeamarone. I. Ozonolysis of ipomeamarone and constitution of ipomic lactone. Proc. Imp. Acad. Japan28: 44–47.Google Scholar
  348. ——. 1952b. Investigation on the chemical constitution of ipomeamarone. II. On the constitution of ipomeanic acid. Proc. Imp. Acad. Japan28: 83–84.Google Scholar
  349. ——. 1952c. Chemical studies on the black rot disease of sweet potato. II. Ozonolysis of ipomeamarone. J. Inst. Polytechn. Osaka City Univ. Ser. C. Chem.2: 94–102.Google Scholar
  350. ——. 1952d. Chemical studies on the black rot disease of sweet potato. III. On the constitution of ipomic lactone, the ozonolysis product of ipomeamarone. J. Inst. Polytechn. Osaka City Univ. Ser. C. Chem.2: 103–109.Google Scholar
  351. ——. 1952e. Investigation on the chemical constitution of ipomeamarone. III. On the chemical constitution of ipomeamarone. Proc. Imp. Acad. Japan28: 198–199.Google Scholar
  352. —— 1953a. Chemical studies on the black rot disease of sweet potato. IV. On the chemical constitution of ipomeanic acid, the ozonolysis product of ipomeamarone. J. Inst. Polytechn. Osaka City Univ. Ser. C. Chem.4: 104–107.Google Scholar
  353. ——. 1953b. Chemical studies on the black rot disease of sweet potato. III. Ozonolysis of ipomeamarone. J. Chem. Soc. Japan74: 101–109.Google Scholar
  354. ——, 1953c. Chemical studies on the black rot disease of sweet potato. VII. The reaction of ipomeamarone with phenyl magnesium bromide. J. Inst. Polytechn. Osaka City Univ. Ser. C. Chem.4: 248–252.Google Scholar
  355. ——. 1953d. Chemical studies on the black rot disease of sweet potato. V. On the chemical constitution of ipomeamarone. J. Inst. Polytechn. Osaka City Univ. Ser. C. Chem.4: 108–111.Google Scholar
  356. ——. 1953e. Chemical studies on the black rot disease of sweet potato. VI. On the chemical structure of ipomeamarone. J. Chem. Soc. Japan74: 248–251.Google Scholar
  357. - & -.1956. The synthesis of (±)-ipomeamarone. Chemy. Ind. 521–522.Google Scholar
  358. - & -.1957. The constitution of myoporone, a new furanoterpene fromMyoporum. Chemy. Ind. 491–492.Google Scholar
  359. - & -. 1958a. The synthesis of (±)-ipomeamarone [(±)-ngaione] and its steric isomers. J. Chem. Soc. 3667–3673.Google Scholar
  360. ——. 1958b. On the constitution of myoporone (Natural furan derivatives. IL). Bull. Chem. Soc. Japan31: 491–494.Google Scholar
  361. —— &N. Ichikawa. 1954. Chemical studies on the black rot disease of sweet potato. VIII. On the reaction of phenyl magnesium bromide on ipomeamarone. J. Chem. Soc. Japan75: 447–450.Google Scholar
  362. —,H. Yamaguchi, K. Naya, &T. Matsuura. 1952a. Chemical studies on the black rot disease of sweet potato. I. On volatile substances of blackrotted sweet potato. J. Inst. Polytechn. Osaka City Univ. Ser. C. Chem.2: 82–93.Google Scholar
  363. ————. 1952b. Chemical studies on the black rot disease of sweet potato. I. On the volatile constituents of black rotted sweet potato. J. Chem. Soc. Japan73: 897–899.Google Scholar
  364. ————. 1953. Chemical studies on the black rot disease of sweet potato. II. Some properties of ipomeamarone. J. Chem. Soc. Japan74: 44–47.Google Scholar
  365. Kuć, J. 1957. A biochemical study of the resistance of potato tuber tissue to attack by various fungi. Phytopathology47: 676–680.Google Scholar
  366. —. 1968. Biochemical control of disease resistance in plants. World Rev. Pest Control7: 42–55.Google Scholar
  367. —,A. J. Ullstrup, &F. W. Quackenbush. 1955. Production of fungistatic substances by plant tissue after inoculation. Science122: 1186–1187.PubMedGoogle Scholar
  368. —,R. E. Henze, A. J. Ullstrup, &F. W. Quackenbush. 1956. Chlorogenic and caffeic acids as fungistatic agents produced by potatoes in response to inoculation withHelminthosporium carbonum J. Amer. Chem. Soc.78: 3123–3125.Google Scholar
  369. Lai, M., G. Semeniuk, &C. W. Hesseltine. 1968. Nutrients affecting ochratoxin-A production byAspergillus spp. Phytopathology58: 1056 (Abstr.).Google Scholar
  370. Lam, J., F. Kaufmann, &O. Bendixen. 1968. Chemical constituents of the genusDahlia. III. A chemotaxonomic evaluation of someDahlia coccinea strains. Phytochemistry7: 269–275.Google Scholar
  371. Leath, K. T. &J. B. Rowell. 1970. Nutritional and inhibitory factors in the resistance ofZea mays toPuccinia graminis. Phytopathology60: 1097–1100.Google Scholar
  372. Lebreton, P., K. R. Markham, W. T. Swift, Oung-Boran, &T. J. Mabry. 1967. Flavanoids ofBaptisia australis (Leguminosae). Phytochemistry6: 1675–1680.Google Scholar
  373. Leonhardt, H. &K. Fay. 1935. Zur Kenntnis der Inhaltsstoffe des roten Sandelholzes. Pterokarpin. Arch. Pharm. & Ber. Deutsch. Pharm. Ges.273: 53–60.Google Scholar
  374. — &E. Oechler. 1935. Zur Kenntnis der Inhaltsstoffe des roten Sandelholzes. Homopterokarpin. Arch. Pharm. & Ber. Deutsch. Pharm. Ges.273: 447–452.Google Scholar
  375. Letcher, R. M., D. A. Widdowson, B. J. Deverall, &J. W. Mansfield. 1970. Identification and activity of wyerone acid as a phytoalexin in broad bean (Vicia faba) after infection byBotrytis. Phytochemistry9: 249–252.Google Scholar
  376. Lim, S. M., A. L. Hooker, &J. D. Paxton. 1970. Isolation of phytoalexins from corn with monogenic resistance toHelminthosporium turcicum. Phytopathology60: 1071–1075.Google Scholar
  377. —,J. D. Paxton, &A. L. Hooker. 1968. Phytoalexin production in corn resistant toHelminthosporium turcicum. Phytopathology58: 720–721.Google Scholar
  378. Lin, J., S. Yoshida, &N. Takahashi. 1971. Metabolites produced byStreptomyces mobaraensis. Agric. Biol. Chem.35: 363–369.Google Scholar
  379. Link, K. P. &J. C. Walker. 1933. The isolation of oatechol from pigmented onion scales and its significance in relation to disease resistance in onions. J. Biol. Chem.100: 379–383.Google Scholar
  380. —,H. R. Angell, &J. C. Walker. 1929a. The isolation of protocatechuic acid from pigmented onion scales and its significance in relation to disease resistance in onions. J. Biol. Chem.81: 369–375.Google Scholar
  381. —,A. D. Dickson, &J. C. Walker. 1929b. Further observations on the occurrence of protocatechuic acid in pigmented onion scales and its relation to disease resistance in onion. J. Biol. Chem.84: 719–725.Google Scholar
  382. Livingston, A. L., E. M. Bickoff, R. E. Lundin, &L. Jurd. 1964. Trifoliol, a new coumestan from ladino clover. Tetrahedron20: 1963–1970.Google Scholar
  383. S. C. Witt, R. E. Lundin, &E. M. Bickoff. 1965. Medicagol, a new coumestan from alfalfa. J. Org. Chem.30: 2353–2358.Google Scholar
  384. Locci, R. &J. Kuć. 1967. Steroid alkaloids as compounds produced by potato tubers under stress. Phytopathology57: 1272–1273.Google Scholar
  385. Loder, J. W., S. Mongolsuk, A. Robertson, &W. B. Whalley. 1957. Diospyrol, a constituent ofDiospyros mollis. J. Chem. Soc. 2233–2237.Google Scholar
  386. Loman, A. A. 1970. The effect of heartwood fungi ofPinus contorta var.latifolia on pinosylvin, pinosylvinmonomethyl ether, pinobanksin and pinocembrin. Canad. J. Bot.48: 737–747.Google Scholar
  387. Long, D. W. 1963. Inhibition ofFusarium wilt symptoms in cowpea by species ofCephalosporium. Phytopathology53: 881(Abstr.).Google Scholar
  388. Loper, G. M. 1968a. Accumulation of coumestrol in barrel medic (Medicago littoralis). Crop Sci. (Madison)8: 317–319.Google Scholar
  389. — 1968b. Effect of aphid infestation on the coumestrol content of alfalfa varieties differing in aphid resistance. Crop Sci. (Madison)8: 104–106.Google Scholar
  390. — &C. H. Hanson. 1964. Influence of controlled environmental factors and two foliar pathogens on coumestrol in alfalfa. Crop Sci. (Madison)4: 480–482.Google Scholar
  391. —— &J. H. Graham. 1967. Coumestrol content of alfalfa as affected by selection for resistance to foliar diseases. Crop Sci. (Madison)7: 189–192.Google Scholar
  392. Ludwig, R. A., E. Y. Spencer, &C. H. Unwin. 1960. An antifungal factor from barley of possible significance in disease resistance. Canad. J. Bot.38: 21–29.Google Scholar
  393. Lukefahr, M. D. &D. F. Martin. 1966. Cotton plant pigments as a source of resistance to the bollworm and tobacco budworm. J. Econ. Entomol.59: 176–179.Google Scholar
  394. Lyman, C. M., A. S. El-Nockrashy, &J. W. Dollahite. 1963. Gossyverdurin. A newly isolated pigment from cottonseed pigment gland. J. Amer. Oil Chem. Soc.40: 571–575.Google Scholar
  395. Lyman, R. L., E. M. Bickoff, A. N. Booth, &A. L. Livingston. 1959. Detection of coumestrol in leguminous plants. Arch. Biochem. Biophys.80: 61–67.Google Scholar
  396. Lyr, H. 1961. Hemmungsanalytische Untersuchungen an einigen Ektoenzymen Holzzerstörender Pilze. Enzymologia23: 231–248.PubMedGoogle Scholar
  397. Maekawa, E. &K. Kitao. 1970. Isolation of pterocarpanoid compounds as heartwood constituents ofMaackia amurensis var.Buergeri. Wood Res.50: 29–35.Google Scholar
  398. Magrou, J. 1924a. L’ immunité humorale chez les plantes. Rev. Pathol. Vég. Entomol. Agric. France11: 189–192.Google Scholar
  399. —. 1924b. A propos du pouvoir fungicide des tubercules d’ ophrydées. Ann. Sci. Nat. Bot.6: 265–270.Google Scholar
  400. Maizel, J. V., H. J. Burkhardt, &H. K. Mitchell. 1964. Avenacin, an antimicrobial substance isolated fromAvena sativa. I. Isolation and antimicrobial activity. Biochemistry3: 424–426.Google Scholar
  401. Mallabaev, A., M. R. Yagudaev, I. M. Saitbaeva, &G. P. Sidyakin. 1970. Isocoumarin artemidin fromArtemisia dracunculus. Khim. Prir. Soedin.6: 467–468.Google Scholar
  402. Mansfield, J. W. &B. J. Deverall. 1971. Mode of action in breaking resistance ofVicia faba toBorryris cinerea. Nature232: 339.PubMedGoogle Scholar
  403. Marchlewski, L. 1899. Gossypol, ein Bestandtheil der Baumwollsamen. J. Prakt. Chem.60: 84–90.Google Scholar
  404. Martin, J. T. 1967. Natural chemical protection in plants. Proc. 4th British Insect. Fungic. Conf.2: 557–561.Google Scholar
  405. —,E. A. Baker, &R. J. W. Byrde. 1966. The fungitoxicities of plant furocoumarins. Ann. Appl. Biol.57: 501–508.Google Scholar
  406. Maruzzella, J. C. 1960. The anti-fungal properties of essential oil vapours. Soap, Perfumery, Cosmetics33: 835–837.Google Scholar
  407. — &J. Balter. 1959. The action of essential oils on phytopathogenic fungi. Pl. Dis. Reporter43: 1143–1147.Google Scholar
  408. — &L. Liguori. 1958. The in vitro antifungal activity of essential oils. J. Amer. Pharm. Assoc.47: 250–254.Google Scholar
  409. —,J. Balter, &A. Katz. 1959a. The action of perfume oil vapours on fungi. Amer. Perfumer, Aromatics74: 21–22.Google Scholar
  410. ———. 1959b. Further studies on the action of perfume oil vapours on micro-organisms. Perfumery, Essential Oil Rec.50: 955–957.Google Scholar
  411. —,D. A. Scrandis, J. B. Scrandis, &G. Grabon. 1960. Action of odoriferous organic chemicals and essential oils on wood destroying fungi. PI. Dis. Reporter44: 789–792.Google Scholar
  412. Matsui, M., K. Mori, &S. Arasaki. 1964. Synthesis of isocoumarins. Part I. (±)-mellein. Agric. Biol. Chem.28: 896–899.Google Scholar
  413. —— &Y. Ozawa. 1966. Synthesis of isocoumarins. Part II. Oospolactone. Agric. Biol. Chem.30: 193–195.Google Scholar
  414. Matsuura, T. 1956. Chemische Untersuchungen über Schwarz-flecke der Batate. XI. Mitteil. Synthese des Ipomeamarons und seiner damit zusammenhängenden Verbindungen II. Synthese des Phenylanalogs von Ipomeamaron. J. Inst. Polytechn. Osaka City Univ. Ser. C. Chem.5: 42–48.Google Scholar
  415. —,K. Naya, &T. Kubota. 1956. Chemical studies on the black rot disease of sweet potato. XI. Synthesis of phenyl-analog of ipomeamarone. J. Chem. Soc. Japan77: 248–251.Google Scholar
  416. McDowall, F. H. 1925. Constituents ofMyoporum laetum Forst. (The “Ngaio”). Part I. J. Chem. Soc.127: 2200–2207.Google Scholar
  417. -. 1927. Constituents ofMyoporum laetum, Forst. (The “Ngaio”). Part II. Hydrogenation of ngaione and ngaiol and dehydration of ngaiol. J. Chem. Soc. 731–740.Google Scholar
  418. -. 1928. Constituents ofMyoporum laetum Forst. (The “Ngaio”). Part III. The oxide rings of ngaione. J. Ohem. Soc. 1324–1331.Google Scholar
  419. McGahren, W. J. &L. A. Mitscher. 1968. Dihydroisocoumarins from aSporormia fungus. J. Org. Chem.33: 1577–1580.Google Scholar
  420. McGookin, A., A. Robertson, &W. B. Whalley. 1940. The chemistry of the “Insoluble Red” woods. Part I. Pterocarpin and homopterocarpin. J. Chem. Soc. 787–795.Google Scholar
  421. McLean, J. G., D. Le Tootneau, &J. W. Guthrie. 1961. Relation of histochemical tests for phenols toVerticillium wilt resistance of potatoes. Phytopathology51: 84–89.Google Scholar
  422. McMichael, S. C. 1960. Combined effects of glandless genes gl2 and gl3 on pigment glands in the cotton plant. Agron. J.52: 385–386.Google Scholar
  423. Menke, G. H., P. N. Patel, &J. C. Walker. 1964. Physiology ofRhizopus stolonifer infection on carrot. Z. Pflanzenkrankh.71: 128–140.Google Scholar
  424. Metlitskii, L. V. &O. L. Ozeretskovskaya. 1970. Phytoncides and phytoalexins and their role in plant immunity. Mikol. Fitopatol.4: 146–156.Google Scholar
  425. ——,N. I. Vasyukova, M. A. Davydova, N. A. Dorozhkin, Z. I. Remneva, &V. G. Ivanyuk. 1970. Potato resistance toPhytophthora infestons as related to leaf phytoalexin activity. Prikl. Biokhim. Mikrobiol.6: 568–573.Google Scholar
  426. Meyer, W. A., P. N. Thapliyal, J. A. Frank, &J. B. Sinclair. 1971. Detection of phytoalexin in soybean roots. Phytopathology61: 584–585.Google Scholar
  427. Minamikawa, T., T. Akazawa, &I. Uritani. 1963. Analytical study of umbelliferone and scopoletin synthesis in sweet potato roots infected byCeratocystis fimbriata. Pl. Physiol. (Lancaster)38: 493–497.Google Scholar
  428. ———. 1964. Two glucosides of coumarin derivatives in sweet potato roots infected byCeratocystis fimbriata. Agric. Biol. Chem.28: 230–233.Google Scholar
  429. Mitchell, J. W., N. Mandava, J. F. Worley, &M. E. Drowne. 1971. Fatty hormones in pollen and immature seeds of bean. J. Agric. Food Chem.19: 391–393.Google Scholar
  430. ———,J. R. Plimmer, &M. V. Smith. 1970. Brassins-a new family of plant hormones from rape pollen. Nature225: 1065–1066.PubMedGoogle Scholar
  431. Mitscher, L. A., W. Andres, &W. McCrae. 1964. Reticulol, a new metabolic isocoumarin. Experientia20: 258–259.PubMedGoogle Scholar
  432. Mizukami, T. 1953. Observations on the reactions of plants to the infection of some pathogens. I. On the difference of the influence of the barley juice on the conidial germination ofFusarium nivale and F.solani. Ann. Phytopathol. Soc. Japan17: 57–60.Google Scholar
  433. Molot, P. M. 1969a. Recherches sur la résistance du mais a l’ Helminthosporiose et aux Fusarioses. II. Facteurs de résistance. Ann. Phytopathol.1: 353–366.Google Scholar
  434. —. 1969b. Recherches sur la résistance du mais a l’ Helminthosporiose et aux Fusarioses. III Mode d’ action des composés phénoliques. Ann. Phytopathol.1: 367–383.Google Scholar
  435. — &P. Anglade. 1968. Résistance commune des lignées de mais a l’ Helminthosporiose (Helminthosporium turcicum Pass.) et a la pyrale (Ostrinia nubilalis HBN.) en relation avec la présence d’ une substance identifiable a la 6-méthoxy-2-(3)-benzoxazolinone. Ann. Épiphyties19: 75–95.Google Scholar
  436. Mongolsuk, S., A. Robertson, &R. Towers. 1957. 2:4:3′:5′-tetrahydroxystilbene fromArtocarpus lakoocha. J. Chem. Soc. 2231–2233.Google Scholar
  437. Moore, A. T. &M. L. Rollins. 1961. New information on the morphology of the gossypol pigment gland of cottonseed. J. Amer. Oil Chem. Soc.38: 156–160.Google Scholar
  438. Moore, L. D. &W. H. Wills. 1969. Heat-induced susceptibility of black shank resistant tobacco toPhytophthora parasitica var.nicotianae. Phytopathology59: 1974–1975.Google Scholar
  439. Müller, K. O. 1956. ige einfache Versuche zum Nachweis von Phytoalexinen. Phytopathol. Z.27: 237–254.Google Scholar
  440. — 1958a. Studies on phytoalexins. I. The formation and the immunological significance of phytoalexin produced byPhaseolus vulgaris in response to infection withSclerotinia fructicola andPhytophthora infestans. Austral. J. Biol. Sci.11: 275–300.Google Scholar
  441. —. 1958b. Relationship between phytoalexin output and the number of infections involved. Nature182: 167–168.Google Scholar
  442. —. 1959. The phytoalexin concept and its methodological significance.In: Recent Advan. Bot. (9th International Botanical Congress)1: 396–400.Google Scholar
  443. —. 1969. Die Phytoalexine, in Sicht einer allgemeinen Immunbiologie. Zentralbl. Bakteriol. Hyg. 2. Abt.123: 259–265.Google Scholar
  444. — &H. Börger. 1940. Experimentelle Untersuchungen über die Phytophthora—Resistenz der Kartoffel. Arb. Biol. Reichsanstalt. Landw. Forstw. Berlin23: 189–231.Google Scholar
  445. Muller P. 1964. A. Synthesen in der Furanreihe. B. Synthese von Dehydroorchinol. Diss. Eidgenössischen Technischen Hochschule, Zürich, Nr. 3588, 64p.Google Scholar
  446. Mulvena, D., E. C. Webb, &B. Zerner. 1969. 3,4-dihydroxybenzaldehyde, a fungistatic substance from green Cavendish bananas. Phytochemistry8: 393–395.Google Scholar
  447. Mussell, H. W. &R. C. Staples. 1971. Phytoalexin-like compounds apparently involved in strawberry resistance toPhytophthora fragariae. Phytopathology61: 515–517.Google Scholar
  448. Nakatsuka, T. &Y. Hirose. 1956. Terpenoids. Part I. The structure of occidentalol, a new sesquiterpene alcohol fromThuja occidentalis L. Bull. Agric. Chem. Soc. Japan20: 215–218.Google Scholar
  449. Nakazaki, M. 1962. Absolute configuration of (+)-occidol. Bull. Chem. Soc. Japan35: 1387–1389.Google Scholar
  450. Nicolls, J. M. 1970. Antifungal activity inPassiflora species. Ann. Bot. (London)34: 229–237.Google Scholar
  451. Nishikawa, E. 1933. Biochemistry of filamentous fungi. No. 2. A metabolic product ofAspergillus melleus Yukawa. J. Agric. Chem. Soc. Japan9: 772–774.Google Scholar
  452. Nishimura, S. 1964. Interactions betweenHelminthosporium victoriae spores and oat leaves. Phytopathology54: 902(Abstr.).Google Scholar
  453. — &R. P. Scheffer. 1965. Interactions betweenHelminthosporium victoriae spores and oat tissue. Phytopathology55: 629–634.Google Scholar
  454. Nitta, K., J. Imai, I. Yamamoto, &Y. Yamamoto. 1963c. Studies on the metabolic products ofOospora sp. (Oospora astringenes). Part V. Determination of the chemical structure of oosponol by synthesis. Agric. Biol. Chem.27: 817–821.Google Scholar
  455. —,C. Takura, I. Yamamoto, &Y. Yamamoto. 1963b. Studies on the metabolic products ofOospora sp. (Oospora astringenes). Part IV. Confirmation of the chemical structure of oospolactone by the synthetical approach. Agric. Biol. Chem.27: 813–816.Google Scholar
  456. —,Y. Yamamoto, T. Inoue, &T. Hyodo. 1966. Studies on the metabolic products ofOospora astringenes. VII. Biogenesis of oospolactone and oosponol. Chem. Pharm. Bull.14: 363–369.PubMedGoogle Scholar
  457. —,Y. Yamamoto, I. Yamamoto, &S. Yamatodani. 1963a. Studies on the metabolic products ofOospora sp. (Oospora astringenes). Part VI. Chemical structure of oospoglycol (K-1) and its formation from oosponol by the fungus. Agric. Biol. Chem.27: 822–827.Google Scholar
  458. Nobécourt, P. 1923. Sur la production d’ anticorps par les tubercules des Ophrydées. Comp. Rend. Hebd. Séances Acad. Sci.177: 1055–1057.Google Scholar
  459. —. 1946. Les mécanismes d’ l’ immunité naturelle chez les végétaux. Rev. Int. Bot. Appl. Agric. Trop.26: 529–542.Google Scholar
  460. Nonaka, F. 1967. Inactivation of pisatin by pathogenic fungi. Agric. Bull. Saga Univ.24: 109–121.Google Scholar
  461. — &K. Yasui. 1966. On the selective toxicity of ipomeamarone towards the phytopathogens. Agric. Bull. Saga Univ.22: 39–49.Google Scholar
  462. —,S. Isayama, &.H. Furukawa. 1966. On the phytoalexin produced by the results of the interaction between soybean pods and phytopathogens. Agric. Bull. Saga Univ.22: 51–63.Google Scholar
  463. Nüesch, J. 1963. Defence reactions in orchid bulbs. Symp. Soc. Gen. Microbiol. No. 13. Symbiotic Associations. 335–343.Google Scholar
  464. Oba, K., H. Shibata, &I. Uritani. 1970. The mechanism supplying acetyl-CoA for terpene biosynthesis in sweet potato with black rot: Incorporation of acetate-2-14C, pyruvate-3-14C and citrate-2,4-14C into ipomeamarone. Pl. Cell. Physiol.11: 507–510.Google Scholar
  465. Oguni, I. &I. Uritani. 1970. The incorporation of farnesol-2-14C into ipomeamarone. Agric. Biol. Chem.34: 156–158.Google Scholar
  466. ——. 1971. Utilization of ethanol-2-14C for the biosynthesis of ipomeamarone by sweet potato root tissue infected withCeratocystis fimbriata. Agric. Biol. Chem.35: 357–362.Google Scholar
  467. —,K. Oshima, H. Imaseki, &I. Uritani. 1969. Biochemical studies on the terpene metabolism in sweet potato root tissue with black rot. Effect of do and C15 terpenols on acetate-2-14C incorporation into ipomeamarone. Agric. Biol. Chem.33: 50–62.Google Scholar
  468. Ohata, K. &T. Kozaka. 1967. Interaction between two races ofPiricularia oryzae in lesion-formation in rice plants and accumulation of fluorescent compounds associated with infection. Bull. Natl. Inst. Agric. Sci. Ser. C. Phytopathol. & Entomol.21: 111–132.Google Scholar
  469. Ohno, T. 1952. The bitter substance produced in black rotten sweet potato. II. On the constitution of ipomeamarone. Part I. Bull. Chem. Soc. Japan25: 222–225.Google Scholar
  470. — &T. Takeuchi. 1949. The bitter substance produced in black-rotted sweet potato. I. Botyu-Kagaku (Scientific Insect Control)12: 26–29.Google Scholar
  471. — &M. Toyao. 1952. The bitter substance produced in black rotten sweet potato. III. On the constitution of ipomeamarone. Part 2. Bull. Chem. Soc. Japan25: 414–418.Google Scholar
  472. Okaisabor, E. K. 1967. Studies on smut disease ofDahlia caused byEntyloma calendulae f.dahliae. Ph.D. Thesis, University of Exeter, U.K. 241p.Google Scholar
  473. —. 1969. Pathogenesis of leaf smut disease ofDahlia caused byEntyloma calendulae i. sp.dahliae. Mycopathol. Mycol. Appl.39: 155–163.Google Scholar
  474. Oku, H. 1960. Biochemical studies onCochliobolus miyabeanus. VI. Breakdown of disease resistance of rice plant by treatment with reducing agents. Ann. Phytopathol. Soc. Japan25: 92–98.Google Scholar
  475. — &T. Nakanishi. 1962. Relation of phytoalexin-like antifungal substance to resistance of rice plant againstHelminthosporium leaf spot disease. Takamine Kenkyusho Nempo (Ann. Rep. Takamine Lab.)14: 120–128.Google Scholar
  476. Olah, A. F. &R. T. Sherwood. 1971. Flavones, isoflavones and coumestans in alfalfa infected byAscochyta imperfecta. Phytopathology61: 65–69.Google Scholar
  477. Ollis, W. D. 1966. The neoflavanoids, a new class of natural products. Experientia22: 777–783.PubMedGoogle Scholar
  478. -. 1968. New structural variants among the isoflavanoid and neoflavanoid classes.In: Recent Advances in Phytochemistry. Mabry, T. J., R. E. Alston, & V. C. Runeckles. (Eds.).1: 329–378.Google Scholar
  479. Oort, A. J. P. 1967. Fytoalexinen. Meded. Directeur Tuinb.30: 261–266.Google Scholar
  480. Oshima, K. &I. Uritani. 1967. The enzymatic synthesis of a β-hydroxy-βmethylglutaric acid derivative in sweet potato in response to infection by the black rot fungus. Agric. Biol. Chem.31: 1105–1107.Google Scholar
  481. ——. 1968a. Enzymatic synthesis of a β-hydroxy-β-methylglutaric acid derivative by a cell-free system from sweet potato with black rot. J. Biochem. (Tokyo)63: 617–625.Google Scholar
  482. ——. 1968b. Phytopathological chemistry of the black rotted sweet potato. LXIII. Participation of mevalonate in the biosynthetic pathway of ipomeamarone. Agric. Biol. Chem.32: 1146–1152.Google Scholar
  483. Oshima-Oba, K. &I. Uritani. 1969. Enzymatic synthesis of isopentenyl pyrophosphate in sweet potato root tissue in response to infection by black rot fungus. Pl. Cell Physiol.10: 827–843.Google Scholar
  484. —,I. Sugiuka, &I. Uritani. 1969. The incorporation of leucine-U-14C into ipomeamarone. Agric. Biol. Chem.33: 586–591.Google Scholar
  485. Oung-Boran, P. Lebreton, &G. Netien. 1969. Contribution a l’étude biochimique et pharmacologique deBaptisia australis. Pl. Med.17: 301–318.Google Scholar
  486. Ozeretskovskaya, O. L., N. I. Vasyukova, &L. V. Metlitskii. 1969a. Study of potato phytoalexins. Doklady Botan. Sci.189: 158–160.Google Scholar
  487. -,M. A. Davydova, N. I. Vasyukova, &L. V. Metlitskii. 1969b. Participation of α-solanine and α-chaconine glycoalkaloids in the protective properties of integumentary, cut and necrotic tissues of a potato tuber. Biokhim. Immuniteta Pokoya Rast. 22–32.Google Scholar
  488. Pahthasarathy, M. R., R. N. Puri, &T. R. Seshadri. 1969. New components ofPterocarpus dalbergioides heartwood. Indian J. Chem.7: 118–120.Google Scholar
  489. Patil, S. S., R. L. Powelson, &R. A. Young. 1964. Relation of chlorogenic acid and free phenols in potato roots to infection byVerticillium albo-atrum. Phytopathology54: 531–535.Google Scholar
  490. —,M. Zucker, &A. E. Dimond. 1966. Biosynthesis of chlorogenic acid in potato roots resistant and susceptible toVerticillium albo-atrum. Phytopathology56: 971–974.Google Scholar
  491. Patterson, E. L., W. W. Andres, &N. Bohonos. 1966. Isolation of the optical antipode of mellein from an unidentified fungus. Experientia22: 209–210.PubMedGoogle Scholar
  492. Paxton, J. D. &D. W. Chamberlain. 1967. Acquired local resistance of soybean plants toPhytophthora species. Phytopathology57: 352–353.Google Scholar
  493. ——. 1969. Phytoalexin production and disease resistance in soybeans as affected by age. Phytopathology59: 775–777.Google Scholar
  494. Pelter, A. &P. I. Amenechi. 1969. Isoflavonoid and pterocarpinoid extractives ofLonchocarpus laxiflorus. J. Chem. Soc. (C). 887–896.Google Scholar
  495. Perrin, D. D. &D. R. Perrin. 1962. The N.m.r. spectrum of pisatin. J. Amer. Chem. Soc.84: 1922–1925.Google Scholar
  496. Perrin, D. R. 1964. The structure of phaseollin. Tetrahedron Lett. 29–35.Google Scholar
  497. —. 1971. Physicochemioal properties of phaseollin. Phytopathol. Z.70: 227–229.Google Scholar
  498. — &W. Bottomley. 1961. Pisatin; an antifungal substance fromPisum sativum L. Nature191: 76–77.PubMedGoogle Scholar
  499. ——. 1962. Studies on phytoalexins. V. The structure of pisatin fromPisum sativum L. J. Amer. Chem. Soc.84: 1919–1922.Google Scholar
  500. — &I. A. M. Cruickshank. 1965. Studies on phytoalexins. VII. Chemical stimulation of pisatin formation inPisum sativum L. Austral. J. Biol. Sci.18: 803–816.Google Scholar
  501. ——. 1969. The antifungal activity of pterocarpans towardsMonilinia fructicola. Phytochemistry8: 971–978.Google Scholar
  502. Pierre, R. E. 1966. Histopathology and phytoalexin induction in beans resistant or susceptible toFusarium andThielaviopsis. Ph.D. Thesis, Cornell University, U. S. A. 154p.Google Scholar
  503. —. 1971. Phytoalexin induction in beans resistant or susceptible toFusarium andThielaviopsis. Phytopathology61: 322–327.Google Scholar
  504. — &D. F. Bateman. 1967. Induction and distribution of phytoalexins in Rhizoctonia-infected bean hypocotyls. Phytopathology57: 1154–1160.Google Scholar
  505. — &R. L. Millar. 1965. Histology of pathogen-suscept relationship ofStemphylium botryosum and alfalfa. Phytopathology55: 909–914.Google Scholar
  506. Pope, G. S. &H. G. Wright. 1954. Oestrogenic isoflavones in red clover and subterranean clover. Chemy. Ind. 1019–1020.Google Scholar
  507. -,P. V. Elcoate, S. A. Simpson, &D. G. Andrews. 1953. Isolation of an oestrogenic isoflavone (biochanin A) from red clover. Chemy. Ind. 1092.Google Scholar
  508. Purkayastha, R. P. &B. J. Deverall. 1964. A phytoalexin type of reaction in theBotrytis infection of leaves of bean (Viciafaba L.). Nature201: 938–939.Google Scholar
  509. ——. 1965a. The growth ofBotrytis fabae andB. cinerea into leaves of beanVicia faba L.). Ann. Appl. Biol.56: 139–147.Google Scholar
  510. ——. 1965b. The detection of antifungal substances before and after infection of beans (Viciafaba) byBotrytis spp. Ann. Appl. Biol.56: 269–277.Google Scholar
  511. Quilico, A., F. Piozzi, &M. Pavan. 1957. The structure of dendrolasin. Tetrahedron1: 177–185.Google Scholar
  512. Raa, J. 1968a. Polyphenols and natural resistance of apple leaves againstVenturia inaequalis. Netherlands J. Pl. Pathol.74: 37–45 (Suppl. 1).Google Scholar
  513. —. 1968b. Natural resistance of apple plants toVenturia inaequalis. A biochemical study of its mechanism. Ph.D. Thesis, University of Utrecht, Netherlands. 100p.Google Scholar
  514. Rahe, J. E., J. Kuć, C. M. Chuang, &E. B. Williams. 1969. Correlation of phenolic metabolism with histological changes inPhaseolus vulgaris inoculated with fungi. Netherlands J. Pl. Pathol.75: 58–71.Google Scholar
  515. Rall, G. J H., J. P. Englebrecht, &A. J. Brink. 1970.Neorautanenia pterocarpans. The isolation, structure and absolute configuration of (-)-2-hydroxypterocarpin, a new pterocarpan fromN. edulis. Tetrahedron26: 5007–5012.Google Scholar
  516. ———. 1971. The chemistry ofNeorautanenia edulis C. A. Sm. The constitution of (-)-2-isopentenyl-3-hydroxy-8,9-methylenedioxypterocarpan, a new pterocarpan from the root bark. J. S. African Chem. Inst.24: 56–60.Google Scholar
  517. Raudnitz, H. &G. Perlmann. 1935. Über santal, Pterocarpin und Homo-pterocarpin, die farblosen Begleiter des Santalins (II. Mitteil.). Ber. Deutsch. Chem. Ges.68: 1862–1866.Google Scholar
  518. Reeves, D. L. 1969. Phytoalexins and ortho-dihydroxy phenols and their relation toFusarium root rot resistance in beans. Ph.D. Thesis, Colorado State University, U. S. A. 77p.Google Scholar
  519. Reimann, J. E. &R. U. Byerrum. 1964. Studies on the biosynthesis of 2,4-dihydroxy-7-methoxy-2H-l,4-benzoxazin-3-one. Biochemistry3: 847–851.PubMedGoogle Scholar
  520. Rennerfelt, E. 1956. The natural resistance to decay of certain conifers. Friesia5: 361–365.Google Scholar
  521. — &G. Nacht. 1955. The fungicidal activity of some constituents from heartwood of conifers. Svensk. Bot. Tidskr.49: 419–432.Google Scholar
  522. Rigassi, N. 1963. Synthese von Iso-orchinol und verwandten Verbindungen. Diss. Eidgenössischen Technischen Hochschule, Zürich. Nr. 3325. 52p.Google Scholar
  523. Robertson, A. &W. B. Whalley. 1954. The chemistry of the “Insoluble Red Woods.” Part V. Pterocarpin and an oxidation product of homopterocarpin. J. Chem. Soc. 1440–1441.Google Scholar
  524. Robertson, N. F., J. Friend, &M. Aveyard. 1969. Production of phenolic acids by potato tissue culture after infection byPhytophthora infestons. Phytochemistry8: 7(Abstr.).Google Scholar
  525. ———,J. Brown, M. Huffee, &A. L. Homans. 1968. The accumulation of phenolic acids in tissue culture pathogen combinations ofSolanum tuberosum andPhytophthora infestons. J. Gen. Microbiol.54: 261–268.PubMedGoogle Scholar
  526. Romanuk, M., V. Herout, &F. Sorm. 1958a. On terpenes. XCIII. The composition of costus oil (fromSaussurea lappa Clarke). Collect. Czech. Chem. Commun.23: 2188–2193.Google Scholar
  527. ——— 1958b. O terpenech. XCIII. Slozeni silice kostusové (ZeSaussurea lappa. Clarke). Chem. Listy52: 1969–1974.Google Scholar
  528. Rubin, B. A. &E. V. Artsikhovskaya. 1966. The biochemical and physiological background of plant immunity. Sel’ Skokhoz Biol.1: 33–48.Google Scholar
  529. Ruscoe, Q. W. 1967. Studies on the dark leaf spot diseases of brassicae caused byAlternaria brassicicola andA. brassicae. Ph.D. Thesis, University of Exeter, U.K. 310p.Google Scholar
  530. Ryan, H. &R. Fitzgerald. 1913. On the identity of baphinitone with homopterocarpin. Proc. Royal Irish Acad.30B: 106–108.Google Scholar
  531. Sadgopal. 1960a. Exploratory studies in the development of essential oils and their constituents in aromatic plants. Part I. Oil of agarwood. Soap, Perfumery, Cosmetics33: 41–46.Google Scholar
  532. —. 1960b. Exploratory studies in the development of essential oils and their constituents in aromatic plants. Indian Oil & Soap J.25: 353–363.Google Scholar
  533. — &B. S. Varma. 1952a. Agar oil from the wood ofAquilaria agallocha Roxburgh. Soap, Perfumery, Cosmetics25: 169–174.Google Scholar
  534. ——. 1952b. Agar oil from the wood ofAquilaria agallocha Roxburgh. Indian Forester78: 26–33.Google Scholar
  535. - & -. 1952c. Agar oil from the wood ofAquilaria agallocha Roxburgh. Indian Forest Leaflet (Chemistry of Forest Products) No. 127. Forest Res. Inst., Dehra Dun, India.Google Scholar
  536. Saitoh, T. &S. Shibata. 1969. Chemical studies on the Oriental plant drugs. XXII. Some new constituents of licorice root. (2). Glycyrol, 5-0-methyl glycyrol and isoglycyrol. Chem. Pharm. Bull.17: 729–734.PubMedGoogle Scholar
  537. Sakai, T., K. Nishimura, &Y. Hirose. 1963. The constituents of the volatile oil from the wood ofTorreya nucifera. Tetrahedron Lett. 1171–1173.Google Scholar
  538. Sassa, T., H. Aoki, M. Namiki, &K. Munakata. 1968. Plant growth promoting metabolites ofSclerotinia sclerotiorum. Part I. Isolation and structures of sclerotinin A and B. Agric. Biol. Chem.32: 1432–1439.Google Scholar
  539. Sasaki, M., Y. Kaneko, K. Oshita, H. Takamatsu, Y. Asao, &T. Yokotsuka. 1970. Studies on the compounds produced by molds. Part VII. Isolation of isocoumarin compounds. Agric. Biol. Chem.34: 1296–1300.Google Scholar
  540. Sato, N. &K. Tomiyama. 1969. Localized accumulation of rishitin in the potato-tuber tissue infected by an incompatible race ofPhytophthora infestons. Ann. Phytopathol. Soc. Japan35: 202–206.Google Scholar
  541. ——N. Katsut, &T. Masamune. 1968a. Isolation of rishitin from tubers of interspecific potato varieties containing different late-blight resistance genes. Ann. Phytopathol. Soc. Japan34: 140–142.Google Scholar
  542. ————. 1968b. Isolation of rishitin from tomato plants. Ann. Phytopathol. Soc. Japan34: 344–345.Google Scholar
  543. Saundehs, P. J. W. 1967. Host/parasite interaction in blackspot disease of roses caused byDiplocarpon rosae Wolf. Ann. Appl. Biol.60: 129–136.Google Scholar
  544. Sawhney, P. L. &T. R. Seshadri. 1954. Special chemical components of commercial woods and related plant materials: Part I. The neutral components from heartwoods and sapwoods ofPterocarpus dalbergioides (Andaman padauk) andPterocarpus macrocarpus (Burma padauk). J. Sci. Ind. Res. India13B: 5–8.Google Scholar
  545. Scheel, L. D., V. B. Perone, R. L. Larkin, &R. E. Kupel. 1963. The isolation and characterization of two phototoxic furanocoumarins (psoralens) from diseased celery. Biochemistry2: 1127–1131.PubMedGoogle Scholar
  546. Schellenbaum, M. 1959. Isolierung und Konstitutionsaufklärung des Orchinols. Diss. Eidgenössischen Technischen Hochschule, Zürich. Nr. 2977. 55p.Google Scholar
  547. Schmiedeknecht, M. 1963. Parasit-Wirt-Beziehungen bei Pseudopeziza-Arten der Futterleguminosen. Sitzungsber. Deutsch. Akad. Wiss. Berlin Kl. Landw. Wiss.12: 31–39.Google Scholar
  548. Schntathorst, W. C. &D. E. Mathre. 1966. Cross protection in cotton with strains ofVerticillium albo-atrum. Phytopathology56: 1204–1209.Google Scholar
  549. Schneider, A. 1952. Über das Vorkommen gerbstoffartiger Kondensationsprodukte von Anthocyanidinen in den Samenschalen vonPisum arvense. Naturwissenschaften39: 452–453.Google Scholar
  550. Schwochau, M. E. &L. A. Hadwiger. 1969. Regulation of gene expression by actinomycin D and other compounds which change the conformation of DNA. Arch. Biochem. Biophys.134: 34–41.PubMedGoogle Scholar
  551. Scott, K., A. Millerd, &N. H. White. 1957. Mechanism of resistance in barley varieties to powdery mildew disease. Austral. J. Sci.19: 207–208.Google Scholar
  552. Searcy, J. W., N. D. Davis, &U. L. Diener. 1969. Biosynthesis of ochratoxin A. Appl. Microbiol.18: 622–627.PubMedGoogle Scholar
  553. Sebe, Y. 1943. Perilla ketone. J. Chem. Soc. Japan64: 1130–1136.Google Scholar
  554. Semmler, F. W. &J. Feldstein. 1914. Zur Kenntnis der Bestandteile ätherischer Öle. (Über Bestandteile des Costuswurzel—Öles.). Ber. Deutsch. Chem. Ges.47: 2687–2694.Google Scholar
  555. Seres, J. 1964. Über Orchinol und verwandte Verbindungen. Diss. Eidgenössischen Technischen Hochschule, Zürich. Nr. 3528. 63p.Google Scholar
  556. Seshadri, T. R. 1966. Chemistry ofPterocarpus woods. J. Univ. Bombay35: 1–15.Google Scholar
  557. Shain, L. 1967. Resistance of sapwood in stems of loblolly pine to infection byFomes annosus. Phytopathology57: 1034–1045.Google Scholar
  558. —. 1971. The response of sapwood of Norway spruce to infection byFomes annosus. Phytopathology61: 301–307.Google Scholar
  559. Shamshurin, A. A. 1966. The problem of phytoestrogens in animal husbandry. Mendeleev Chemistry J.11: 371–374.Google Scholar
  560. —,M. A. Yampol’skaya, &L. L. Simonova. 1966. Phytoestrogens. I. Syntheses among coumestan derivatives: 8,13-diallylcoumestrol. Chem. Nat. Compounds2: 42–45.Google Scholar
  561. Shepherd, C. J. &M. Mandryk. 1962. Auto-inhibitors of germination and sporulation inPeronospora tabacina Adam. Trans. Brit. Mycol. Soc.45: 233–244.Google Scholar
  562. ——. 1963. Germination of conidia ofPeronospora tabacina Adam. II. Germination in vivo. Austral. J. Biol. Sci.16: 77–87.Google Scholar
  563. Sherwood, R. T., A. F. Olah, W. H. Oleson, &E. E. Jones. 1970. Effect of disease and injury on accumulation of a flavonoid estrogen, coumestrol, in alfalfa. Phytopathology60: 684–688.Google Scholar
  564. Shibata, S. &Y. Nishikawa. 1963. Studies on the constituents of Japanese and Chinese crude drugs. VII. On the constituents of the roots ofSophora subprostrata Chun et T. Chen andSophora japonica L. Chem. Pharm. Bull.11: 167–177.Google Scholar
  565. — &T. Saitoh. 1968. The chemical studies on the Oriental plant drugs. XIX. Some new constituents of licorice root. (1). The structure of licoricidin. Chem. Pharm. Bull.16: 1932–1936.PubMedGoogle Scholar
  566. Shiozaki, M., K. Mori, &M. Matsui. 1968. Synthesis of isocoumarins. Part III. Oosponol diacetate. Agric. Biol. Chem.32: 42–45.Google Scholar
  567. Sijpesteijn, A. K. 1969. Aspects of natural disease resistance. Meded. Rijks. Land. Wetenschappen Gent34: 379–391.Google Scholar
  568. Silva Braga, A., O. R. Gottlieb, W. B. Eyton, K. Kurosawa, &W. D. Ollis. 1968. A Química de Leguminosas Brasileiras. XV. Constituintes doMachaerium villosum. 1. Parte. Anais Acad. Brasil Ci.40: 33–37.Google Scholar
  569. Simonova, L. L. &A. A. Shamshubin. 1967. Phytoestrogens. III. Synthesis of 7,11-dihydroxycoumestane via the flavylium salt. Chem. Nat. Compounds3: 310–311.Google Scholar
  570. Sinha, A. K. &N. Trivedi. 1969. Immunization of rice plants againstHelminthosporium infection. Nature223: 963–964.Google Scholar
  571. — &R. K. S. Wood. 1968. Studies on the nature of resistance in tomato plants toVerticillium albo-atrum. Ann. Appl. Biol.62: 319–327.Google Scholar
  572. Smadhana, B. S., A. F. Schmitthenner, &C. W. Ellett. 1969. Formation of phytoalexin inPeperomia in relation to resistance toPhytophthora nicotianae var.parasitica. Phytopathology59: 405–410.Google Scholar
  573. Smissman, E. E., J. B. Lapidus, &S. D. Beck. 1957a. Isolation and synthesis of an insect resistance factor from corn plants. J. Amer. Chem. Soc.79: 4697–4698.Google Scholar
  574. ———. 1957b. Corn plant resistance factor. J. Org. Chem.22: 220.Google Scholar
  575. —,O. Kristiansen, &S. D. Beck. 1962. Presence of 6-methoxybenzoxazolinone in uninjured corn tissue. J. Pharm. Sci.51: 292.PubMedGoogle Scholar
  576. Smith, D. G., A. G. McInnes, V. J. Higgins, &R. L. Millar. 1971. Nature of the phytoalexin produced by alfalfa in response to fungal infection. Physiol. Pl. Pathol.1: 41–44.Google Scholar
  577. Smith, F. H. 1967. Determination of gossypol in leaves and flower buds ofGossypium. J. Amer. Oil Chem. Soc.44: 267–269.Google Scholar
  578. Smith, I. M. 1970. Biochemical changes in French bean pods infected withColletotrichum lindemuthianum. Ann. Appl. Biol.65: 93–103.Google Scholar
  579. —. 1971. The induction of antifungal inhibitors in pods of tropical legumes. Physiol. Pl. Pathol.1: 85–94.Google Scholar
  580. Sondheimer, E. 1957. The isolation and identification of 3-methyl-6-methoxy-8hydroxy-3,4-dihydroisocoumarin from carrots. J. Amer. Chem. Soc.79: 5036–5039.Google Scholar
  581. —. 1961. Possible identity of a fungitoxic compound from carrot roots. Phytopathology51: 71–72.Google Scholar
  582. Sörensen, N. A. 1961. Some naturally occurring acetylenic compounds. Proc. Chem. Soc. (London) 98–110.Google Scholar
  583. —. 1963. Chemical taxonomy of acetylenic compounds.In: Chemical Plant Taxonomy. Swain, T. (Ed.). Academic Press, New York. 219–252.Google Scholar
  584. Späth, E. &J. Schläger. 1940. Über die Inhaltsstoffe des roten Sandelholzes. I. Mitteil. Die Konstitution des Homopterocarpins. Ber. Deutsch. Chem. Ges.73: 1–12.Google Scholar
  585. Spencer, P. M. &G. A. Carter. 1964. Antifungal activity in orange tissue infected withAspergillus niger. Nature203: 894–895.Google Scholar
  586. Spencer, R. R..,B. E. Knuckles, &E. M. Bickoff. 1966a. 7-hydroxy-11,12-dimethoxycoumestan. Characterization and synthesis. J. Org. Chem.31: 988–989.Google Scholar
  587. —.,E. M. Bickoff, R. E. Lundin, &B. E. Knuckles. 1966b. Lucernol and sativol, two new coumestans from alfalfa (Medicago sativa). J. Agric. Food Chem.14: 162–165.Google Scholar
  588. Srinivasan, K. V. 1969. Physiology of disease resistance in sugarcane with particular reference to red rot. Proc. Indian Acad. Sci.69B: 120–132.Google Scholar
  589. Stall, R. E. &A. A. Cook. 1968. Inhibition ofXanthomonas vesicatoria in extracts from hypersensitive and susceptible pepper leaves. Phytopathology58: 1584–1587.Google Scholar
  590. Staron, T., C. Allard, N. D. Xuong, M. Chambre, &H. Grabowski. 1964. Sur l’ action antibiotique de l’α-amino-7-butyryllactone extraite des pois. Comp. Rend. Hebd. Séances Acad. Sci.259: 3114–3117.Google Scholar
  591. Steyn, P. S. &C. W. Holzapfel. 1967. The synthesis of ochratoxins A and B, metabolites ofAspergillus ochraceus Wilh. Tetrahedron23: 4449–4461.PubMedGoogle Scholar
  592. —— &N. P. Ferreira. 1970. The biosynthesis of the ochratoxins, metabolites ofAspergillus ochraceus. Phytochemistry9: 1977–1983.Google Scholar
  593. Stholasuta, P., J. A. Bailey, V. Severin, &B. J. Deverall. 1971. Effect of bacterial inoculation of bean and pea leaves on the accumulation of phaseollin and pisatin. Physiol. Pl. Pathol.1: 177–183.Google Scholar
  594. Stodola, F. H., C. Cabot, &C. R. Benjamin. 1964. Structure of ramulosin a metabolic product of the fungusPestalotia ramulosa. Biochem. J.93: 92–97.PubMedGoogle Scholar
  595. Stoessl, A. 1965. The antifungal factors in barley. III. Isolation of pcoumaroylagmatine. Phytochemistry4: 973–976.Google Scholar
  596. -. 1966a. Some antifungal factors in barley. Advances Chem. No. 53. (Natural Pest Control Agents) 80–89.Google Scholar
  597. -. 1966b. The antifungal factors in barley. The constitutions of hordatines A and B. Tetrahedron Lett. 2287–2292.Google Scholar
  598. -. 1966c. The antifungal factors in barley. Isolation and synthesis of hordatine A. Tetrahedron Lett. 2849–2851.Google Scholar
  599. —. 1967. The antifungal factors in barley. IV. Isolation, structure and synthesis of the hordatines. Canad. J. Chem.45: 1745–1760.Google Scholar
  600. —. 1969. 8-hydroxy-6-methoxy-3-methylisocoumarin and other metabolites ofCeratocystis fimbriata. Biochem. Biophys. Res. Commun.35: 186–192.PubMedGoogle Scholar
  601. —&C. H. Unwin. 1970. The antifungal factors in barley. V. Antifungal activity of the hordatines. Canad. J. Bot.48: 465–470.Google Scholar
  602. Suginome, H. 1959. Oxygen heterocycles. A new isoflavanone fromSophora japonica L. J. Org. Chem.24: 1655–1662.Google Scholar
  603. -. 1960. Oxygen heterocycles; the structure of the isoflavanone sophorol. Tetrahedron Lett. 16–20.Google Scholar
  604. —. 1962. Oxygen heterocycles. Maackiain, a new naturally occurring chromanocoumaran. Experientia18: 161–163.PubMedGoogle Scholar
  605. —. 1966a. Sophorol. Bull. Chem. Soc. Japan39: 1525–1529.Google Scholar
  606. —. 1966b. Maackiain. Bull. Chem. Soc. Japan39: 1529–1534.Google Scholar
  607. — &T. Iwadare. 1960. The synthesis of the pterocarpan ring system. Bull. Chem. Soc. Japan33: 568.Google Scholar
  608. ——. 1962. sauerstoff-Heteroringe. Die Konfiguration und Synthese des d,l-homopterocarpins. Experientia18: 163–164.PubMedGoogle Scholar
  609. ——. 1966. The synthesis of d,l-homopterocarpin. Bull. Chem. Soc. Japan39: 1535–1541.Google Scholar
  610. Sutherland, M. D. &R. J. Park. 1967. Sesquiterpenes and their biogenesis inMyoporum deserti A. Cunn.In: Terpenoids in Plants. Pridham, J. B. (Ed.). Academic Press, London. 147–157.Google Scholar
  611. Suzuki, N. 1957. Studies on the violet root rot of sweet potatoes caused byHelicobasidium mompa Tanaka. VI. Histochemical studies of the infected tissues. I. Chemical changes as results of infection. Bull. Natl. Inst. Agric. Sci. Ser. C. Phytopathol. & Entomol.8: 69–126.Google Scholar
  612. — &S. Toyoda. 1957. Studies on the violet root rot of sweet potatoes caused byHelicobasidium mompa Tanaka. VII. Histochemical studies of the infected tissues. 2. Stimulated respiration and behaviour of phosphorus in infected tissues and their relation to defense reaction. Bull. Natl. Inst. Agric. Sci. Ser. C. Phytopathol. & Entomol.8: 131–173.Google Scholar
  613. Suzuki, Y. 1970. Fusamarin, a new metabolite from a species ofFusarium. Agric. Biol. Chem.34: 760–766.Google Scholar
  614. Swinburne, T. R. 1964. Rotting of apples of the variety “Bramley’s Seedling” byNectria galligena Bres. Nature204: 493–494.Google Scholar
  615. Taira, T. &Y. Fukagawa. 1958. On the bitter substance separated from alcohol distillation of sweet potato mash. J. Agric. Chem. Soc. Japan32: 513–514.Google Scholar
  616. Takaoka, M. 1939. The phenolic substances of white hellebore (Veratrum grandiflorum Loes. fil.). J. Chem. Soc. Japan60: 1261–1264.Google Scholar
  617. —. 1940. Phenolic substances of white hellebore (Veratrum grandiflorum Loes. fil). J. Fac. Sci. Hokkaido Imp. Univ.3: 1–16.Google Scholar
  618. Tamura, S., C. F. Chang, A. Suzuki, &S. Kumai. 1967. Isolation and structure of a novel isoflavone derivative in red clover. Agric. Biol. Chem.31: 1108–1109.Google Scholar
  619. ————. 1969. Chemical studies on “clover sickness.” Part I. Isolation and structural elucidation of two new isoflavanoids in red clover. Agric. Biol. Chem.33: 391–397.Google Scholar
  620. Theron, J. J., K. J. Van Der Merwe, N. Liebenberg, H. J. B. Joubert, &W. Nel. 1966. Acute liver injury in ducklings and rats as a result of ochratoxin poisoning. J. Pathol. Bacteriol.91: 521–529.PubMedGoogle Scholar
  621. Thomas, C. A. &E. H. Allen. 1969. An antifungal polyacetylene compound fromPhytophthora-iniected safflower hypocotyls. Phytopathology59: 1053 (Abstr.).Google Scholar
  622. ——. 1970a. An antifungal polyacetylene compound from Phytophthora-infected safflower. Phytopathology60: 261–263.PubMedGoogle Scholar
  623. ——. 1970b. Concentration of safynol inPhytophthora-iniected safflower. Phytopathology60: 1153.Google Scholar
  624. — &D. E. Zimmer. 1970. Resistance of Biggs safflower toPhytophthora root rot and its inheritance. Phytopathology60: 63–64.Google Scholar
  625. Tomiyama, K., N. Ishizaka, N. Sato, T. Masamune, &N. Katsui. 1968b. “Rishitin” a phytoalexin-like substance. Its role in the defence reaction of potato tubers to infection.In: Biochemical Regulation in Diseased Plants and Injury. The Phytopathological Society of Japan (Tokyo). 287–292.Google Scholar
  626. —,T. Sakuma, N. Ishtzaka, N. Sato, N. Katsui, M. Takasugi, &T. Masamune. 1968a. A new antifungal substance isolated from resistant potato tuber tissue infected by pathogens. Phytopathology58: 115–116.Google Scholar
  627. Tschesche, R., F. J. Kämmerer, &G. Wulff. 1969. Über Glykoside mit lactonbildendem Aglykon. II. Über die Struktur der antibiotisch aktiven Substanzen der Tulpe (Tulipa gesneriana L.). Chem. Ber.102: 2057–2071.Google Scholar
  628. Turner, E. M. C. 1956. The nature of the resistance of oats to the take-all fungus. II. Inhibition of growth and respiration ofOphiobolus graminis Sacc. and other fungi by a constituent of oat sap. J. Exp. Bot.7: 80–92.Google Scholar
  629. —. 1961. An enzymic basis for pathogenic specificity inOphiobolus graminis. J. Exp. Bot.12: 169–175.Google Scholar
  630. Uchiyama, M. &M. Matsui. 1967. A new approach to the synthesis of isoflavones, 2′-hydroxyisoflavones and an alternative synthesis of (±)-pterocarpin. Agric. Biol. Chem.31: 1490–1498.Google Scholar
  631. — &K. Ooba. 1968. Synthesis of oxygen heterocycles. Part III. A synthesis of dl-maackiain. J. Agric. Chem. Soc. Japan42: 688–691.Google Scholar
  632. Uehara, K. 1958a. On some properties of phytoalexins produced as a result of the interaction between pea (Pisum sativum L.) andAscochyta pisi Lib. I. On the activity as affected by ultra-violet irradiation and on some physicochemical properties of phytoalexin. Ann. Phytopathol. Soc. Japan23: 230–234.Google Scholar
  633. —. 1958b. On the phytoalexin production of the soybean pod in reaction toFusarium spp., the causal fungus of pod blight. I. Some experiments on the phytoalexin production as affected by host plant conditions and on the nature of the phytoalexin produced. Ann. Phytopathol. Soc. Japan23: 225–229.Google Scholar
  634. —. 1958c. On the phytoalexin production by the host plant as a result of interaction between the rice plant and the blast fungus (Piricularia oryzae Cav.). Ann. Phytopathol. Soc. Japan23: 127–130.Google Scholar
  635. —. 1959. On the phytoalexin production of the soybean pod in reaction toFusarium spp. the causal fungus of pod blight. II. On the effect of conditions of the spore suspension of the causal fungus upon phytoalexin production. Ann. Phytopathol. Soc. Japan24: 224–228.Google Scholar
  636. —. 1960a. On some properties of phytoalexin produced as a result of the interaction between pea (Pisum sativum L.) andAscochyta pisi Lib. II. Effect of duration of mounting the spore suspension on the pea pod and pre-infectional treatment of pea pods with ether or heat upon phytoalexin production. Ann. Phytopathol. Soc. Japan25: 85–91.Google Scholar
  637. —. 1960b. On the phytoalexin produced by the results of the interaction between rice plants and the leaf blight bacterium (Xanthomonas oryzae). Ann. Phytopathol. Soc. Japan25: 149–155.Google Scholar
  638. -. 1962. Formation of phytoalexin and its functions in plants. Special Rep. Pl. Pathol. Lab. Hiroshima Agric. Coll. 1–87.Google Scholar
  639. —. 1963. On the production of phytoalexin by metallic salts. Bull. Hiroshima Agric. Coll.2: 41–44.Google Scholar
  640. —. 1964a. Relationship between the host specificity of pathogen and phytoalexin. Ann. Phytopathol. Soc. Japan29: 103–110.Google Scholar
  641. —. 1964b. Comparison of the ultra-violet absorption spectrum curves of phytoalexins produced by different host and parasite interactions. Ann. Phytopathol. Soc. Japan29: 1–5.Google Scholar
  642. —. 1965. Phytoalexins. Ann. Phytopathol. Soc. Japan31: 334–338.Google Scholar
  643. — &T. Kiku. 1969. Inactivation of ipomeamarone byCorticium rolfsii (Sacc.) Curzi. Bull. Fac. Agric. Kagoshima Univ.19: 73–80.Google Scholar
  644. Urech, J., B. Fechtig, J. Nüesch, &E. Vischer. 1963. Hircinol eine antifungischwirksame Substanz aus knollen vonLoroglossum hircinum (L.) Rich. Helv. Chim. Acta46: 2758–2766.Google Scholar
  645. Uritani, I. 1953a. Phytopathological chemistry of black-rotted sweet potato. Part 5. Physiology of the polyphenols in injured sweet potato. J. Agric. Chem. Soc. Japan27: 57–62.Google Scholar
  646. —. 1953b. Phytopathological chemistry of black-rotted sweet potato. Part 7. Isolation and identification of polyphenols from the injured sweet potato. J. Agric. Chem. Soc. Japan27: 165–168.Google Scholar
  647. —. 1967. Abnormal substances produced in fungus-contaminated foodstuffs. J. Assoc. Off. Analytical Chemists50: 105–114.Google Scholar
  648. — &T. Akazawa. 1955. Antibiotic effect onCeratocystis fimbriata of ipomeamarone, an abnormal metabolite in black rot of sweet potato. Science121: 216–217.PubMedGoogle Scholar
  649. — &I. Hoshiya. 1953. Phytopathological chemistry of the black-rotted sweet potato. Part 6. Isolation of coumarin substances from sweet potato and their physiology. J. Agric. Chem. Soc. Japan27: 161–164.Google Scholar
  650. — &M. Maramatsu. 1953. Isolation and identification of polyphenols from injured sweet potato. J. Agric. Chem. Soc. Japan27: 29.Google Scholar
  651. — &M. Miyano. 1955. Derivatives of caffeic acid in sweet potato attacked by black rot. Nature175: 812.Google Scholar
  652. — &K. Oshima. 1965. Effects of ipomeamarone on respiratory enzyme system in mitochondria. Agric. Biol. Chem.29: 641–648.Google Scholar
  653. — &M. A. Stahmann. 1961. Pectolytic enzymes ofCeratocystis fimbriata. Phytopathology51: 277–285.Google Scholar
  654. —,H. Nomura, &T. Teramura. 1967. Comparative analysis of terpenoids in roots ofIpomoea species induced by inoculation ofCeratocystis fimbriata. Agric. Biol. Chem.31: 385–388.Google Scholar
  655. —,M. Uritani, &H. Yamada. 1960. Similar metabolic alterations induced in sweet potatoes by poisonous chemicals and byCeratostomella fimbriata. Phytopathology50: 30–34.Google Scholar
  656. Valenta, J. R. &H. D. Sisler. 1962. Evidence for a chemical basis of resistance of lima bean plants to downy mildew. Phytopathology52: 1030–1037.Google Scholar
  657. Valle, E. 1957. On anti-fungal factors in potato leaves. Acta Chem. Scand.11: 395–397.Google Scholar
  658. Van Den Ende, G. 1964. The interaction of some phytopathogenic fungi with plant tissue. Netherlands J. Pl. Pathol.70: 37–52.Google Scholar
  659. —. 1965. Neue Untersuchungen über die Phytoalexin-Bildung. TagBer. Deutsch. Akad. Landw. Wiss. Berlin74: 283–313.Google Scholar
  660. —. 1969. Phytoalexin-Bildung bei der Wechselwirkung zwischenSclerotinia fructicola und Wirtsgeweben. Phytopathol. Z.64: 68–76.Google Scholar
  661. Van Der Merwe, K. J., P. S. Steyn, &L. Fourie. 1965b. Mycotoxins. Part II. The constitution of ochratoxins A, B and C, metabolites ofAspergillus ochraceus Wilh. J. Chem. Soc. (C). 7083–088.Google Scholar
  662. ———,D. B. Scott, &J. J. Theron. 1965a. Ochratoxin A, a toxic metabolite produced byAspergillus ochraceus Wilh. Nature205: 1112–1113.Google Scholar
  663. Van Duuben, B. L. 1961. Chemistry of edulin, neorautone and related compounds fromNeorautanenia edulis C. A. Sm. J. Org. Chem.26: 5013–5020.Google Scholar
  664. Van Etten, H. D. &D. F. Bateman. 1970a. Isolation of phaseollin from Rhizoctonia-infected bean tissue. Phytopathology60: 385–386.Google Scholar
  665. ——. 1970b. Responses ofRhizoctonia solani to phaseollin. Phytopathology60: 1019 (Abstr.).Google Scholar
  666. Van Walbeek, W., W. Scott, P. M. Harwig, &J. W. Lawrence. 1969.Penicillium viridicatum Westling: A new source of ochratoxin A. Canad. J. Microbiol.15: 1281–1285.Google Scholar
  667. Varns, J. L. &J. Kuć. 1971. Suppression of rishitin and phytuberin accumulation and hypersensitive response in potato by compatible races ofPhytophthora infestans. Phytopathology61: 178–181.Google Scholar
  668. —— &E. B. Williams. 1971. Terpenoid accumulation as a biochemical response of the potato tuber toPhytophthora infestans. Phytopathology61: 174–177.Google Scholar
  669. Virtanen, A. I. 1961. Some aspects of factors in the maize plant with toxic effects on insect larvae. Acta Chem. Fenn.34B: 29–31.Google Scholar
  670. — &P. K. Hietala. 1955a. An anti-fungi factor in rye seedlings. Acta Chem. Fenn.28B: 165–166.Google Scholar
  671. ——. 1955b. 2(3)-benzoxazolinone, ananti-Fusarium factor in rye seedlings. Acta Chem. Scand.9: 1543–1544.Google Scholar
  672. ——. 1957. Additional information on the antifungal factor in red clover. Acta Chem. Fenn.30B: 99.Google Scholar
  673. ——. 1958. Isolation of an anti-Sclerotinia factor, 7-hydroxy-4′-methoxy-isoflavone from red clover. Acta Chem. Scand.12: 597.Google Scholar
  674. —— 1959. On the structures of the precursors of benzoxazolinone in rye seedlings. Acta Chem. Fenn.32B: 138.Google Scholar
  675. ——. 1960. Precursors of benzoxazolinone in rye plants. I. Precursor II, the aglycone. Acta Chem. Scand.14: 499–502.Google Scholar
  676. — &O. Wahlroos. 1963. Absence of 6-methoxybenzoxazolinone in uninjured maize tissue. J. Pharm. Sci.52: 713–714.PubMedGoogle Scholar
  677. —,P. K. Hietala, &O. Wahlroos. 1956. An anti-fungal factor in maize and wheat plants. Acta Chem. Fenn.29B: 143.Google Scholar
  678. ———. 1957. Antimicrobial substances in cereals and fodder plants. Arch. Biochem. Biophys.69: 486–500.PubMedGoogle Scholar
  679. Wahlroos, O. &A. I. Virtanen. 1958. On the antifungal effect of benzoxazolinone and 6-methoxybenzoxazolinone, respectively, onFusarium nivale. Acta Chem. Scand.12: 124–128.Google Scholar
  680. ——. 1964. Free 2,4-dihydroxy-7-methoxy-l,4-benzoxazin-3-one in maize. J. Pharm. Sci.53: 844–845.PubMedGoogle Scholar
  681. Wain, R. L. 1969. Naturally occurring fungicides. Proc. Symp. “Potentials in Crop Protection” New York State Agric. Expt. Sta. Geneva, 26–32.Google Scholar
  682. -,D. M. Spencer, &C. H. Fawcett. 1961. Antifungal compounds in seedlings ofVicia faba. In: Fungicides in Agriculture and Horticulture. Society of Chemical Industry Monograph No. 15. 109–131.Google Scholar
  683. Wanzlick, H., R. Gritzky, &H. Heidepriem. 1963. Die synthese des Wedelolactons. Chem. Ber.96: 305–307.Google Scholar
  684. Ward, M. H. 1902. The question of predisposition and “immunity” in plants. Proc. Cambridge Philos. Soc.11: 307–328.Google Scholar
  685. Watanabe, H. &H. Iwata. 1950. Studies on the black-rotten sweet potato. Part 1. Antihelmintic action of the essential oil of the black-rotten sweet potato. J. Agric. Chem. Soc. Japan24: 521–524.Google Scholar
  686. ——. 1952. Studies on the black-rotten sweet potato. Part 2. Toxic action of the essential oil of the black-rotten sweet potato. J. Agric. Chem. Soc. Japan26: 180–183.Google Scholar
  687. — &S. Nishiyama. 1952. Studies on the black-rotten sweet potato. Part 3. Chemioal properties of ipomeamarone. J. Agric. Chem. Soc. Japan26: 200–202.Google Scholar
  688. Whitney, N. J. &C. G. Mortimore. 1959a. An antifungal substance in the corn plant and its effect on the growth of two stalk-rotting fungi. Nature183: 341.PubMedGoogle Scholar
  689. ——. 1959b. Isolation of the antifungal substance 6-methoxybenzoxazolinone, from field corn (Zea mays L.) in Canada. Nature184: 1320.PubMedGoogle Scholar
  690. ——. 1961. Effect of 6-methoxybenzoxazolinone on the growth ofXanthomonas stewartii (Em-Smith) Dowson and its presence in sweet corn (Zea mays var.saccharata Barley). Nature189: 596–597.Google Scholar
  691. Wilson, B. J., D. T. C. Yang, &M. R. Boyd. 1970. Toxicity of mould-damaged sweet potatoes (Ipomoea batatas). Nature227: 521–522.PubMedGoogle Scholar
  692. Wit-Elshove, A. de. 1968. Breakdown of pisatin by some fungi pathogenic toPisum sativum. Netherlands J. Pl. Pathol.74: 44–47.Google Scholar
  693. —. 1969. The role of pisatin in the resistance of pea plants—some further experiments on the breakdown of pisatin. Netherlands J. Pl. Pathol.75: 164–168.Google Scholar
  694. — &A. Fuchs. 1971. The influence of the carbohydrate source on pisatin breakdown by fungi pathogenic to pea (Pisum sativum). Physiol. Pl. Pathol.1: 17–24.Google Scholar
  695. Withers, W. A. &F. E. Carruth. 1915. Gossypol, the toxic substance in cotton-seed meal. J. Agric. Res.5: 261–288.Google Scholar
  696. Wong, E. &G. C. M. Latch. 1971. Coumestans in diseased white clover. Phytochemistry10: 466–468.Google Scholar
  697. Wood, A. B., F. V. Robinson, R. C. Araujo Lago. 1969. Conformation and hydrogen bonding of gossypol. Chemy. Ind. 1738–1739.Google Scholar
  698. Wood, R. K. S. 1967. Physiological Plant Pathology. Blackwell Scientific Publications. Oxford & Edinburgh.Google Scholar
  699. Wyllie, T. D. &L. F. Williams. 1965. The effects of temperature and leaf age on the development of lesions caused byPeronospora manshurica on soybeans. Phytopathology55: 166–170.PubMedGoogle Scholar
  700. Yabuta, T. &Y. Sumiki. 1933. A new metabolic product ofAspergillus ochraceus: ochracin. J. Agric. Chem. Soc. Japan9: 1264–1275.Google Scholar
  701. Yamamoto, I. 1961. Studies on the metabolic products ofOospora sp. Part I. Isolation and purification of two new compounds and eburicoic acid. Agric. Biol. Chem.25: 400–404.Google Scholar
  702. —,K. Nitta, &Y. Yamamoto. 1961. Studies on the metabolic products ofOospora sp. Part II. Chemical structure of oospolactone (O-1). Agric. Biol. Chem.25: 405–409.Google Scholar
  703. ———. 1962. Studies on the metabolic products ofOospora sp. (Oospora astringenes). Part III. Chemical structure of oosponol (O-2). Agric. Biol. Chem.26: 486–493.Google Scholar
  704. Yamatodani, S., T. Yamano, Y. Kozu, &M. Abe. 1963. Isolation of a new isocoumarin derivative, K-1, from the saprophytic culture ofOospora astringenes. J. Agric. Chem. Soc. Japan37: 240–243.Google Scholar
  705. Yoshihira, K., S. Natori, &P. Kanchanapee. 1967. The structure of diospyrol, the principle from the fruit ofDiospyros mollis. Tetrahedron Lett. 4857–4860.Google Scholar
  706. Zilg, H. &H. Grisebach. 1968a. Biosynthesis of isoflavones. XVII. Identification and biosynthesis of coumestanes inSoja hispida. Phytochemistry7: 1765–1772.Google Scholar
  707. ——. 1968b. Biosynthesis of isoflavones. XVII. Identification and biosynthesis of coumestanes inSoja hispida. Addendum. Phytochemistry8: 527.Google Scholar
  708. ——. 1969. Coumestanes inCicer arietinum. Phytochemistry8: 2261–2263.Google Scholar
  709. Zotov, V. V. &R. Gadiev. 1970. Resistance of grapevines to pests and diseases. Fiziol. Sel’ Skokhoz. Rast.9: 413–449.Google Scholar

Copyright information

© The New York Botanical Garden 1972

Authors and Affiliations

  • John L. Ingham
    • 1
  1. 1.Department of Agricultural BotanyUniversity of ReadingEngland

Personalised recommendations