The Botanical Review

, Volume 57, Issue 4, pp 318–358 | Cite as

Apical dominance

  • Morris G. Cline


Apical dominance is the control exerted by the apical portions of the shoot over the outgrowth of the lateral buds. The classical explanations for correlative inhibition have focused on hormone/nutrient hypotheses. The remarkable progress that has been made in the technology of endogenous hormone quantification in plant tissue has not been accompanied by comparable progress in the elucidation of mechanisms of hormone action in apical dominance. Evidence from hormonal studies suggests that apically produced auxin indirectly suppresses axillary bud outgrowth that is promoted by cytokinin originating from roots/shoots. Significant involvement with other hormones, although less likely, has not been ruled out. Possible changes in tissue sensitivity to hormones should not be overlooked. Auxin-induced oligosaccharide signals originating from the cell walls of shoot tips or polyamines may function as secondary inhibitors to bud growth. Alternatively, apically produced auxin may suppress lateral bud growth by inhibiting auxin export from these buds. Support for a critical role for nutrients in apical dominance keeps resurfacing, especially for auxin-directed nutrient transport and for water as a possible inducing signal for bud outgrowth. Histological and biochemical analyses of lateral buds recently released from apical dominance are urgently needed. The feasibility of manipulating endogenous auxin/cytokinin content in plant tissue by gene insertion and modulation opens the door to exciting approaches as does the use of hormone insensitive/resistant mutants. There is also need to recognize the existence of variability of apical dominance mechanisms among different plant types. The aesthetic and economic implications of understanding apical dominance for the modification of plant structure and form are extremely significant.


Botanical Review Ethylene Production Shoot Apex Auxin Transport Apical Dominance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


La dominance apicale est le contrôle exercé par les portions apicales de la pousse sur la croissance des bourgeons latéraux. Les explications classiques jusque là invoquées dans les cas d’inhibition corrélative ont imputé les hormones/substances nutritives. Les progrés technologiques remarquables réalisés dans la quantification des hormones endogènes des tissus végétaux n’ont pas été suivis de progrès comparables concernant la compréhension des mécanismes d’action des hormones dans la dominance apicale. Les résultats des études hormonales suggèrent que l’auxine produite apicalement supprime indirectement la croissance des bourgeons axillaires activée par la cytokinine qui se forme dans les racines et les tiges. Bien que moins probable, l’action significative d’autres hormones n’a pas été écartée. Des changements possibles dans la sensibilité des tissus aux hormones ne doivent pas être negligés. Des signaux oligosaccharides induits par l’auxine et produits par les parois cellulaires des extremités de la pousse ou polyamines peuvent fonctionner comme inhibiteurs secondaires de la croissance des bourgeons. Alternativement, l’auxine produite apicalement peut supprimer la croissance des bourgeons latéraux en inhibitant la sortie d’auxine de ces bourgeons. Des éléments refont surface en faveur d’un rôle critique des substances nutritives dans la dominance apicale, et particuliérement en faveur d’un transport de ces substances dirigé par l’auxine ainsi que de l’eau comme agent inducteur d’un signal pour la croissance des bourgeons. Il devient urgent de procéder à des analyses histologiques et biochimiques de bourgeons latéraux récemment libérés de la dominance apicale. La possibilité de manipuler le contenu d’auxine/cytokinine endogènes dans les tissus végétaux par insertion et modulation de gènes de même que l’utilisation de mutants insensibles aux hormones ouvrent la porte à d’excitantes approches. Les implications économiques et esthétiques résultant de la compréhension de la dominance apicale via la manipulation de la structure et de la forme des plantes sont extrêmement importantes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abdel-Rahman, A. M. &M. G. Cline. 1989. Timing of growth inhibition following shoot inversion inPharbitis nil. Pl. Physiol.91: 464–465.Google Scholar
  2. Abeles, F. B. &H. E. Gahagan. 1968. Accelerated abscission ofColeus petioles by placing plants in a horizontal position. Life Sci.7: 634–654.Google Scholar
  3. Ackerson, R. C. &D. O. Chilcote. 1978. Effects of defoliation and TIBA (triiodobenzoic acid) on tillering, dry matter production and carbohydrate reserves of two cultivars of Kentucky Bluegrass. Crop Sci.18: 705–708.Google Scholar
  4. Andersen, A. S. 1976. Regulation of apical dominance by ethephon, irradiance and CO2. Physiol. Pl.37: 303–308.Google Scholar
  5. Argali, J. F. &K. A. Stewart. 1984. Effects of decapitation and benzyladenine on growth and yield of cowpea (Vigna unguiculata (L.) Walp). Ann. Bot.54: 439–444.Google Scholar
  6. Baker, F. A., D. W. French &G. W. Hudler. 1981. Development ofArceuthobium pusillum on inoculated black spruce. Forest Sci.27: 203–205.Google Scholar
  7. Bangerth, F. 1989. Dominance among fruits/sinks and the search for a correlative signal. Physiol. Pl.76: 608–614. A minireview.Google Scholar
  8. Bapat, V. A. &P. S. Rao. 1977. Shoot apical meristem cultureof Pharbitis nil. Pl. Sci. Letters10: 327.Google Scholar
  9. Baur, J. R. 1979. Effect of glyphosate on auxin transport in corn and cotton tissues. Pl. Physiol.63: 882–886.Google Scholar
  10. R. W. Bovey &J. A. Veech. 1977. Growth responses in sorghum and wheat induced by glyphosate. Weed Sci.25: 238–240.Google Scholar
  11. Berghage, R. D., R. D. Heins, M. Karlsson, J. Erwin &W. Carlson. 1989. Pinching technique influences lateral shoot development in poinsettia. J. Amer. Hort. Sci.114: 909–914.Google Scholar
  12. Blake, T. J., R. P. Pharis &D. M. Reid. 1980. Ethylene, gibberellins, auxin and the apical control of branch angle in a conifer,Cupressus arizonica. Planta148: 64–68. A minireview.Google Scholar
  13. D. M. Reid &S. B. Rood. 1983. Ethylene, indoleacetic acid and apical dominance in peas: A reappraisal. Physiol. Pl.59: 481–487. A minireview.Google Scholar
  14. — &T. J. Tschaplinski. 1986. Role of water relations and photosynthesis in the release of buds from apical dominance and the early reinvigoration of decapitated poplars. Physiol. Pl.68: 287–293.Google Scholar
  15. Blonstein, A. D., T. Vahala, M. Koornneef &P. J. King. 1988. Plants regenerated from auxin-auxotrophic variants are inviable. Mol. Gen. Genetics215: 58–67.Google Scholar
  16. Boswell, S. B., E. M. Nauer &W. B. Storey. 1981. Axillary buds sprouting inMacadamia induced by two cytokinins and a growth inhibitor. HortSci.16: 46.Google Scholar
  17. Brenner, M. L., D. J. Wolley, V. Sjut &D. Salerno. 1987. Analysis of apical dominance in relation to IAA transport. HortSci.22: 833–835.Google Scholar
  18. Brown, B. T., C. Foster, J. N. Phillips &B. M. Rattigan. 1979. The indirect role of 2,4-D in the maintenance of apical dominance in decapitated sunflower seedlings (Helianthus annuus L.). Planta146: 475–480.Google Scholar
  19. — &J. N. Phillips 1982. The transport behaviour of the synthetic auxin 2,4-Dichlor-phenoxyacetic acid in decapitated seedlings of sunflower (Helianthus annuus L.). Austral. J. Pl. Physiol.9: 5–13.Google Scholar
  20. Brown, C. L., R. G. McAlpine &P. P. Kormanik. 1967. Apical dominance and form in woody plants: A reappraisal. Amer. J. Bot.54: 153–162.Google Scholar
  21. Burg, S. B. &E. A. Burg. 1968. Ethylene formation in pea seedlings; its relationship to the inhibition of bud growth caused by indole-3-acetic acid. Pl. Physiol.43: 1069–1074.Google Scholar
  22. Burg, S. P. 1971. Page 397in H. Kaldewey & Y. Vardar (eds.), Hormonal regulation of plant growth and development. Verlag Chemie, GmbH, Weinheim, Bergstr., Germany.Google Scholar
  23. — 1973. Ethylene in plant growth. Proc. Nat. Acad. Sci. USA70: 591–597.PubMedGoogle Scholar
  24. Burrows, G. E. 1989. Developmental anatomy of axillary meristems ofAraucaria cunninghamii released from apical dominance following shoot apex decapitationin vitro andin vivo. Bot. Gaz.150: 369–377.Google Scholar
  25. Burtin, D., J. Martin-Tanguy &D. Tepfer. 1991. α-DL-difluoromethylornithine, a specific, irreversible inhibitor of putrescine biosynthesis, induces a phenotype in tobacco similar to that ascribed to the root-inducing, left-hand transferred DNA ofAgrobacterium rhizogenes. Pl. Physiol.95: 461–468.Google Scholar
  26. Carmi, A. &J. Van Staden. 1983. Role of roots in regulating the growth rate and cytokinin content in leaves. Pl. Physiol.73: 76–78.Google Scholar
  27. Casal, J. J., V. A. Deregibus &R. A. Sanchez. 1985. Variations in tiller dynamics and morphology inLolium multiflorum Lam. vegetative and reproductive plants as affected by differences in red/far-red irradiation. Ann. Bot.56: 553–559.Google Scholar
  28. —,R. A. Sanchez &V. A. Deregibus. 1986. The effect of plant density on tillering: The involvement of R/FR ratio and the proportions of radiation intercepted per plant. Environ. and Exp. Bot.28: 365–371.Google Scholar
  29. —. 1987. Tillering responsesof Lolium multiflorum plants to changes of R/FR ratio typical of sparse canopies. J. Exp. Bot.38: 1432–1439.Google Scholar
  30. — &D. Gibson. 1990. The significance of changes in the red/far-red ratio, associated with either neighbour plants or twilight, for tillering inLolium multiflorum Lam. New Phytol.116: 565–572.Google Scholar
  31. Catchpole, A. H. &J. R. Hillman. 1976. The involvement of ethylene in the coiled-sprout disorder of potato. Ann. Appl. Biol.83: 413–423.Google Scholar
  32. Clifford, P. E. 1977. Tiller bud suppression in reproductive plantsof Lolium multiflorum Lam. cv. Westerwoldicum. Ann. Bot.41: 605–615.Google Scholar
  33. —,D. M. Reid &R. P. Pharis. 1983. Endogenous ethylene does not initiate but may modify geobending—a role for ethylene in autotropism. Plant, Cell Environ.6: 433–436.Google Scholar
  34. Cline, M. G. 1983. Apical dominance inPharbitis nil: Effects induced by inverting the apex of the main shoot. Ann. Bot.52: 217–227.Google Scholar
  35. — &L. Riley. 1984. The presentation time for shoot inversion release of apical dominance inPharbitis nil. Ann. Bot.53: 897–900.Google Scholar
  36. Cottignies, A. &A. Jennane. 1988. Water content, water potential and transition from the non-cycling state in pea cotyledonary bud. J. Pl. Physiol.132: 1–4.Google Scholar
  37. Crabbe, J. J. 1984. Correlative effects modifying the course of bud dormancy in woody plants. Z. Pflanzenphysiol.113: 465–469.Google Scholar
  38. Crabbe, P. J. &H. Lakhoua. 1978. Arcure et gravimorphisme chez le pommier. Mise en evidence d’effets gravimorphiques sur bourgeons isoles, apres induction de ces effets en diverses conditions. Ann. Sci. Nat. Bot.19: 125–140.Google Scholar
  39. Crane, J. C. &B. J. Iwakiri. 1985. Vegetative and reproductive apical dominance in pistachio. HortSci.20: 1092–1093.Google Scholar
  40. Croxdale, J. G. 1976. Hormones and apical dominance in the fernDavallia. J. Exp. Bot.27: 801–815.Google Scholar
  41. — 1977. Accumulation of32P and [−14C] sucrose in decapitated and intact shoots of the fernDavallia trichomanoides Blume. Planta133: 111–115.Google Scholar
  42. Cutter, E. G. &H. Chiu. 1975. Differential responses of buds along the shoot to factors involved in apical dominance. J. Exp. Bot.26: 828–839.Google Scholar
  43. Cutting, J. G. M. 1991. Determination of the cytokinin complement in healthy and witchesbroom malformed Proteas. J. Plant Growth Regul.10: 85–89.Google Scholar
  44. Da Cruz, G. S. &L. J. Audus. 1978. Studies of hormone-directed transport in decapitated stolons ofSaxifraga sarmentosa. Ann. Bot.42: 1009–1027.Google Scholar
  45. Dalton, S. J. &P. J. Dale. 1985. The application ofin vitro tiller induction inLolium multiflorum. Euphytica34: 897–904.Google Scholar
  46. Daniels, R. E. 1986. Studies in the growth ofPteridium aquilinum (L.) Kuhn (bracken). 2. Effects of shading and nutrient application. Weed Res.26: 121–126.Google Scholar
  47. Davis, T. D. &E. A. Curry. 1991. Chemical regulation of vegetative growth. Crit. Revs. Pl. Sci.10: 151–188.Google Scholar
  48. Denny, F. G. 1936. Gravity-position of tomato stems and their production of the emanation causing leaf epinasty. Contr. Boyce Thompson Inst. Pl. Res.8: 99–104.Google Scholar
  49. Deregibus, V. A., R. A. Sanchez &J. J. Casal. 1983. Effects of light quality on tiller production inLolium spp. Pl. Physiol.72: 900–902.Google Scholar
  50. Dicks, J. W. &A. A. Abdel-Kawi. 1979. Antagonistic and synergistic interactions between ancymidol and gibberellins in shoot growth of cucumber (Cucumis sativus). J. Exp. Bot.30: 779–793.Google Scholar
  51. Dörffling, K. 1976. Correlative bud inhibition and abscisic acid inAcer pseudoplatanus andSyringa vulgaris. Physiol. Pl.38: 319–322.Google Scholar
  52. Dua, I. S., U. K. Kohli &K. S. Chark. 1982. Effect of morphactin, AMO-1618 and DPX-1840 on endogenous levels of hormones and its implication on apical dominance inGlycine max Linn. Proc. Indian Acad. Sci.91: 501–508.Google Scholar
  53. Duhoux, E. &D. Davies. 1985. Shoot production from cotyledonary buds ofAcacia albida and influence of sucrose on rhizogenesis. J. Plant Physiol.121: 175–180.Google Scholar
  54. Einset, J. W. 1984. Apical dominance in relation to ethylene in tobacco shoot cultures. Amer. J. Bot.71(Part 2): 25. Abstract.Google Scholar
  55. Elfving, D. C. 1985. Comparison of cytokinin and apical dominance-inhibitory growth regulation for lateral branch induction in nursery and orchard apple trees. J. HortSci.60: 447–454.Google Scholar
  56. Eliasson, L. 1975. Effect of indoleacetic acid on the abscisic acid level in stem tissue. Physiol. Pl.34: 117–120.Google Scholar
  57. El-Kady, M., E. Zayed, M. Hassan &S. El-Ashkar. 1982. Effect of some synthetic growth regulators on endogenous phytohormones in relation to apical dominance ofCoffea arabica L. Angew. Bot.56: 343–347.Google Scholar
  58. Estelle, M. A. &C. Somerville. 1987. Auxin-resistant mutants ofArabidopsis thaliana with an altered morphology. Mol. General Genetics206: 200–206.Google Scholar
  59. Everat-Bourbouloux, A. 1981. Effect of local cooling of the stem on exogenous IAA transport from the apical bud and on the growth rate of axillary buds. Physiol. Pl.53: 1–8.Google Scholar
  60. — &J-L. Bonnemain. 1980. Distribution of labelled auxin and derivatives in stem tissues of intact and decapitated broad-bean plants in relation to apical dominance. Physiol. Pl.50: 145–152.Google Scholar
  61. — &D. Charnay. 1982. Endogenous abscisic acid levels in stems and axillary buds of intact or decapitated broadbean plant (Vicia faba L.). Physiol. Pl.54: 440–445.Google Scholar
  62. Fann, Y. S., F. T. Davis, Jr. &D. R. Paterson. 1983. Correlative effects of bench chip budded ‘Mirandy’ roses. J. Amer. Soc. Hort. Sci.108: 180–183.Google Scholar
  63. Fernandez, C. H. 1976. Studies on penetration and translocation of glyphosate (N-phosphonomethylglycine) onCynodon dactylon L. Pers. M.Sc. Thesis. University of California, Davis.Google Scholar
  64. Field, R. J. &D. I. Jackson. 1974. A hormone balance theory of apical dominance. Pages 655–657in R. L. Bieski, A. R. Ferguson & M. M. Cresswell (eds.), Mechanisms of regulation of plant growth, Bull. 17. Royal Soc. of N.Z., Wellington.Google Scholar
  65. Firn, R. D. 1986. Growth substance sensitivity: The need for clearer ideas, precise terms and purposeful experiments. Physiol. Pl.67: 267–272.Google Scholar
  66. Fisher, J. B. 1972. Control of shoot-rhizome dimorphism in the woody monocotyledon, cordyline (Agavaceae). Amer. J. Bot.59: 1000–1010.Google Scholar
  67. —,S. P. Burg &B. G. Kang. 1974. Relationship of auxin transport to branch dimorphism inCordyline, a woody monocotyledon. Physiol. Plant.31: 284–287.Google Scholar
  68. Fisher, J. E. 1957. Effect of gravity on flowering of soybeans. Science125: 396.Google Scholar
  69. Foster, K. R., D. M. Reid &J. S. Taylor. 1991. Tillering and yield responses to ethephon in three barley cultivars. Crop Sci.31: 130–134.Google Scholar
  70. Gaither, D. H. 1975. Auxin and the response of pea roots to auxin transport inhibitors: Morphactin. Pl. Physiol.55: 1082–1086.Google Scholar
  71. Garvey, E. J. &P. M. Lyrene. 1987. Inheritance of compact growth habit in rabbiteye blueberry. J. Amer. Soc. Hort. Sci.112: 1004–1008.Google Scholar
  72. Gocal, G. F. W., R. P. Pharis, E. C. Young &D. Pearce. 1991. Changes after decapitation of indole-3-acetic acid and abscisic acid in the larger axillary bud ofPhaseolus vulgaris L. CV Tender Green. Pl. Physiol.95: 344–350.Google Scholar
  73. Goldsmith, M. H. M. &P. M. Ray. 1973. Intracellular localization of the active process in polar transport of auxin. Planta111: 297–314.Google Scholar
  74. Gollin, D. J., P. Albersheim, A. G. Darvill, S. H. Doares &W. S. York. 1984. Plant cell wall fragments act as regulatory molecules. J. Cell Biochem.8B: 259.Google Scholar
  75. Gould, K. S., E. G. Putter, J. P. W. Young &W. A. Charlton. 1987. Positional differences in size, morphology andin vitro performance of pea axillary buds. Canad. J. Bot.65: 406–411.Google Scholar
  76. Grayburn, W. S., P. B. Green &G. Stoucek. 1982. Bud induction with cytokinin. A local response to local application. Pl. Physiol.69: 682–686.Google Scholar
  77. Gregory, F. G. &J. A. Veale. 1957. A reassessment of the problem of apical dominance. Symp. Soc. Exp. Biol.XI: 1–20.Google Scholar
  78. Guern, J. 1987. Regulation from within: The hormone dilemma. Ann. Bot. Suppl.4: 75–102.Google Scholar
  79. Hagen, P. &R. Moe. 1981. Effect of temperature and light on lateral branching in poinsettia (Euphorbia pulcherrima Willd.). Acta Hort.128: 47–54.Google Scholar
  80. Hall, S. M. &J. R. Hillman. 1975. Correlative inhibition of lateral bud growth inPhaseolus vulgaris L. Timing of bud growth following decapitation. Planta123: 137–143.Google Scholar
  81. Hall, W. C., G. B. Truchelut, C. L. Leinweber &F. A. Herrero. 1957. Ethylene production by the cotton plant and its effects under experimental and field conditions. Physiol. Pl.10: 305–317.Google Scholar
  82. Halle, F., R. A. A. Oldeman &P. B. Tomlinson. 1978. Tropical trees and forests: An architectural analysis. Springer-Verlag, New York.Google Scholar
  83. Hansen, J. &K. Kristensen. 1990. Axillary bud growth in relation to adventitious root formation in cuttings. Physiol. Pl.79: 39–44.Google Scholar
  84. Harmer, R. 1991. The effect of bud position on branch growth and bud abscission inQuercus petraea (Matt.) Liebl. Ann. Bot.67: 463–468.Google Scholar
  85. Harrison, M. A. &P. B. Kaufman. 1980. Hormonal regulation of lateral bud (tiller) release in oats (Arena sativa L.). Pl. Physiol.66: 1123–1127.Google Scholar
  86. ——. 1982. Does ethylene play a role in the release of lateral buds (tillers) from the apical dominance in oats? Pl. Physiol.70: 811–814.Google Scholar
  87. ——. 1983. Estimates of free and bound indole-3-acetic acid and zeatin levels in relation to regulation of apical dominance and tiller release in oat shoots. J. Pl. Growth Regul.2: 215–223.Google Scholar
  88. ——. 1984. The role of hormone transport and metabolism in apical dominance in oats. Bot. Gaz.145: 293–297.PubMedGoogle Scholar
  89. Hartung, W. &C. Fünfer. 1981. ABA and apical dominance in bean. The role of tissue age. Ann. Bot.47: 371–375.Google Scholar
  90. — &F. Steigerwald. 1977. Abscisic acid and apical dominance inPhaseolus coccineus L. Planta134: 295–299.Google Scholar
  91. Hawkins, C. D. B., M. I. Whitecross &M. J. Aston. 1988. Similarities between the effects of apical infestation and cytokinin application on dark respiration and plant growth of legumes. Canad. J. Bot.66: 1896–1900.Google Scholar
  92. Healy, W. E., R. D. Heins &H. F. Wilkins. 1980. Influence of photoperiod and light quality on lateral branching and flowering of selected vegetatively-propagated plants. J. Amer. Soc. Hort. Sci.105: 812–816.Google Scholar
  93. Heins, R. D. &H. F. Wilkins. 1979. The influence of node number, light source, and time of irradiation during darkness on lateral branching and cutting production in “Bright Golden Anne” chrysanthemum. J. Amer. Soc. Hort. Sci.104: 265–270.Google Scholar
  94. —— &W. E. Healy. 1979. The effect of photoperiod on lateral shoot development inDianthus caryophyllus L. cv. Improved white sim. J. Am. Soc. Hort. Sci.104: 314–319.Google Scholar
  95. Hertel, R. &A. C. Leopold. 1963. Versuche zur analyse des auxin transports in der Koleoptile vonZea mays L. Planta59: 535–562.Google Scholar
  96. Hicks, G. R., D. L. Rayle &T. L. Lomax. 1989. Thediageotropica mutant of tomato lacks high specific activity auxin binding sites. Science245: 52–54.PubMedGoogle Scholar
  97. Hillman, J. R. 1984. Apical dominance. Pages 127–148in M. B. Wilkins (ed.), Hormonal plant physiology. Pittman, London.Google Scholar
  98. — 1986. Apical dominance and correlations by hormones. Pages 341–349in M. Bopp (ed.), Plant growth substances. Springer-Verlag, Berlin.Google Scholar
  99. —,V. B. Math &G. C. Medlow 1977. Apical dominance and the levels of indole acetic acid inPhaseolus lateral buds. Planta134: 191–193.Google Scholar
  100. — &H. Y. Yeang. 1979. Correlative inhibition of lateral bud growth inPhaseolus vulgarus L. Ethylene and the physical restriction of apical growth. J. Exp. Bot.30: 1075–1083.Google Scholar
  101. —,H. Y. Yeang &V. J. Fairhurst. 1985. Pages 213–227in J. A. Roberts & G. A. Tucker (eds.), Ethylene and plant development. Butterworths, London.Google Scholar
  102. Hillman, S. K. 1968. Translocation in plants with special reference to the role of growth hormones. Ph.D. Thesis. University of Wales, Aberystwyth.Google Scholar
  103. Hoque, E. 1985. Norway spruce dieback: Occurrence, isolation and biological activity of p-hydroxy acetophenone and p-hydroxy acetophonone-o-glucoside and their possible roles during stress phenomena. Eur. J. Forest Pathol.15: 129–145.Google Scholar
  104. Hosokawa, Z., L. Shi, T. K. Prasad &M. G. Cline. 1990. Apical dominance control inIpomoea nil: The influence of the shoot apex, leaves and stem. Ann. Bot.65: 547–556.Google Scholar
  105. Husain, S. M. 1977. Effect of prolonged geo-stimulation and presence of32P on the elongation of lateral shoots of decapitated pea seedlings. Physiol. Pl.39: 252–256.Google Scholar
  106. — &A. J. Linck. 1966. Relationship of apical dominance to the nutrient accumulation pattern inPisum sativum var. Alaska. Physiol. Pl.19: 992–1010.Google Scholar
  107. Hussey, G. 1976.In vitro release of axillary shoots from apical dominance in monocotyledonous plantlets. Ann. Bot.40: 1323–1325.Google Scholar
  108. Isbell, V. R. &P. W. Morgan. 1982. Manipulation of apical dominance in sorghum with growth regulators. Crop Sci.22: 30–34.Google Scholar
  109. Jablanovic, M. &M. Neskovic. 1977. Changes in endogenous level of auxins and cytokinins in axillary buds ofPisum sativum L. in relation to apical dominance. Biol. Pl.19: 34–39.Google Scholar
  110. Jackson, M. B. 1985. Ethylene and responses of plants to soil waterlogging and submergence. Annual Rev. Pl. Physiol.36: 145–174.Google Scholar
  111. Jankiewicz, L. S. 1963. Gravimorphism in higher plants.In S. A. Gordon (ed.), Space biology. Proc. of 24th Biol. Colloquium. Oregon State University Press, Corvallis.Google Scholar
  112. Jennane, A., P. Landre &A. Nougarède. 1987. Nucleolus activation in pea cotyledonary buds during 24 hours after decapitation of the main stem: Cytochemical studies. Protoplasma136: 29–36.Google Scholar
  113. Johnson, C. F. &D. A. Morris. 1989. Applicability of the chemiosmotic polar diffusion theory to the transport of indol-3yl-acetic acid in the intact pea (Pisum sativum L.). Planta178: 242–248.Google Scholar
  114. Katekar, G. F. &A. E. Geissler. 1977. Auxin transport inhibitors. II. 2-(l-pyrenoyl)benzoic acid, a potent inhibitor of polar auxin transport. Austral. J. Pl. Physiol.4: 321–325.Google Scholar
  115. —. 1980. Auxin transport inhibitors. Pl. Physiol.66: 1190–1195.Google Scholar
  116. Kaur-Sawhney, R., H. E. Flores &A. W. Galston. 1980. Polyamine-induced DNA synthesis and mitosis in oat leaf protoplasts. Pl. Physiol.65: 368–371.Google Scholar
  117. —,L. Shih &A. W. Galston. 1982. Relation of polyamine biosynthesis to the initiation of sprouting in potato tubers. Pl. Physiol.69: 411–415.Google Scholar
  118. King, R. A. &J. Van Staden. 1988. Differential responses of buds along the shoot ofPisum sativum to isopentenyladenine and zeatin application. Pl. Physiol. Biochem.20: 253–259.Google Scholar
  119. Klee, H. J., R. B. Horsch &S. G. Rogers. 1987. Agrobacterium-mediated plant transformation and its further applications to plant biology. Annual Rev. Plant Physiol.38: 467–486.Google Scholar
  120. Knox, J. P. &P. F. Wareing. 1984. Apical dominance inPhaseolus vulgaris L. The possible roles of ABA and IAA. J. Exp. Bot.35: 239–244.Google Scholar
  121. Kohyama, T. 1980. Growth pattern ofAbies mariesii under conditions of open growth and suppression. Bot. Mag. Tokyo93: 13–24.Google Scholar
  122. Kothari, S. L. &N. Chandra. 1986. Adventitious shoot production from stem internode and callus cuttings ofArtemisia scoparia. J. Pl. Physiol.124: 409–412.Google Scholar
  123. Kramer, D., M.-O. Desbiez, J. P. Garrec, M. Thellier, A. Fourcy &J. P. Bossy. 1980. The possible role of potassium in the activation of axillary buds ofBidens pilosus L. after decapitation of the apex. J. Exp. Bot.31: 771–776.Google Scholar
  124. LaMotte, C. E., X. Li &N. Cloud. 1991. The results of a 1977 paper showing an increased IAA level in bean axillary buds, as measured by GCMS 24 hr after plant decapitation. Pl. Physiol.96(Suppl.): 76.Google Scholar
  125. Leaky, R. R. B. &K. A. Longman. 1986. Physiological, environmental and genetic variation in apical dominance as determined by decapitation inTriplochiton scleroxylon. Tree Physiol.1: 193–207.Google Scholar
  126. Lee, J. M. &N. E. Looney. 1977. Branching habit and apical dominance of compact and normal apple seedlings as influenced by TIBA and GA3. J. Amer. Soc. Hort. Sci.102: 619–622.Google Scholar
  127. Lee, P. K.-W., B. Kessler &K. V. Thimann. 1974. The effect of hadacidin on bud development and its implications for apical dominance. Physiol. Pl.31: 11–14.Google Scholar
  128. Lee, T. T. 1984. Release of lateral buds from apical dominance by glyphosphate in soybean and pea seedlings. J. Pl. Growth Regul.3: 227–235.Google Scholar
  129. Lim, R. &I. A. Tamas. 1989. The transport of radiolabeled indoleacetic acid and its conjugates in nodal stem segments ofPhaseolus vulgaris L. Pl. Growth Regul.8: 151–164.Google Scholar
  130. Lincoln, C., J. H. Britton &M. Estelle. 1990. Growth and development of the axr1 mutants ofArabidopsis. The Plant Cell2: 1071–1080.PubMedGoogle Scholar
  131. Little, C. H. A. &M. H. M. Goldsmith. 1967. Effect of inversion on growth and movement of indole-3-acetic acid in coleoptiles. Pl. Physiol.42: 1239–1245.Google Scholar
  132. Longman, K. A. 1968. Effects of orientation and root position on apical dominance in a tropical woody plant. Ann. Bot.32: 553–566.Google Scholar
  133. Loreti, F. &P. L. Pisani. 1990. Structural manipulation for improved performance in woody plants. HortSci.25: 64–70.Google Scholar
  134. Lyon, C. J. 1962. Gravity as a factor in auxin transport. Science137: 432.PubMedGoogle Scholar
  135. Maheshwari, R. &S. Sreekrishna. 1982. The apical control of lateral bud development in excised shoot tips ofCuscuta reflexa culturedin vitro. Physiol. Pl.56: 474–481.Google Scholar
  136. Maldiney, R., F. Pelese, G. Pilate, B. Sotta, L. Sossountzov &E. Miginiac. 1986. Endogenous levels of abscisic acid, indole-3-acetic acid, zeatin and zeatin-riboside during the course of adventitious roof formation in cuttings of Craigella and Craigella lateral suppressor tomatoes. Physiol. Pl.68: 426–430.Google Scholar
  137. Mapelli, S. &L. Lombardi. 1982. A comparative auxin and cytokinin study in normal and to-2 instant tomato plants. Pl. & Cell Physiol.23: 751.Google Scholar
  138. Martin, G. C. 1987. Apical dominance. HortSci.22: 824–833.Google Scholar
  139. Mattoo, A. K., J. D. Anderson, E. Chalutz &M. Lieberman. 1979. Influence of enol ether amino-acids, inhibitors of ethylene biosynthesis, on aminoacyl transfer RNA synthetases and protein synthesis. Pl. Physiol.64: 289–292.Google Scholar
  140. McIntyre, G. I. 1968. Nutritional control of the correlative inhibition between lateral shoots in the flax seedling (Linum usitatissimum). Canad. J. Bot.46: 147–155.Google Scholar
  141. -. 1977. The role of nutrition in apical dominance. Pages 251–273in D. H. Jennings (ed.), Integration of activity in the higher plants. Symp. Soc. Exp. Biol. Cambridge.Google Scholar
  142. — 1987. The role of water in plant development. Canad. J. Bot.65: 1287–1298.Google Scholar
  143. — &E. Damson 1988. Apical dominance inPhaseolus vulgaris. The triggering effect of shoot decapitation and leaf excision on growth of lateral buds. Physiol. Pl.74: 607–614.Google Scholar
  144. — &A. I. Hsiao. 1990. The role of expanded leaves in the correlative inhibition of axillary buds in milkweed (Asclepias syriaca). Canad. J. Bot.68: 1280–1285.Google Scholar
  145. McNaughton, S. J. 1979. Grazing as an optimization process: Grass-ungulate relationships in the Serengeti. Amer. Naturalist113: 691–703.Google Scholar
  146. Medford, J. I., R. Horgan, Z. El-Sawi &H. J. Klee. 1989. Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. The Plant Cell1: 403–413.PubMedGoogle Scholar
  147. — &H. Klee. 1989. Manipulation of endogenous auxin and cytokinin levels in transgenic plants. Pages 211–220in R. Goldberg (ed.), The molecular bases of plant development. Alan R. Liss, Inc., New York.Google Scholar
  148. Memelink, J., J. H. C. Hoge &R. A. Schilperoort. 1987. Cytokinin stress changes the developmental regulation of several defence-related genes in tobacco. EMBO J.6: 3579–3583.PubMedGoogle Scholar
  149. Minocha, S. C. 1979. The role of auxin and abscisic acid in the induction of cell division in Jerusalem artichoke. Z. Pflanzenphysiol.92: 431–441.Google Scholar
  150. Mor, Y. &A. H. Halevy. 1984. Dual effect of light on flowering and sprouting of rose shoots. Physiol. Pl.61: 119–124.Google Scholar
  151. Morey, P. R. &B. E. Dahl. 1975. Histological and morphological effects of auxin transport inhibitors on honey mesquite. Bot. Gaz.136: 274–280.Google Scholar
  152. Morgan, D. C. &H. Smith. 1986. Non-photosynthetic responses to light quality. Pages 109–134in T. O. L. Lange, P. S. Nobel, C. B. Osmond & H. Ziegler (eds.), Encyclopedia of plant physiology. New series Vol. 12A Physiological Plant Ecology I. Springer-Verlag, New York.Google Scholar
  153. Morris, D. A. 1977. Transport of exogenous auxin in two-branched dwarf pea seedlings (Pisum sativum L.). Planta136: 91–96.Google Scholar
  154. — 1981. Incorporation of label from root-applied N6 (8-14C) furfuryladenine into the guanine nucleotide fraction of pea bud ribonucleic acid. Physiol. Plant.52: 315–319.Google Scholar
  155. — 1982. Hormonal regulation of sink invertase activity: Implications for the control of assimilate partitioning. Pages 659–668in P. F. Wareing (ed.), Plant growth substances. Academic Press, London.Google Scholar
  156. — &E. D. Arthur. 1987. Auxin-induced assimilate translocation in the bean stem (Phaseolus vulgaris L.). Pl. Growth Regul.5: 169–181.Google Scholar
  157. — &C. F. Johnson. 1990. The role of auxin efflux carriers in the reversible loss of polar auxin transport in the pea (Pisum sativum L.) stem. Planta181: 117–124.Google Scholar
  158. — &A. G. Thomas. 1978. A microautoradiographic study of auxin transport in the stem of intact pea seedlings (Pisum sativum L.). J. Exp. Bot.29: 147–153.Google Scholar
  159. Muleba, N., T. G. Hart &G. M. Paulsen. 1983. Physiological factors affecting maize (Zea mays L.). Yields under tropical and temperate conditions. Trop. Agric.60: 3–10.Google Scholar
  160. Mullins, M. G. 1965. Lateral shoot growth in horizontal apple stems. Ann. Bot.29: 73–78.Google Scholar
  161. Nagao, M. A. &B. Rubinstein. 1975. Relationship of cytokinin to lateral bud growth at early stages after decapitation. Bot. Gaz.136: 366–371.Google Scholar
  162. —. 1976. Early events associated with lateral bud growth ofPisum sativum L. Bot. Gaz.137: 39–44.Google Scholar
  163. Nagarajah, S. 1975. Effect of debudding on photosynthesis in leaves of cotton. Physiol. Pl.33: 28–31.Google Scholar
  164. Naqvi, S. M. &S. A. Gordon. 1966. Auxin transport inZea mays L. Coleoptiles I. Influence of gravity on the transport of indoleacetic acid-2-14C. Pl. Physiol.41: 1113–1118.Google Scholar
  165. Newaz, M. A. &D. A. Lawes. 1980. Differential response ofVicia faba L. genotypes to 2,3,5-triiodobenzoic acid (TIBA). Euphytica29: 419–424.Google Scholar
  166. Nougarède, A., P. Landré &A. Jennane. 1990. Intranucleolar visualization of nucleic acids and acidic proteins in inhibited and reactivated pea cotyledonary buds. Protoplasma156: 183–191.Google Scholar
  167. — &J. Rembur. 1983. Activités ATPasiques du noeud cotylédonaire et du bourgeon cotylédonaire du Pois inhibe, réactive ou soumis a la fusicoccine. Canad. J. Bot.61: 119–134.Google Scholar
  168. — &M. N. Hernandez. 1985. Des variations d’activités de la 5’-nucleotidase et de l’adenylate-cyclase sont-elles des composantes de la levée d’inhibition du bourgeon cotyledonaire du Pois? Canad. J. Bot.63: 309–323.Google Scholar
  169. —,J. Rembur &P. Rondet. 1981. Réactivation du bourgeon cotylédonaire du Pois en réponse à la kinétine. Canad. J. Bot.59: 590–603.Google Scholar
  170. — &P. Rondet. 1975. Synthèse et utilisation de l’amid on dans les axillaires duPisum sativum L. (var. nain hâtif d’Annonay), apres la levée de dominance apicale. Rev. Cyt. Biol. Veget.38: 197–215.Google Scholar
  171. — 1978. Événements structuraux et métaboliques dans les entre-noeuds de bourgeons axillaires du Pois, en réponse a la levée de dominance. Canad. J. Bot.56: 1213–1228.Google Scholar
  172. P. Landré &J. Rembur. 1987. Effects of abscisic acid on cell division, DNA concentrations and cotyledonary bud elongation of decapitated pea plants. Canad. J. Bot.65: 907–915.Google Scholar
  173. — &R. Saint-Côme. 1990. Impact d’un traitement par le cycloheximide sur la reprise du cycle et sur les teneurs en protéines du bourgeon cotylédonaire du Pois réactivé par décapitation. Canad. J. Bot.68: 420–427.Google Scholar
  174. —,P. Rondet &J. Rembur. 1982. Effets compares de la fusicoccine, de la kinétine et de l’ablation de l’axe principal sur le bourgeon cotylédonaire inhibe du Pois nain. Canad. J. Bot.60: 210–218.Google Scholar
  175. Osborne, D. J. 1974. Mechanism of regulation of plant growth. Pages 645–654in Plant Growth Bulletin 12. Royal Soc. of N.Z., Wellington, N.Z.Google Scholar
  176. Parker, C. 1976. Effects on the dormancy of plant organs. Pages 165–190in L. J. Audus (ed.), Herbicides: Physiology, biochemistry, ecology, 2nd Ed. Vol. 1. Academic Press. ISBN 0-12-067702-4.Google Scholar
  177. Patrick, J. W. 1979. An assessment of auxin-promoted transport in decapitated stems and whole shoots ofPhaseolus vulgaris L. Planta146: 107–112.Google Scholar
  178. — 1987. Are hormones involved in assimilate transport? Pages 175–187in G. V. Hood, J. R. Lenton, M. B. Jackson & R. K. Atkin (eds.), Hormone action in plant development: A critical appraisal. Butterworths, London.Google Scholar
  179. — &K. H. Steins. 1987. Auxin-promoted transport of metabolites in stemsof Phaseolus vulgaris L.: Auxin dose-response curves and effects of inhibitors of polar-auxin transport. J. Exp. Bot.38: 203–210.Google Scholar
  180. — &P. F. Wareing. 1978. Auxin-promoted transport of metabolites in stems ofPhaseolus vulgaris L. J. Exp. Bot.29: 359–366.Google Scholar
  181. Petersen, S. G., B. M. Stummann, P. Olesen &K. W. Henningsen. 1989. Structure and function of root-inducing (Ri) plasmids and their relation to tumor-inducing (Ti) plasmids. Physiol. Pl.77: 427–435.Google Scholar
  182. Peterson, C. A. &R. A. Fletcher. 1975. Lateral bud growth on excised stem segments: Effect of the stem. Canad. J. Bot.53: 243–248.Google Scholar
  183. Phillips, I. D. J. 1975. Apical dominance. Annual Rev. Pl. Physiol.26: 342–367.Google Scholar
  184. Pickard, B. C. 1985. Early events in geotropism of seedling shoots. Annual Rev. Pl. Physiol.36: 55–76.Google Scholar
  185. Pilate, G., L. Sossountzov &E. Miginiac. 1989. Hormone levels and apical dominance in the aquatic fernMarsilea drummondii A. Br. Pl. Physiol.90: 907–912.Google Scholar
  186. Pillay, I. &I. D. Railton. 1983. Complete release of axillary buds from apical dominance in intact, light-grown seedlings ofPisum sativum L. following a single application of cytokinin. Pl. Physiol.71: 972–974.Google Scholar
  187. Prakash, G., P. K. Sharma, R. K. Sharma &Vidhu. 1985. Correlative control of apex and lateral organs inVaccaria pyramidata in response to certain physical and chemical factors. Acta Bot. Indica13: 246–256.Google Scholar
  188. Prasad, T. K. &M. G. Cline. 1985a. Shoot inversion induced ethylene inPharbitis nil induces the release of apical dominance by restricting shoot elongation. Plant Sci.38: 163–172.PubMedGoogle Scholar
  189. ——. 1985b. Gravistimulus direction, ethylene production and shoot elongation in the release of apical dominance inPharbitis nil. J. Exp. Bot.36: 1969–1975.PubMedGoogle Scholar
  190. ——. 1985c. Mechanical perturbation-induced ethylene releases apical dominance inPharbitis nil by restricting shoot growth. Plant Sci.41: 217–222.PubMedGoogle Scholar
  191. ——. 1986a. Control of apical dominance: Localization of the ethylene-sensitive growth region of thePharbitis nil shoot. J. Pl. Physiol.125: 185–190.Google Scholar
  192. ——. 1986b. Kinetics of shoot inversion-induced ethylene production inPharbitis nil. Bot. Gaz.147: 437–442.PubMedGoogle Scholar
  193. ——. 1987a. The role of gravity in apical dominance; effects of clinostating on shoot inversion induced, ethylene production, shoot elongation and lateral bud growth. Pl. Physiol.83: 505–509.Google Scholar
  194. ——. 1987b. Gibberellin-enhanced elongation of invertedPharbitis nil shoot prevents the release of apical dominance. Pl. Sci.49: 175–179.Google Scholar
  195. ——. 1987c. Shoot inversion inhibition of stem elongation inPharbitis nil. A possible role for ethylene-induced glycoprotein and lignin. Pl. Physiol.85: 104–108.Google Scholar
  196. ——. 1989. Shoot inversion-induced ethylene production: A general phenomenon? J. Pl. Growth Regul.8: 71–77.Google Scholar
  197. —,Z. Hosokawa &M. G. Cline. 1989. Effects of auxin, auxin-transport inhibition and mineral nutrients on apical dominance inPharbitis nil. J. Pl. Physiol.135: 472–477.Google Scholar
  198. Procházka, S. 1981. Transport of benzyl-8-14C-adenine in pea seedlings in relation to stem apical dominance. Biologia Pl.23: 68–71.Google Scholar
  199. —,V. Cernoch, J. Blazkova &M. Dundelova. 1983. Morphoregulative effects of phenylacetic acid in pea seedlings (Pisum sativum L.). Biochem. Physiol. Pflanzen.178: 493–501.Google Scholar
  200. — &W. P. Jacobs. 1984. Transport of benzyladenine and gibberellin acid from roots in relation to the dominance between axillary buds of pea (Pisum sativum L.) cotyledons. Pl. Physiol.76: 224–227.Google Scholar
  201. Quinlan, J. D. &K. R. Tobutt. 1990. Manipulating fruit tree structure chemically and genetically for improved performance. HortSci.25: 60–64.Google Scholar
  202. Rehm, S., E. A. Zayed &G. Espeg. 1978. Effect of gibberellic acid on the sprouting and growth of secondary buds ofCoffea arabica stimulated by other growth regulators. Z. Pflanzenphysiol.89: 1–10.Google Scholar
  203. Robitaille, H. A. &A. C. Leopold. 1974. Ethylene and the regulation of apple stem growth under stress. Physiol. Pl.32: 301–304.Google Scholar
  204. Romano, C. P., M. B. Hein &H. J. Klee. 1991. Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene ofPseudomonas savastanoi. Genes & Developm.5: 438–446.Google Scholar
  205. Rood, S. B. 1985. Application of gibberellic acid to control tillering in early-maturing maize. Canad. J. Bot.65: 901–911.Google Scholar
  206. Rorabaugh, P. A. &F. B. Salisbury. 1989. Gravitropism in higher plant shoots. VI. Changing sensitivity to auxin in gravistimulated soybean hypocotyls. Pl. Physiol.91: 1329–1338.Google Scholar
  207. Rubinstein, B. &M. A. Nagao. 1976. Lateral bud outgrowth and its control by the apex. Bot. Rev.42: 83–113.Google Scholar
  208. Russell, W. &K. V. Thimann. 1988. The second messenger in apical dominance controlled by auxin. Pages 419–427 in R. P. Pharis and S. B. Rood (eds.), Plant growth substances 1988. Springer-Verlag, New York.Google Scholar
  209. Sachs, J. 1887. On the physiology of plants. Clarendon Press, Oxford.Google Scholar
  210. Sachs, R. M. &W. P. Hackett. 1972. Chemical inhibition of plant height. HortSci.7: 440–447.Google Scholar
  211. Sachs, T. 1991. Pattern formation in plant tissues. Cambridge University Press, New York.Google Scholar
  212. — &K. V. Thimann. 1967. The role of auxins and cytokinins in the release of buds from dominance. Amer. J. Bot.54: 136–144.Google Scholar
  213. Salerno, D. C. &M. L. Brenner. 1983. Apical dominance. IAA mobility in the tomato isogenia lines Craigella Blind. Pl. Physiol. Suppl.72: 27.Google Scholar
  214. Salomon, E. 1976. Formation of adventitious buds in decapitated citrus seedlings and the effect of some growth regulators. J. Exp. Bot.27: 69–75.Google Scholar
  215. Saltveit, M. E., Jr. &W. C. Fonteno. 1983. Auxin transport inDracaena marginata stems. J. Amer. Soc. Hort. Sci.108: 183–186.Google Scholar
  216. Sandhu, A. S. &Z. Singh. 1983. Effect of (2-chloroethyl) phosphonic acid on apical dominance of peach (Prunus persica Batsch). Indian J. Pl. Physiol.26: 105–107.Google Scholar
  217. Schupp, J. R. &D. C. Ferree. 1990. Influence of time of root pruning on growth, mineral nutrition, net photosynthesis and transpiration of young apple trees. Sci. Hort.42: 299–306.Google Scholar
  218. Scott, I. M. 1988. Effects of gibberellin on shoot development in thedgt mutant of tomato. Ann. Bot.61: 389–392.Google Scholar
  219. Sebanek, J. &J. Hradilik. 1978. The role of endogenous abscisic acid in the correlation between the cotyledon and the axillary bud in pea (Pisum sativum L.). Biol. Pl.20: 299–302.Google Scholar
  220. — &B. Jandakov. 1984. The effect of jasmonic and 2,3,5-triiodo-benzoic acid on the correlation between cotyledons and their axillary buds. Biochem. Physiol. Pflanzen.179: 341–357.Google Scholar
  221. Semeniuk, P. &R. J. Griesbach. 1985. Bud applications of benzyladenine induce branching of a nonbranching poinsettia. HortSci.20: 120–121.Google Scholar
  222. Shen, W. H., A. Petit, J. Guern &J. Tempé. 1988. Hairy roots are more sensitive to auxin than normal roots. Proc. Natl. Acad. Sci. USA85: 3417–3421.PubMedGoogle Scholar
  223. Shi, L. & M. Cline. 1991. Shoot inversion-induced ethylene production in thediageotropica tomato mutant. Ann. Bot. (In press).Google Scholar
  224. Shu, L.-J. &K. C. Sanderson. 1980. Dikegulac sodium influences shoot growth of greenhouse azaleas. HortSci.15: 813–814.Google Scholar
  225. Sisler, E. C. &S. F. Yang. 1984. Ethylene, the gaseous plant hormone. BioScience34: 234–238.Google Scholar
  226. Skoog, F. &A. K. B. Abdul Ghani. 1981. Relative activities of cytokinins and antagonists in releasing lateral buds ofPisum from apical dominance compared with their relative activities in the regulation of growth of tobacco callus. Pages 140–150in S. Guern & C. PeaudLenoël (eds.), Metabolism and molecular activities of cytokinins. Springer-Verlag, New York.Google Scholar
  227. Smigocki, A. C. &L. D. Owens. 1990. Cytokinin-to-auxin ratios and morphology of shoots and tissues transformed by a chimeric isopentenyl transferase gene. Pl. Physiol.91: 808–811.Google Scholar
  228. Smith, H. &P. F. Wareing. 1964a. Gravimorphism in trees. 2. The effect of gravity on budbreak in osier willow. Ann. Bot.28: 283–295.Google Scholar
  229. Smith, H. &P. F. Wareing. 1964b. Gravimorphism in trees. 3. The possible implication of a root factor in the growth and dominance relationships of the shoots. Ann. Bot.28: 297–309.Google Scholar
  230. Smith, H. &P. F. Wareing. 1966. Apical dominance and the effect of gravity on nutrient distribution. Planta70: 87–94.Google Scholar
  231. Snow, R. 1937. On the nature of correlative inhibition. New Phytol.36: 283–300.Google Scholar
  232. Sossountzov, L., R. Maldiney, B. Sotta, I. Sabbagh &E. Miginiac. 1988. Immunocytochemical localization of cytokinins in Craigella tomato and a side shootless mutant. Planta175: 291–304.Google Scholar
  233. Spano, L., D. Mariotti, M. Cardarelli, C. Branca &P. Constantino. 1988. Morphogenesis and auxin sensitivity of transgenic tobacco with different complements of Ri T-DNA. Pl. Physiol.87: 479–483.Google Scholar
  234. Stafstrom, J. P. 1991. Expression of a ribosomal protein gene in pea axillary buds. Pl. Physiol.96(Suppl): 20.Google Scholar
  235. — &I. M. Sussex. 1988. Patterns of protein synthesis in dormant and growing vegetative buds of pea. Planta176: 497–505.Google Scholar
  236. Steeves, T. A. &I. M. Sussex. 1989. Patterns in plant development. Cambridge University Press, Cambridge.Google Scholar
  237. Stimart, D. P. 1983. Promotion and inhibition of branching in poinsettia in grafts between self-branching and non-branching cultivars. J. Amer. Soc. Hort. Sci.108: 419–422.Google Scholar
  238. Suzuki, T. 1990a. Apical dominance in mulberry (Morus alba): Effects of position of lateral and accessory buds and leaves. Physiol. Pl.78: 468–474.Google Scholar
  239. — 1990b. Apical control of lateral bud development and shoot growth in mulberry (Morus alba). Physiol. Pl.80: 350–356.Google Scholar
  240. — &M. Kitano. 1989a. Dormancy and spring development of lateral buds in mulberry (Morus alba). Physiol. Pl.75: 188–194.Google Scholar
  241. ——. 1989b. Lateral bud development and shoot growth on low-prunedMorus alba as affected by stem orientation. Physiol. Pl.76: 493–499.Google Scholar
  242. —— &K. Kohno. 1988. Lateral bud outgrowth on decapitated shoots of low-pruned mulberry. Tree Physiol.4: 53–60.PubMedGoogle Scholar
  243. Svenson, S. E. 1991. Rooting and lateral shoot elongation ofVerbena following benzylaminopurine application. HortSci.26: 391–392.Google Scholar
  244. Swennen, R., G. F. Wilson &E. De Langhe. 1984. Preliminary investigation of the effects of gibberellic acid (GA3) on sucker development in plantain (Musa cv AAB) under field conditions. Trop. Agric.61: 253–256.Google Scholar
  245. Tamas, I. A. 1987. Hormonal regulation of apical dominance. Pages 393–410in P. J. Davies (ed.), Plant hormones and their role in plant growth and development. Mertinus Nijhoff Publishers, Boston.Google Scholar
  246. —,J. Ozbun, D. Wallace, L. Powell &C. Engels. 1979. Effect of fruits on dormancy and abscisic acid concentration in the axillary buds ofPhaseolus vulgaris L. Pl. Physiol.64: 615–619.Google Scholar
  247. —,J. Schlossberg-Jacobs, R. Lim, L. Friedman &C. Barone. 1989. Effect of plant growth substances on the growth of axillary buds in cultured stem segmentsof Phaseolus vulgaris L. Pl. Growth Regul.8: 165–183.Google Scholar
  248. Tayo, T. O. 1982. Growth, development and yield of pigeon pea (Cajanus cajan (L.) Millsp.) in the lowland tropics. 3. Effect of early loss of apical dominance. J. Agric. Sci.98: 79–84.Google Scholar
  249. Tepfer, D. 1984. Transformation of several species of higher plants byAgrobacterium rhizogenes: Sexual transmission of the transformed genotype and phenotype. Cell37: 959–967.PubMedGoogle Scholar
  250. Theron, K. I., G. Jacobs &D. K. Strydom. 1987. Correlative inhibition of axillary buds in apple nursery trees in relation to node position, defoliation, and Promalin application. J. Amer. Soc. Hort. Sci.112: 732–734.Google Scholar
  251. Thimann, K. V. 1977. Hormone action in the whole life of plants. University of Massachusetts Press, Amherst.Google Scholar
  252. Tomar, Y. S. 1983. Reflections on apical dominance in relation to mineral nutrients inNicotiana tobacum L. cv Calcutti. Proc. Nat. Acad. Sci. India53(B)2: 109–114.Google Scholar
  253. — 1985. Hormonal regulation of apical dominance inWithania somnifera (L.). Dunal. Acta Bot. Indica13: 18–25.Google Scholar
  254. Tomlinson, P. B. 1983. Tree architecture. Amer. Sci.7: 141–149.Google Scholar
  255. Trewavas, A. J. 1981. How do plant growth substances work? Plant, Cell & Environ.4: 203–228.Google Scholar
  256. Tucker, D. J. 1975. Far-red light as a suppressor of side shoot growth in the tomato. Pl. Sci. Lett.5: 127–130.Google Scholar
  257. — 1976a. Endogenous growth regulators in relation to side shoot development in the tomato. New Phytol.77: 561–568.Google Scholar
  258. — 1976b. Effect of far-red light on the normal control of side shoot growth in the tomato. Ann. Bot.40: 1033–1042.Google Scholar
  259. — 1977a. Hormonal regulation of lateral bud growth in the tomato. Pl. Sci. Lett.8: 105–111.Google Scholar
  260. — 1977b. Apical dominance in the rogue tomato. Ann. Bot.41: 181–190.Google Scholar
  261. — 1977c. The effects of far-red light on lateral bud outgrowth in decapitated tomato plants and the associated changes in the levels of auxin and abscisic acid. Pl. Sci. Lett.8: 339–344.Google Scholar
  262. — 1979. Apical dominance in the tomato. Some further observations on isogenic lines showing varying degrees of side shoot development. Ann. Bot.43: 571–577.Google Scholar
  263. — 1980a. Some observations on factors controlling apical dominance in the rogue tomato. Ann. Bot.45: 555–560.Google Scholar
  264. — 1980b. Apical dominance. A personal view. Br. Pl. Growth Reg. Group News Bull.4: 1–9.Google Scholar
  265. — 1981. Axillary bud formation in two isogenic lines of tomato showing different degrees of apical dominance. Ann. Bot.48: 837.Google Scholar
  266. — &T. A. Mansfield. 1972. Effects of light quality on apical dominance inXanthium strumarium and the associated changes in endogenous levels of abscisic acid and cytokinins. Planta102: 140–151.Google Scholar
  267. Van Dijck, R., M. De Proft &J. De Greef. 1988. Role of ethylene and cytokinins in the initiation of lateral shoot growth in bromeliads. Pl. Physiol.86: 836–840.Google Scholar
  268. Van Onckelen, H. A., S. Horemans &J. A. De Greef. 1981. Functional aspects of abscisic acid metabolism in cotyledons ofPhaseolus vulgaris L. seedlings. Pl. and Cell Physiol.22: 507–515.Google Scholar
  269. Van Staden, J. 1982. Transport of (814C) zeatin from mature rose leaves after shoot decapitation. Bot. Gaz.143: 201–205.Google Scholar
  270. — &G. G. Dimalla. 1978. Endogenous cytokinin and the breaking of dormancy and apical dominance in potato tubers. J. Exp. Bot.29: 1077–1084.Google Scholar
  271. —. 1981. The production and utilization of cytokinins in rootless dormant almond shoots maintained at low temperature. Z. Pflanzenphysiol.103: 121–129.Google Scholar
  272. —,H. Spiegelstein, N. Zieslin &A. H. Halevy. 1981. Endogenous cytokinins and lateral bud outgrowth in roses. Bot. Gaz.142: 177–182.Google Scholar
  273. Vince-Prue, D. 1977. Photocontrol of stem elongation in light-grown plants ofFuchsia hybrida. Planta133: 149–156.Google Scholar
  274. Waithaka, K., A. C. Hildebrandt &M. N. Dana. 1980. Hormonal control of strawberry axillary bud developmentin vitro. J. Amer. Soc. Hort. Sci.105: 428–430.Google Scholar
  275. Wang, T. L. &P. F. Wareing. 1979. Cytokinins and apical dominance inSolanum andigena. Lateral shoot growth and endogenous cytokinin levels in the absence of roots. New Phytol.82: 19–28.Google Scholar
  276. Wardlaw, I. F. &D. C. Mortimer. 1970. Carbohydrate movement in pea plants in relation to axillary bud growth and vascular development. Canad. J. Bot.48: 229–237.Google Scholar
  277. Wareing, P. F. &T. A. A. Nasr. 1958. Gravimorphism in trees. Effects of gravity on growth, apical dominance and flowering in fruit trees. Nature, London182: 379–380.Google Scholar
  278. Wareing, P. F. &T. A. A. Nasr. 1961. Gravimorphism in trees. Effects of gravity on growth, apical dominance in fruit trees. Ann. Bot.25: 321–340.Google Scholar
  279. — &I. D. J. Phillips. 1981. Growth and differentiation in plants, 3rd ed. Pergamon, Oxford.Google Scholar
  280. Watson, M. A., J. C. Carrier &G. L. Cook. 1982. Effects of exogenously supplied gibberellic acid (GA3) on patterns of water hyacinth development. Aquatic Bot.13: 57–68.Google Scholar
  281. Weiss, D. &R. Shillo. 1988. Axillary bud inhibition induced by young leaves or bract inEuphorbia pulcherrima Willd. Ann. Bot.62: 435–440.Google Scholar
  282. Wertheim, S. J. 1978. Manual and chemical induction of side-shoot formation in apple trees in the nursery. Sci. Hort.9: 337–345.Google Scholar
  283. Wheeler, R. M., R. G. White &F. B. Salisbury. 1986. Gravitropism in higher shoots IV. Further studies on participation of ethylene. Pl. Physiol.82: 534–542.Google Scholar
  284. White, J. C. 1976. Correlative inhibition of lateral bud growth inPhaseolus vulgaris L. Effect of application of indol-3yl-acetic acid to decapitated plants. Ann. Bot.40: 521–529.Google Scholar
  285. — &J. R. Hillman. 1972. On the use of morphactin and triiodo-benzoic acid in apical dominance studies. Planta107: 257–260.Google Scholar
  286. — &T. A. Mansfield. 1977. Correlative inhibition of lateral bud growth inPisum sativum L. andPhaseolus vulgaris L. Studies of the role of abscisic acid. Ann. Bot.41: 1163–1170.Google Scholar
  287. —,G. C. Medlow, J. R. Hillman &M. B. Wilkins. 1975. Correlative inhibition of lateral bud growth inPhaseolus vulgaris L. Isolation of indoleacetic acid from inhibitory region. J. Exp. Bot.26: 419–424.Google Scholar
  288. Wilson, B. F. 1990. The development of tree form. HortSci.25: 52–54.Google Scholar
  289. Wright, M. 1981. Reversal of the polarity of IAA transport in the leaf sheath base ofEchinochloa colonum. J. Exp. Bot.32: 159–169.Google Scholar
  290. —,D. M. Mousdale &D. J. Osborne. 1978. Evidence for a gravity-regulated level of endogenous auxin controlling cell elongation and ethylene production during geotropic bending in grass nodes. Biochem. Physiol. Pflanzen.172: 581–596.Google Scholar
  291. Yang, S. F. &N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Annual Rev. Pl. Physiol.35: 155–189.Google Scholar
  292. Yeang, H. Y. &J. R. Hillman. 1981a. Internodal extension in the first trifoliate leaf axillary bud of bean following shoot decapitation. Ann. Bot.48: 25–32.Google Scholar
  293. Yeang, H. Y. &J. R. Hillman. 1981b. Control of lateral bud growth inPhaseolus vulgaris L. by ethylene in the apical shoot. J. Exp. Bot.32: 395–404.Google Scholar
  294. Yeang, H. Y. &J. R. Hillman. 1982. Lateral bud growth in bean and levels of ethylene in bud and adjacent tissue. J. Exp. Bot.33: 111–117.Google Scholar
  295. Yeang, H. Y. &J. R. Hillman. 1984. Ethylene and apical dominance. Physiol. Pl.60: 275–282.Google Scholar
  296. Zieslin, N., N. Haaze &A. H. Halevy. 1976. II. The effect of bud position on degree of inhibition. Bot. Gaz.137: 297–300.Google Scholar
  297. — &A. H. Halevy. 1976. Components of axillary bud inhibition in rose plants. 1. The effect of different plant parts (correlative inhibition). Bot. Gaz.137: 291–296.Google Scholar
  298. —. 1978. Components of axillary bud inhibition in rose plants. III. Effect of stem orientation and changes of bud position in the stem by budding. Bot. Gaz.139: 60–63.Google Scholar
  299. —,H. Spiegelstein &A. H. Halevy. 1978. Components of axillary bud inhibition in rose plants. IV. Inhibitory activity of plant extracts. Bot. Gaz.139: 64–68.Google Scholar

Copyright information

© The New York Botanical Garden 1991

Authors and Affiliations

  • Morris G. Cline
    • 1
  1. 1.Department of Plant BiologyThe Ohio State UniversityColumbus

Personalised recommendations