Economic Botany

, Volume 37, Issue 3, pp 255–282 | Cite as

Crop mimicry in weeds

  • Spencer H. Barrett
Article

Abstract

The selective forces imposed by agricultural practices have resulted in the evolution of agricultural races of weeds or agroecotypes. Some agroecotypes are intimately associated with a specific crop. Such associations can involve a system of mimicry, whereby the weed resembles the crop at specific stages during its life history and, as a result of mistaken identity, evades eradication. Mimetic forms of weeds are most likely to be selected by handweeding of seedlings or by harvesting and seed cleaning procedures. A striking example of morphological and phenological resemblance is found in the cultivated rice mimic,Echinochloa crus-galli var.oryzicola, a native of Asian rice fields but now widely distributed in rice-growing areas of the world. Comparative studies of the growth, devel-opment and patterns of phenotypic variation of cultivated rice,E. crus-galli var.oryzicola andE. crus-galli var.crus-galli demonstrate that the crop mimic is more similar to rice in many attributes than it is to its close relative. It is proposed that intense handweeding practices in Asia constitute the main selective force favoring the evolution of rice mimicry inE. crus-galli var.oryzicola.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allard, R. W., R. D. Miller, and A. L. Kahler. 1978. The relationship between degree of environmental heterogeneity and genetic polymorphism.In Structure and Functioning of Plant Populations, A. H. J. Freyson and J. W. Woldendorp, ed, p. 49–69. North-Holland, Amsterdam.Google Scholar
  2. Anderson, E. 1952. Plants, Man and Life. Univ. California Press, Berkeley.Google Scholar
  3. Assemat, L., and H. I. Oka. 1980. Neighbour effects between rice (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli Beauv.) strains. I. Aggressiveness and resistance to aggression as influenced by planting density. Acta Oecol./Oecol. Plant. 1: 371–394.Google Scholar
  4. —, H. Morishima, and H. I. Oka. 1981. Neighbour effects between rice (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli (Beauv.) strains. II. Some experiments on the mechanisms of interactions between plants. Acta Oecol./Oecol. Plant 2: 63–78.Google Scholar
  5. Ayyangar, G. N. R., U. P. Rao, and T. V. Reddy. 1936. The inheritance of deciduousness of the pedicelled spikelets of sorghum. Curr. Sci. 5: 538.Google Scholar
  6. Bachthaler, G. 1969. Development of the weed flora in Germany in relation to changes in method of cultivation. Angew. Bot. 43: 59–69.Google Scholar
  7. Baker, H. G. 1965. Characteristics and modes of origins of weeds.In The Genetics of Colonizing Species, H. G. Baker and G. L. Stebbins, ed, p. 147–172. Academic Press, New York.Google Scholar
  8. —. 1972. Migration of weeds.In Taxonomy, Phytogeography and Evolution, D. H. Valentine, ed, p. 327–347. Academic Press, London.Google Scholar
  9. —. 1974. The evolution of weeds. Annual Rev. Ecol. Syst. 5: 1–24.Google Scholar
  10. Bandeen, J. D., and R. D. McLaren. 1976. Resistance ofChenopodium album to triazine herbicides. Canad. J. PI. Sci. 56: 411–12.Google Scholar
  11. Barrett, S. C. H. 1982. Genetic variation in weeds.In Biological Control of Weeds with Plant Pathogens, R. Charudattan and H. Walker, ed, p. 73–98. Wiley, New York.Google Scholar
  12. —, and D. E. Seaman. 1980. The weed flora of Californian rice fields. Aquatic Bot. 9: 351–376.Google Scholar
  13. —, and B. F. Wilson. 1981. Colonizing ability in theEchinochloa crus-galli complex (barnyard grass). I. Variation in life history. Canad. J. Bot 59: 1844–1860.Google Scholar
  14. —, and —. 1983. Colonizing ability in theEchinochloa crus-galli complex (barnyard grass). II. Seed biology. Canad. J. Bot. 61: 556–562.Google Scholar
  15. Bellue, M. K. 1932. Weeds of Californian seed rice. Monthly Bull. Calif. Dept. Agric. 21: 290–296.Google Scholar
  16. Bilquez, A. F., and J. Lecomte. 1969. Relations entre mils sauvage et mils cultives: etude de L’hybridePennisetum typhoides Stapf. & Hubb. ×P. violaceum (Lam.) L. Rieh. Agron. Trop. 24: 249–257.Google Scholar
  17. Bleier, H. 1929. Cytological investigation ofLens-Vicia hybrids. Genetica 11: 111–118.Google Scholar
  18. Brown, A. H. D., E. Nevo, D. Zohary, and O. Dagan. 1978. Genetic variation in natural populations of wild barley (Hordeum spontaneum). Genetica 49: 97–108.Google Scholar
  19. —, and D. R. Marshall. 1981. Evolutionary changes accompanying colonization in plants.In Evolution Today, G. G. E. Scudder and J. L. Reveal, ed, Proc. Second Int. Cong. Syst. and Evol. Biol., p. 351–353. Vancouver, British Columbia.Google Scholar
  20. Brunken, J., J. M. J. deWet, and J. R. Harlan. 1977. The morphology and domestication of pearl millet. Econ. Bot. 31: 163–174.Google Scholar
  21. Bunting, A. H. 1960. Some reflections on the ecology of weeds.In The Biology of Weeds, J. L. Harper, ed, Blackwell, Oxford.Google Scholar
  22. Chirila, C., and A. Melachrinos. 1976. La flora vascolare delle risaie romene. Riso 15: 83–86.Google Scholar
  23. Chu, Y., and H. I. Oka. 1970. Introgression across isolating barriers in wild and cultivatedOryza species. Evolution 24: 344–355.Google Scholar
  24. Cohen, D. 1966. Optimizing reproduction in a randomly varying environment. J. Theor. Biol. 12: 119–129.PubMedGoogle Scholar
  25. Crawford, D. J., and H. D. Wilson. 1977. Allozyme variation inChenopodium fremontii. Syst. Bot. 2: 180–190.Google Scholar
  26. —, and —. 1979. Allozyme variation in several closely related diploid species ofChenopodium of the western United States. Amer. J. Bot. 66: 237–244.Google Scholar
  27. Dave, B. B. 1943. The wild rice problem in the Central Provinces and its solution. Indian J. Agric. Sci. 13: 46–53.Google Scholar
  28. de Wet, J.M.J., J. R. Harlan, and E. G. Price. 1976. Variability inSorghum bicolor. In Origins of African Plant Domestication, J. R. Harlan, J. M. J. de Wet, and A. B. L. Stemler, ed, p. 453–464. Mouton, The Hague.Google Scholar
  29. Dmitriev, V.S. 1952. Concerning the primary source of origin of the flat-seeded vetch. Agrobiologija 1: 39–43.Google Scholar
  30. Doggett, H., and N. Majisu. 1968. Disruptive selection in crop development. Heredity 23: 1–23.Google Scholar
  31. Ehara, K., and S. Abe. 1950. Classification of the forms in the wild Japanese barnyard millet. Proc. Crop. Sci. Soc. Jap. 20: 245–246.Google Scholar
  32. Fryer, J. D., and R. J. Chancellor. 1970. Herbicides and our changing weeds.In The Flora of a Changing Britain, Perring, F.H., ed, p. 105–118. Classey, Hampton.Google Scholar
  33. Godwin, H. 1960. The history of weeds in Britain.In The Biology of Weeds, J. L. Harper, ed. p. 1–10. Blackwell, Oxford.Google Scholar
  34. Gould, F.W., M. A. Ali, and D. E. Fairbrothers. 1974. A revision ofEchinochloa in the United States. Amer. Midi. Naturalist 87: 36–59.Google Scholar
  35. Gregor, J.W. 1938. Reflections concerning new crop varieties. Herbage Rev. 6: 234–239.Google Scholar
  36. —, and F. W. Sansome. 1927. Experiments on the genetics of wild populations. I. Grasses. J. Genet. 17: 349–364.Google Scholar
  37. Gressel, J., and L. A. Segel. 1978. The paucity of plants evolving genetic resistance to herbicides: possible reasons and implications. J. Theor. Biol. 75: 349–371.PubMedGoogle Scholar
  38. Grime, J.P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Amer. Naturalist 111: 1169–1194.Google Scholar
  39. Grist, D. H. 1953. Rice. Longman, London.Google Scholar
  40. Hammerton, J.L. 1968. Past and future changes in weed species and weed floras. Proc. 9th British Weed Control Conf. 3: 1136–1146.Google Scholar
  41. Hamrick, J.L., Y. B. Linhart, and J. B. Mitton. 1979. Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Annual Rev. Ecol. Syst. 10: 173–200.Google Scholar
  42. Hanson, N.S. 1962. Weed control practices and research for sugar cane in Hawaii. Weeds 10: 192–209.Google Scholar
  43. Harlan, H.V. 1929. The weedishness of wild oats. J. Heredity 20: 515–518.Google Scholar
  44. Harlan, J.R. 1970. The evolution of cultivated plants.In Genetic Resources in Plants—their Exploration and Conservation, O. H. Frankel, and E. Bennett, ed, p. 19–32. Blackwell, Oxford.Google Scholar
  45. -. 1975. Crops and Man. Amer. Soc. Agron., Madison, WI.Google Scholar
  46. -. 1981. The relationships between weeds and crops, (unpublished ms.).Google Scholar
  47. —, J. M. J. de Wet, and E. G. Price. 1973. Comparative evolution of cereals. Evolution 27: 311–325.Google Scholar
  48. Harper, J.L. 1956. The evolution of weeds in relation to resistance to herbicides. Proc. 3rd British Weed Control Conf. 1: 179–186.Google Scholar
  49. —. 1977. Population Biology of Plants. Academic Press, London.Google Scholar
  50. Heiser, C.B., and D. C. Nelson. 1974. On the origin of the cultivated chenopods (Chenopodium). Genetics 78: 503–505.Google Scholar
  51. Hillman, G. 1981. Cereal remains from Tell Ilbol and Tell Qaramel.In The River Qoueiq, Northern Syria, and its Catchment, J. Matthers, ed, p. 503–507. B.A.R. International Series 98. B.A.R., Oxford.Google Scholar
  52. Hitrovo, V. 1912. Sur la voilure des organes de propagation des plantes messicoles de niveaux differents. Bull. Angew. Bot. 5: 103–138.Google Scholar
  53. Holliday, R.J., and P. D. Putwain. 1974. Variation in susceptibility to simazine in three species of annual weeds. Proc. British Weed Control Conf. 12: 649–654.Google Scholar
  54. —, and —. 1977. Evolution of resistance to simazine inSenecio vulgaris L. Weed Res. 17: 291–296.Google Scholar
  55. —, and —. 1980. Evolution of herbicide resistance inSenecio vulgaris: variation in susceptibility to simazine between and within populations. J. Appl. Ecol. 17: 779–792.Google Scholar
  56. Holm, L.G., D. L. Plucknett, J. V. Pancho, and J. P. Herberger. 1977. The World’s Worst Weeds: Distribution and Biology. Univ. Hawaii Press, Honolulu.Google Scholar
  57. Imam, M., and J. Kosinova. 1972. Studies on the weed flora of cultivated land in Egypt. Weeds of rice fields. Bot. Jahrb. Syst. 92: 90–107.Google Scholar
  58. Jain, S.K. 1969. Comparative ecogenetics of twoAvena species occurring in central California. Evol. Biol. 3: 73–118.Google Scholar
  59. Johnston, S.K., D. S. Murray, and J. Williams. 1979. Germination and emergence of balloonvine (Cardiospermum halicacabuni). Weed Sci. 27: 73–76.Google Scholar
  60. Kalachevska, K. 1929. The mimicry of weeds. Acad. Sci. Ukraine. Kieff. Bull. Cl. Sci. Phys. Math. 4: 67–71.Google Scholar
  61. Karper, R.E., and J. R. Quinby. 1947. The inheritance of callus formation and seed shedding in sorghum. J. Heredity 38: 211–219.Google Scholar
  62. Kasahara, Y., and O. Kinoshita. 1952. Studies on the control of the barnyard grass on the paddy field. Proc. Crop. Sci. Soc. Jap. 21: 319–320.Google Scholar
  63. Kennedy, R.A., S. C. H. Barrett, D. VanderZee, and M. E. Rumpho. 1980. Germination and seedling growth under anaerobic conditions inEchinochloa crus-galli (barnyard grass). Pl. Cell Environment 3: 243–249.Google Scholar
  64. King, L.J. 1966. Weeds of the World: Biology and Control. Hill, London.Google Scholar
  65. Kordan, H.A. 1972. Rice seedlings germinated in water with normal and impeded environmental gas exchange. J. Appl. Ecol. 9: 527–533.Google Scholar
  66. —. 1974. The rice shoot in relation to oxygen supply and root growth in seedlings germinating under water. New Phytol. 73: 695–697.Google Scholar
  67. Ladizinsky, G. 1975. Oats in Ethiopia. Econ. Bot. 29: 238–241.Google Scholar
  68. Levin, D.A. 1975. Genie heterozygosity and protein polymorphism among local populations ofOenothera biennis. Genetics 79: 477–491.PubMedGoogle Scholar
  69. McNeill, J. 1976. The taxonomy and evolution of weeds. Weed Research 16: 399–413.Google Scholar
  70. Maltais, B., and C. J. Bouchard. 1978. Une moutarde des oiseaux (Brassica rapa L.) resistance a l’atrazine. Phytoprotection 59: 117–119.Google Scholar
  71. Michael, P. 1973. Barnyard grass (Echinochloa) in the Asian-Pacific region, with special reference to Australia. Proc. 4th Asian-Pacific Weed Sci. Soc. Conf. Rotorua.Google Scholar
  72. Monsi, M., Z. Uchijima, and T. Oikawa. 1973. Structure of foliage canopies and photosynthesis. Annual Rev. Ecol. Syst. 4: 301–328.Google Scholar
  73. Moran, G.F., and D. R. Marshall. 1978. Allozyme uniformity within and variation between races of the colonizing speciesXanthium strumarium L. (Noogoora Burr). Austral. J. Biol. Sci. 31: 283–291.Google Scholar
  74. Morishima, H., H. I. Oka, and W. T. Chang. 1961. Directions of differentiation in populations of wild rice.Oryza perennis andO. sativa f.spontanea. Evolution 15: 326–339.Google Scholar
  75. —, K. Hinata, and H. I. Oka. 1963. Comparison of modes of evolution of cultivated forms from two wild rice species,Oryza breviligulata andO. perennis. Evolution 17: 170–181.Google Scholar
  76. Nelson, A.P. 1965. Taxonomic and evolutionary implications of lawn races inPrunella vulgaris (Labiatae). Brittonia 17: 160–174.Google Scholar
  77. Nevo, E., D. Zohary, A. H. D. Brown, and M. Haber. 1979. Genetic diversity and environmental associations of wild barleyHordeum spontaneum in Israel. Evolution 33: 815–833.Google Scholar
  78. Oka, H.I., and W. T. Chang. 1959. The impact of cultivation on populations of wild rice,Oryza sativa f. spontanea. Phyton 13: 105–117.Google Scholar
  79. —, and —. 1961. Hybrid swarms between wild and cultivated rice species,Oryza perennis andO. sativa. Evolution 15: 418–430.Google Scholar
  80. Oliveira, L. 1977. Changes in ultrastructure of mitochondria of roots ofTriticale subjected to anaerobiosis. Protoplasma 91: 267–280.Google Scholar
  81. Parker, C. 1977. Prediction of new weed problems, especially in the developing world.In Origins of Pest, Parasite, Disease and Weed Problems, J. M. Cherrett and G. R. Sagar, ed, p. 249–264. Blackwell, Oxford.Google Scholar
  82. —, and M. L. Dean. 1976. Control of wild rice in rice. Pestic. Sci. 7: 403–416.Google Scholar
  83. Pickersgill, B.P. 1981. Biosystematics of crop-weed complexes.In European Land Races of Cultivated Plants and their Evaluation, P. Hanelt, ed, Akademia Verlag, Berlin.Google Scholar
  84. Pradet, A., and J. L. Bomsel. 1978. Energy metabolism in plants under hypoxia and anoxia.In Plant Life in Anaerobic Environments, D. D. Hook and R. M. M. Crawford, ed, p. 89–118. Ann Arbor Science Publications, Ann Arbor, MI.Google Scholar
  85. Purseglove, J.W. 1972. Tropical Crops: Monocotyledons 1. Longman, London.Google Scholar
  86. Radosevich, S.R. 1977. Mechanism of atrazine resistance in lambsquarters and pigweed. Weed Sci. 25: 316–318.Google Scholar
  87. Ramakrishnan, P.S. 1968. Nutritional requirements of the edaphic ecotypes inMelilotus alba. New Phytol. 67: 147–157.Google Scholar
  88. —, and U. Gupta. 1973. Nitrogen, phosphorus and potassium nutrition in the edaphic ecotypes inCynodon dactylon (L.) Pers. Ann. Bot. 37: 885–894.Google Scholar
  89. —, and R. S. Jain. 1965. Differential response to calcium and growth yield of the edaphic ecotypes ofTridax procumbens L. J. Indian Bot. Soc. 44: 439–452.Google Scholar
  90. Rowlands, D.G. 1959. A case of mimicry in plants—Vicia sativa L. in lentil crops. Genetica 30: 435–446.PubMedGoogle Scholar
  91. Rumpho, M.E., and R. A. Kennedy. 1981. Anaerobic metabolism in germinating seeds ofEchinochloa crus-galli (barnyard grass). Metabolite and enzyme studies. PI. Physiol. 68: 165–168.CrossRefGoogle Scholar
  92. Salisbury, E.J. 1961. Weeds and Aliens. Collins, London.Google Scholar
  93. Sauer, J.D. 1967. The grain amaranths and their relatives—a revised taxonomic and geographic survey. Ann. Missouri Bot. Gard. 54: 103–137.Google Scholar
  94. Schwanitz, F. 1966. The Origin of Cultivated Plants. Harvard Univ. Press, Cambridge, MA.Google Scholar
  95. Sculthorpe, C.D. 1928. The Biology of Aquatic Vascular Plants. Arnold, London.Google Scholar
  96. Sinskaia, E.N. 1928. The oleiferous plants and root crops of the family Cruciferae. Trudy Prikl. Bot. 19: 1–619.Google Scholar
  97. —. 1931. The study of species in their dynamics and interrelation with different types of vegetation. Trudy Prikl. Bot. 25: 1–97.Google Scholar
  98. —, and A. A. Beztuzheva. 1931. The forms ofCamelina sativa in connection with climate, flax and man. Trudy Prikl. Bot. 25: 98–200.Google Scholar
  99. Small, E. 1975. The case of the curious“Cannabis”. Econ. Bot. 29: 254.Google Scholar
  100. Smith, R.J., and W. T. Fox. 1973. Soil and water and growth of rice and weeds. Weed Science 21: 61–63.Google Scholar
  101. —, W. T. Flinchum, and D. E. Seaman. 1977. Weed control in U.S. rice production. USDA Agric. Handbook No. 497. Gov. Printing Office, Washington, DC.Google Scholar
  102. Snaydon, R.W. 1970. Rapid population differentiation in a mosaic environment I. The response ofAnthoxanthum odoratum populations to soils. Evolution 24: 257–269.Google Scholar
  103. —. 1978. Genetic changes in pasture populations.In Plant Relations in Pastures, J. R. Wilson, ed, p. 253–269. CSIRO, Melbourne.Google Scholar
  104. —. 1980. Plant demography in agricultural systems.In Demography and Evolution in Plant Populations, O. T. Solbrig, ed, p. 131–160. Botanical Monographs Vol. 15. Univ. California Press, Berkeley.Google Scholar
  105. —, and M. S. Davies. 1972. Rapid population differentiation in a mosaic environment. II. Morphological variation. Evolution 26: 390–405.Google Scholar
  106. Solbrig, O.T., and B. B. Simpson. 1974. Components of regulation of a population of dandelions in Michigan. J. Ecol. 62: 473–486.Google Scholar
  107. Souza Machado, V., J. D. Bandeen, W. D. Taylor, and P. Lavigne. 1977. Atrazine resistant biotypes of common ragweed and birds rape. Res. Rep. Canad. Weed Comm. (East Sec.) 22: 305.Google Scholar
  108. Stapledon, R.G. 1928. Cocksfoot grass (Dactylis glomerata L.) ecotypes in relation to the biotic factor. J. Ecol. 16: 71–104.Google Scholar
  109. Stebbins, G.L. 1950. Variation and Evolution in Plants. Columbia Univ. Press, New York.Google Scholar
  110. Steenis, C. G. G. J. Van. 1957. Specific and infraspecific delimitation. Flora Malesiana ser. 1. 5.Google Scholar
  111. Tedin, O. 1925. Verebung, Variation, und Systematik in der GattungCamelina. Hereditas 6: 275–386.CrossRefGoogle Scholar
  112. Turner, J.R.G. 1971. Studies of Mullerian mimicry and its evolution in burnet moths and heliconid butterflies.In Ecological Genetics and Evolution, R. Creed, ed, p. 224–260. Blackwell, Oxford.Google Scholar
  113. VanderZee, D., and R. A. Kennedy. 1981. Germination and seedling growth inEchinochloa crusgalli var.oryzicola under anoxic conditions: structural aspects. Amer. J. Bot. 68: 1269–1277.Google Scholar
  114. Vane-Wright, R.I. 1976. A unified classification of mimetic resemblances. Linn. Soc., Bio. 8: 25–56.Google Scholar
  115. Vartapetian, B.B., I. N. Andreeva, and N. Nuritdinov. 1978. Plant cells under oxygen stress.In Plant Life in Anaerobic Environments, D. D. Hook and R. M. M. Crawford, ed, p. 13–88. Ann Arbor Science Publications, Ann Arbor, MI.Google Scholar
  116. Vasinger-Alektrova, A.V. 1931. The weeds of rice in the southern part of the maritime region in the Far East. Trudy Prikl. Bot. 25: 109–152.Google Scholar
  117. Vavilov, N.I. 1949. The origin, variation, immunity and breeding of cultivated plants. Chron. Bot. 13: 1–364.Google Scholar
  118. Warwick, S.I., and L. Black. 1980. Uniparental inheritance of atrazine resistance inChenopodium album. Canad. J. PI. Sci. 60: 751–753.CrossRefGoogle Scholar
  119. —, and D. Briggs. 1978a. The genecology of lawn weeds. I. Population differentiation inPoa annua L. in a mosaic environment of bowling green lawns and flower beds. New Phytol. 81: 711–723.Google Scholar
  120. —, and —. 1978b. The genecology of lawn weeds. II. Evidence for disruptive selection inPoa annua L. in a mosaic environment of bowling green lawns and flower beds. New Phytol. 81: 725–737.Google Scholar
  121. —, and —. 1980. The genecology of lawn weeds. V. The adaptive significance of different growth habits in lawn and roadside populations ofPlantago major L. New Phytol. 85: 289–300.Google Scholar
  122. —, V. Souza Machado, P. B. Marriage, and J. D. Bandeen. 1979. Resistance ofChenopodium strictum Roth (late-flowering goosefoot) to atrazine. Canad. J. PI. Sci. 59: 269–270.Google Scholar
  123. Wiens, D. 1978. Mimicry in plants. Evol. Biol. 11: 365–403.Google Scholar
  124. Welch, G.B. 1954. Seed processing equipment. Mississippi Agric. Exp. Sta. Bull. 520.Google Scholar
  125. Whalen, M.D. 1979. Allozyme variation and evolution inSolarium section Androceras. Syst. Bot. 4: 203–222.Google Scholar
  126. Wickler, W. 1968. Mimicry in Plants and Animals. McGraw-Hill, New York.Google Scholar
  127. Wilkes, H.G. 1967. Teosinte: the Closest Relative of Maize. Bussey Inst. Harvard Univ. Cambridge, MA.Google Scholar
  128. —. 1977. Hybridization of maize and teosinte in Mexico and Guatemala and the improvement of maize. Econ. Bot. 31: 254–293.Google Scholar
  129. Wilson, H.D., and C. B. Heiser. 1979. The origin and evolutionary relationships of ‘Huauzontle’ (Chenopodium nutalliae Safford), domesticated chenopod of Mexico. Amer. J. Bot. 66: 198–206.Google Scholar
  130. Yabuno, T. 1961.Oryza sativa andEchinochloa crus-galli var.oryzicola Ohwi. Rep. Kihara Inst. Bio. Res. 12: 29–34.Google Scholar
  131. —. 1966. Biosystematic study of the genusEchinochloa. Jap. J. Bot. 19: 277–323.Google Scholar
  132. Zinger, H.B. 1909. On the species ofCamelina andSperguiaria occurring as weeds in sowings of flax and their origin. Trudy Bot. Muz. Imp. Akad. Nauk 6: 1–303.Google Scholar

Copyright information

© The New York Botanical Garden 1983

Authors and Affiliations

  • Spencer H. Barrett
    • 1
  1. 1.Department of BotanyUniversity of TorontoTorontoCanada

Personalised recommendations