The Botanical Review

, Volume 57, Issue 4, pp 277–317 | Cite as

Canopy seed storage in woody plants

  • Byron B. Lamont
  • D. C. Le Maitre
  • R. M. Cowling
  • N. J. Enright
Article

Abstract

The retention of seeds in the plant canopy for one to 30 years or more is termed serotiny. It is well represented floristically and physiognomically in fire-prone, nutrient-poor and seasonally-dry sclerophyll vegetation in Australia, and to a lesser extent, South Africa followed by North America. While the seed-storing structures vary greatly, all will release their propagules following exposure to the heat of a fire (pyriscence). This phenomenon can be contrasted with seed release at maturity (non-storage) and soil storage of seeds. Although the evolutionary requirements for serotiny are clear, its adaptive advantages over other seed storage syndromes are largely the subject of conjecture in the absence of comparative experiments. Nine hypotheses were assessed here. Canopy storage maximises the quantity of seeds available for the next post-fire generation (unlike non-storage). Synchronized post-fire release satiates post-dispersal granivores (unlike non-storage and soil storage) and ensures arrival on a seed bed conducive to seedling recruitment (unlike non-storage). Canopy stored seeds are better insulated from the heat of a fire than non-stored, and probably soil-stored, seeds. Fluctuating annual seed crops, the opportunity for post-fire wind-dispersal, the possible advantages of dense stands of adults, short lifespan of the dispersed seeds and their optimal location in the soil for germination have only a limited role in explaining the advantages of serotiny. It is concluded that canopy seed storage is favoured in regions where seed production is restricted and inter-fire establishment and maturation are unlikely. In addition, these regions have a reliable seasonal rainfall and are subjected to intense fires at intervals occurring within the reproductive lifespan of the species.

Abstrakt

Das Speichern von Samen für ein bis zu 30 Jahren im Blattwerk der Pflanzen bezeichnet man als ‘Serotiny.’ Es ist in zu Bränden neigenden, nährstoffarmen und periodisch trockenen Hartlaub-Vegetationen in Australien und in geringerem Ausmaß in Nordamerika und Südafrika häufig vertreten. Obwohl die Samenspeiche-rungsstrukturen stark variieren, werden alle ihre Brutkörper frei, nachdem sie der Hitze von Feuer ausgesetzt waren (pyrhiscene). Dieses Phänomen steht im Gegensatz zur Samenfreigabe bei Reife (Nicht-Lagerung) und Bodenlagerung. Obwohl die Entwicklungsvoraussetzungen für ‘Serotiny’ bekannt sind, ist die Überlegenheit gegenüber anderen Samenspeicherungserscheinungsbildern aufgrund der Anpassungsfä-higkeit, größtenteils Gegenstand von Vermutungen, da es vergleichende Experimente nicht gibt. Neun Hypothesen wurden hier bewertet. Blattwerkspeicherung maximiert die Menge des zur Verfügung stehenden Samens für die nächste Generation nach einem Feuer (im Gegensatz zur Nicht-Lagerung). Gleichzeitige Abgabe nach einem Feuer übersättigt die Körnerfresser (im Gegensatz zur Nicht-Lagerung und Bodenlagerung) und sichert so ein Auftreften auf dem Saatbeet, dieses ist für die Sämlingverstärkung von Nutzen. Samen welche im Blattwerk gelagert sind, sind besser gegen die Hitze des Feuers geschützt als nichtgespeicherte Samen und wahrscheinlich auch als bodengelagerte Samen. Schwankende jährliche Samenausbeute, die größere Möglichkeit für Ausbreitung durch den Wind, die möglichen Vorteile durch dichteres Zusammenstehen von älteren Pflanzen, kurze Lebensspanne von verstreuten Samen und die für die Keimung optimale Lage im Boden spielen nur eine begrenzte Rolle in der Erklärung der Vorteile der ‘Serotiny’. Es wird daher geschlossen, daß Blattwerksamenspeicherung in Regionen unwahrscheinlicher Zwischenfeuer-Etablierung und Reifung bevorzugt wird. Weiterhin haben diese Regionen einen verläßlichen saisonalen Regenfall und sind Gegenstand ausgedehnter Brände, die in Intervallen innerhalb der Fortpflanzungslebensspanne der Spezies auftreten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abbott, I. 1985. Reproductive ecology ofBanksia grandis (Proteaceae). New Phytol.99: 129–148.CrossRefGoogle Scholar
  2. Ahlgren, C. E. 1974. Effects of fire on temperate forests: North Central United States. Pages 195–223in T. T. Kozlowski & C. E. Ahlgren (eds.), Fire and ecosystems. Academic Press, New York.Google Scholar
  3. Ashton, D. H. 1981. Fire in tall open-forests (wet sclerophyll forests). Pages 330–366in A. M. Gill, R. H. Groves & I. R. Noble (eds.), Fire and the Australian biota. Aust. Academy of Science, Canberra.Google Scholar
  4. -.& E. J. Willis. 1982. The antagonism in the regeneration ofEucalyptus regnans in the mature forest. Pages 113–128in E. I. Newman (ed.), The plant community as a working mechanism. Special Publ. Brit. Ecol. Soc. No. 1.Google Scholar
  5. Auld, T. D. 1986. Population dynamics of the shrubAcacia suaveolens (Sm.) Willd.: Fire and the transition to seedlings. Austral. J. Ecol.11: 373–385.CrossRefGoogle Scholar
  6. Baker, H. A. &E. G. Oliver. 1967. Ericas in Southern Africa. Purnell, Cape Town.Google Scholar
  7. Baker, H. G. 1972. Seed weight in relation to environmental conditions in California. Ecology53: 997–1010.CrossRefGoogle Scholar
  8. Barden, L. S. 1979. Serotiny and seed viabilityof Pinus pungens in the Southern Appalachians. Castanea44: 44–47.Google Scholar
  9. Barrow, N. J. 1977. Phosphorus uptake and utilization by tree seedlings. Aust. J. Bot.25: 571–584.CrossRefGoogle Scholar
  10. Beadle, N. C. 1966. Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology32: 611–654.Google Scholar
  11. — 1968. Some aspects of the ecology and physiology of Australian xeromorphic plants. Austral. J. Sci.30: 348–355.Google Scholar
  12. Beard, J. S. 1958. The protea species of the summer rainfall area of South Africa. Bothalia7: 41–63.Google Scholar
  13. Beaufait, W. R. 1960. Some effects of high temperatures on the cones and seeds of jack pine. For. Sci.6: 194–199.Google Scholar
  14. Black, R. A. &L. C. Bliss. 1978. Recovery sequenceof Picea mariana-Vaccinium uliginosum forests after burning near Inuvik, Northwest Territories, Canada. Canad. J. Bot.56: 2020–2030.Google Scholar
  15. Boe, K. N. 1974.Sequoiadendron giganteum (Lindl.) Buchholz. Pages 767–768in C. S. Schopfmeyer (tech. coord.). Seeds of woody plants of the United States. U.S.D.A. Forest Serv., Agric. Handbook No. 450.Google Scholar
  16. Boland, D. J., M. I. Brooker &J. W. Turnbull. 1980.Eucalyptus seeds. Division of Forest Research, CSIRO, Canberra, Australia.Google Scholar
  17. Bond, W. J. 1984. Fire survival of Cape Proteaceae—Influence of fire season and seed predators. Vegetatio56: 65–74.Google Scholar
  18. — 1985. Canopy-stored seed reserves (serotiny) in Cape Proteaceae. S. African J. Bot.51: 181–186.Google Scholar
  19. — 1988. Proteas as “tumbleseeds”: Wind dispersal through air and over soil. S. African J. Bot.54: 455–460.Google Scholar
  20. -. In press. The hare and the tortoise: Angiosperm dominance and gymnosperm persistence J. Linn. Soc. Bot.Google Scholar
  21. J. Vlok &M. Viviers. 1984. Variation in seedling recruitment of Cape Proteaceae after fire. J. Ecol.72: 209–221.CrossRefGoogle Scholar
  22. Borchert, M. 1985. Serotiny and cone-habit in populations ofPinus coulteri (Pinaceae) in the southern coast ranges of California. Madrono32: 29–48.Google Scholar
  23. Bradstock, R. A. 1985. Plant population dynamics under varying fire regimes. Ph.D. Thesis, University of Sydney.Google Scholar
  24. — &P. J. Myerscough. 1981. Fire effects of seed release and the emergence and establishment of seedlings inBanksia ericifolia. Austral. J. Bot.29: 521–531.CrossRefGoogle Scholar
  25. —. 1988. The survival and population response to frequent fires of two woody resproutersBanksia serrata andIsopogon anemonifolius. Austral. J. Bot.36: 415–431.CrossRefGoogle Scholar
  26. Brits, G. J. 1987. Germination depth versus temperature requirements in naturally dispersed seeds ofLeucospermum cordifolium andL. cuneiforme (Proteaceae). S. African J. Bot.53: 119–124.Google Scholar
  27. Campbell, B. M. &M. J. Werger. 1988. Plant form in the mountains of the Cape, South Africa. J. Ecol.76: 635–653.Google Scholar
  28. Cayford, J. H. &D. J. McRae. 1983. The ecological role of fire in jack pine forests. Pages 182–199in R. W. Wien & D. A. MacLean (eds.), The role of fire in circumpolar ecosystems. John Wiley & Son, Chichester, England.Google Scholar
  29. Christensen, P. E. &P. C. Kimber. 1975. Effect of prescribed burning on the flora and fauna of south-west Australian forests. Proc. Ecol. Soc. Austral.1: 85–106.Google Scholar
  30. Coetzee, J. M. &J. H. Giliomee. 1987. Seed predation and survival in the infructescences ofProtea repens (Proteaceae). S. African J. Bot.53: 61–64.Google Scholar
  31. Cogbill, C. V. 1985. Dynamics of the boreal forests of the Laurentian Highlands, Canada. Canad. J. For. Res.15: 262–271.CrossRefGoogle Scholar
  32. Cowling, R. M. &B. M. Campbell. 1980. Convergence in vegetation structure in the mediterranean communities of California, Chile and South Africa. Vegetatio43: 191–198.CrossRefGoogle Scholar
  33. — &B. B. Lamont. 1985a. Serotiny in threeBanksia species along a climatic gradient. Austral. J. Ecol.10: 345–350.CrossRefGoogle Scholar
  34. ——. 1985b. Seed release inBanksia: The role of wet-dry cycles. Austral. J. Ecol.10: 169–171.CrossRefGoogle Scholar
  35. ——. 1987. Post-fire recruitment of four co-occurringBanksia species. J. Appl. Ecol.24: 645–658.CrossRefGoogle Scholar
  36. —— &S. M. Pierce. 1987. Seed bank dynamics of four co-occurringBanksiaspecies. J. Ecol.75: 289–302.CrossRefGoogle Scholar
  37. — &T. Gxaba. 1990. Effects of a fynbos on understorey community: Implications for the maintenance of community-wide species richness. S. African J. Ecol.1: 1–7.Google Scholar
  38. Cremer, K. W. 1966. Dissemination of seed fromEucalyptus regnans. Austral. For.30: 33–37.Google Scholar
  39. Critchfield, W. B. 1985. The later quaternary history of lodgepole and jack pines. Canad. J. For. Res.15: 749–772.CrossRefGoogle Scholar
  40. Crossley, D. I. 1956. Fruiting habits of lodgepole pine. Can. Dept. Northern Affairs and Nat. Res., For. Res. Div. Tech. Note 35.Google Scholar
  41. Dallimore, W. &A. B. Jackson. 1966. A handbook of the Coniferae and Ginkgoaceae, 4th ed., revised by S. G. Harrison. St. Martin’s Press, New York.Google Scholar
  42. Davidson, D. W. &S. R. Morton. 1984. Dispersal adaptations of someAcacia species in the Australian arid zone. Ecology65: 1038–1051.CrossRefGoogle Scholar
  43. Elliott, P. F. 1974. Evolutionary responses of plants to seed-eaters: Pine squirrel predation on Lodgepole pine. Evolution28: 221–231.CrossRefGoogle Scholar
  44. Engelmann, G. 1880. Revision of the genusPinus, and description ofPinus elliottii. Trans. Acad. Sci. St. Louis4: 161–190.Google Scholar
  45. Enright, N. J. &B. B. Lamont. 1989a. Fire temperatures and follicle opening requirements in tenBanksia species. Austral. J. Ecol.14: 107–113.Google Scholar
  46. —. 1989b. Seed banks, fire season, safe sites and seedling recruitment in five co-occurringBanksia species. J. Ecol.77: 1111–1122.CrossRefGoogle Scholar
  47. —. 1990. Effects of density on the reproductive output ofProtea lepidocarpodendron. S. African J. Bot.56: 29–33.Google Scholar
  48. —.E. T. Witkowski &P. J. Mustart. 1989. Reproductive traits and accumulation of nitrogen and phosphorus during the development of fruits ofProtea compacta R. Br. (calcifuge) andProtea obtusifolia Buek. ex meisn. (calcicole). New Phytol.112: 109–115.CrossRefGoogle Scholar
  49. Farrell, T. P. &D. H. Ashton. 1978. Population studies onAcacia melanoxylon R.Br. I: Variation in seed and vegetative characteristics. Austral. J. Bot.26: 365–379.CrossRefGoogle Scholar
  50. Forcella, F. 1980. Cone predation by pinyon cone beetle (Conophthorus edulis; Scolytidae): Dependence on frequency and magnitude of cone production. Amer. Nat.116: 594–598.CrossRefGoogle Scholar
  51. Fowells, H. A. 1965. Silvics of forest trees of the United States. U.S.D.A. Forest Serv., Agric. Handbook No. 271.Google Scholar
  52. Fox, B. J., R. D. Quinn &G. J. Breytenbach. 1985. A comparison of small mammal succession following fire in shrublands of Australia, California and South Africa. Proc. Ecol. Soc. Austral.14: 179–197.Google Scholar
  53. George, A. S. 1981. The genusBanksia L.f. Nuytsia3: 239–473.Google Scholar
  54. Gill, A. M. 1976. Fire and the opening ofBanksia ornata F. Muell. follicles. Austral. J. Bot.24: 329–335.CrossRefGoogle Scholar
  55. — 1981a. Adaptive responses of Australian vascular plant species to fires. Pages 243–272in A. M. Gill, R. H. Groves & I. R. Noble (eds.), Fire and the Australian biota. Australian Academy of Science, Canberra.Google Scholar
  56. — 1981b. Coping with fire. Pages 65–87in J. S. Pate & A. J. McComb (eds.), The biology of Australian plants. University of Western Australia Press, Perth.Google Scholar
  57. -. 1981c. Fire adaptive traits of vascular plants. Pages 208–230in J. M. Bonnicksen, N. I. Christense, J. E. Lotan & W. A. Reiners (eds.), Fire regimes and ecosystem properties. U.S.D.A. Forest Serv., Gen. Tech. Rep. WO 26.Google Scholar
  58. — &S. Neser. 1984.Acacia cyclops andHakea sericea at home and abroad. Pages 57–58in Proc. 4th Internat. Conf. on Mediterranean Ecosystems. University of Western Australia, Nedlands.Google Scholar
  59. Givnish, T. J. 1981. Serotiny, geography and fire in the pine barrens of New Jersey. Evolution35: 101–123.CrossRefGoogle Scholar
  60. Griffin, J. R. & W. B. Critchfield. 1972. The distribution of forest trees in California. U.S.D.A. Forest Serv., Res. Paper PSW-82.Google Scholar
  61. Grundon, N. J. 1972. Mineral nutrition of some Queensland heath plants. J. Ecol.60: 171–180.CrossRefGoogle Scholar
  62. Hardy, A. D. 1926. Delayed dehiscence in Myrtaceae, Proteaceae and Coniferae. Proc. Roy. Soc. Victoria38: 57–58 + plate.Google Scholar
  63. Harper, J. L. 1977. Population biology of plants. Academic Press, London.Google Scholar
  64. Heinselman, M. L. 1981. Fire intensity and frequency as factors in the distribution and structure of northern ecosystems. Pages 7–57in J. M. Bonnicksen, N. I. Christensen, J. E. Lotan & W. A. Reiners (eds.), Fire regimes and ecosystem properties. U.S.D.A. Forest Serv., Gen. Tech. Rep. WO 26.Google Scholar
  65. Hocking, P. J. 1982. The nutrition of fruits of two proteaceaous shrubs,Grevillea willsonii andHakea undulata, from south-western Australia. Austral. J. Bot.30: 219–230.CrossRefGoogle Scholar
  66. Hoffman, M. T. &R. M. Cowling. 1987. Plant physiognomy, phenology and demography. Pages 1–34in R. M. Cowling & P. W. Roux, (eds.), The Karoo Biome: A preliminary synthesis. Part 2—Vegetation and history. S. African Nat. Sci. Programmes Report No. 142, CSIR, Pretoria.Google Scholar
  67. Ihlenfeldt, H. D. 1971. Some aspects of the biology of dissemination of the Mesembryanthemaceae. Pages 22–34in H. Herre (ed.), The genera of the Mesembryanthemaceae. Tafelberg, Cape Town.Google Scholar
  68. Jackson, B. D. 1916. A glossary of botanic terms with their derivation and accent, 3rd ed. Duckworth, London.Google Scholar
  69. Janzen, D. H. 1971. Seed predation by animals. Annu. Rev. Ecol. Syst.2: 465–492.CrossRefGoogle Scholar
  70. — 1974. Tropical blackwater rivers, animals and mast fruiting by the Dipterocarpaceae. Biotropica4: 69–103.CrossRefGoogle Scholar
  71. Keeley, J. E. 1987. Role of fire in seed germination of woody taxa in California chaparral. Ecology68: 434–443.CrossRefGoogle Scholar
  72. Kilgore, B. H. 1981. Fire in ecosystem distribution and structure: Western forests and scrublands. Pages 58–89in J. M. Bonnicksen, N. I. Christensen, J. E. Lotan & W. A. Reiners (eds.), Fire regimes and ecosystem properties. U.S.D.A. Forest Serv., Gen. Tech. Rep. WO-26.Google Scholar
  73. Koller, D. 1973. Environmental control of seed germination. Pages 2–101in T. T. Kozlowski (ed.). Seed biology, Vol. II. Academic Press, New York.Google Scholar
  74. Krugman, S. L. & J. L. Jenkinson. 1974.Pinus L. Pages 598–638in C. S. Schopfmeyer (tech. coord.), Seeds of woody plants in the United States. U.S.D.A. Forest Serv., Agric. Handbook No. 450.Google Scholar
  75. Kuo, J., P. J. Hocking &J. S. Pate. 1982. Nutrient reserves in seeds of selected proteaceous species from south-western Australia. Austral. J. Bot.30: 231–249.CrossRefGoogle Scholar
  76. Ladd, P. G. 1989. The status of Casuarinaceae in Australian forests. Pages 63–85in K. J. Frawley & N. M. Semple (eds.), Australia’s ever changing forests. Spec. Publ. No. 1, Dept. Geog. and Oceanogr., Australian Defence Forces Ac., Canberra.Google Scholar
  77. Lamont, B. B. 1982. Mechanisms for enhancing nutrient uptake in plants, with special reference to mediterranean South Africa and Western Australia. Bot. Rev.48: 597–689.Google Scholar
  78. — 1985. Dispersal of the winged fruits ofNuytsia floribunda (Loranthaceae). Austral. J. Ecol.10: 187–193.CrossRefGoogle Scholar
  79. —. 1988. Sexual versus vegetative reproduction inBanksia elegans. Bot. Gaz.149: 370–375.CrossRefGoogle Scholar
  80. — &M. J. Barker. 1988. Seed bank dynamics of a serotinous, non-sproutingBanksia species. Austral. J. Bot.36: 193–203.CrossRefGoogle Scholar
  81. — &G. J. Barrett. 1988. Constraints on seed production and storage in a root-suckeringBanksia. J. Ecol.76: 1069–1082.CrossRefGoogle Scholar
  82. —,B. J. Collins &R. M. Cowling. 1985. Reproductive biology of the Proteaceae in Australia and South Africa. Proc. Austral. Ecol. Soc.14: 213–224.Google Scholar
  83. —,S. W. Connell &S. M. Bergl. 1991. Population and seed bank dynamics ofBanksia cuneata: the role of time, fire and moisture. Bot. Gaz.152: 114–122.CrossRefGoogle Scholar
  84. — &R. M. Cowling. 1984. Flammable infructescences inBanksia: A fruit-opening mechanism. Austral. J. Ecol.9: 295–296.CrossRefGoogle Scholar
  85. —,S. Downes &J. E. Fox. 1977. Importance-value curves and diversity indices applied to a species-rich heathland in Western Australia. Nature265: 438–441.CrossRefGoogle Scholar
  86. —,N. J. Enright &S. M. Bergl. 1989. Coexistence and competitive exclusion ofBanksia hookeriana along a topographic gradient. Oikos56: 39–42.CrossRefGoogle Scholar
  87. —,A. J. Hopkins &R. Hnatiuk. 1984. The flora-composition, diversity and origins. Pages 27–50in J. S. Pate & J. S. Beard, (eds.), Kwongan-plant life of the sandplain. University of Western Australia Press, Nedlands.Google Scholar
  88. — &S. J. van Leeuwen. 1988. Seed production and mortality in a rareBanksia species. J.Appl. Ecol.25: 551–559.CrossRefGoogle Scholar
  89. Lanner, R. M. 1982. Adaptations of whitebark pine for seed dispersal by Clark’s nutcracker. Canad. J. For. Res.12: 391–402.CrossRefGoogle Scholar
  90. Ledig, F. T. &S. Little. 1979. Pitch pine (P. rigida Mill.): Ecology, physiology, and genetics. Pages 347–371in R. T. Forman (ed.), Pine barrens: Ecosystem and landscape. Academic Press, New York.Google Scholar
  91. Le Maitre, D. C. 1984. Current interpretations of the term serotiny. S. African J. Sci.81: 284–290.Google Scholar
  92. — 1987. Dynamics of canopy-stored seed in relation to fire. Pages 24–45in R. M. Cowling, D. C. Le Maitre, B. McKenzie, R. P. Prys-Jones & B. W. Van Wilgen (eds.), Disturbance and the dynamics of fynbos biome communities. S. African Nat. Sci. Programmes Report No. 135, C.S.I.R., Pretoria, South Africa.Google Scholar
  93. — 1988. The effects of parent density and season of burn on the regeneration ofLeucadendron lanreolum (Proteaceae) in the Kogelberg. S. African J. Bot.54: 581–584.Google Scholar
  94. — 1990. The influence of seed ageing on the plant on seed germination inProtea neriifolia (Proteaceae). S. African J. Bot.56: 49–53.Google Scholar
  95. Lindsay, A. M. 1985. Are Australian soils different? Proc. Ecol. Soc. Austral.14: 83–97.Google Scholar
  96. Linhart, Y. B. 1978. Maintenance of variation in cone morphology in California closed-cone pines: The roles of fire, squirrels and seed output. Southwest Nat.23: 29–40.CrossRefGoogle Scholar
  97. Loneragan, O. W. &J. F. Loneragan. 1964. Ashbed and nutrients in the growth of seedlings of Karri (Eucalyptus diversicolor FM). J. Roy. Soc. West. Austral.47: 75–80.Google Scholar
  98. Lotan, J. E. 1968. Cone serotiny of lodgepole pine near Island Park, Idaho. U.S.D.A. Forest Serv., Res. Pap. INT-52.Google Scholar
  99. Low, A. B. &B. B. Lamont. 1990. Aerial and below-ground phytomass ofBanksia scrubheath at Eneabba, south-western Australia. Austral. J. Bot.38: 351–359.CrossRefGoogle Scholar
  100. Majer, J. D. &B. B. Lamont. 1985. Removal of seed ofGrevillea pteridifolia (Proteaceae) by ants. Austral. J. Bot.33: 611–618.CrossRefGoogle Scholar
  101. Mattson, W. J. 1971. Relationship between cone crop size and cone damage by insects in red pine seed-production areas. Canad. Entomol.103: 617–621.CrossRefGoogle Scholar
  102. McMaster, G. S. &P. H. Zedler. 1981. Delayed seed dispersal inPinus torreyana (Torrey Pine). Oecologia51: 62–66.CrossRefGoogle Scholar
  103. Michaux, A. 1803.Pinus serotina. Page 205in Flora Boreali-Americana, Vol. 2. Strasbourg, Paris.Google Scholar
  104. Midgley, J. J. 1987. Aspects of the evolutionary ecology of the Proteaceae, with emphasis on the genusLeucadendron and its phylogeny. Ph.D. Thesis. University of Cape Town.Google Scholar
  105. — 1989. Season of burn of serotinous Proteaceae: A critical review and further data. S. African J. Bot.55: 165–170.Google Scholar
  106. —,R. M. Cowling &B. B. Lamont. 1991. Relationship of follicle size and seed size in Hakea (Proteaceae); isometry, allometry and adaptation. S. African J. Bot.57: 107–110.Google Scholar
  107. —,T. Hoekstra &R. Bartholomew. 1989. The effects of date of planting on field establishment of serotinous Cape Proteaceae. Vegetatio79: 185–192.CrossRefGoogle Scholar
  108. Mills, E. A. 1915. The Rocky Mountain wonderland. Houghton Mifflin, Boston.Google Scholar
  109. Minnich, R. A. 1977. The geography of fire and big-cone Douglas-fir, Coulter pine and western conifer forests in the east transverse ranges, southern California. Pages 443–450in H. A. Mooney & C. E. Conrad (tech. coords.), Proceedings of the symposium on the environmental consequences of fire and fuel management in mediterranean ecosystems. U.S.D.A. Forest Serv., Gen. Tech. Rep. WO-3.Google Scholar
  110. Mitchell, D. T. &P. G. Coley. 1987. Litter production and decompositionof Protea repens growing in sandplain lowland and mountain fynbos, south-western Cape. S. African J. Bot.53: 25–37.Google Scholar
  111. Monk, C. D. 1966. An ecological significance of evergreeness. Ecology47: 504–505.CrossRefGoogle Scholar
  112. Mooney, H. A. 1983. Carbon-gaining capacity and allocation patterns of mediterraneanclimate plants. Pages 103–119in F. J. Kruger, D. T. Mitchell & J. U. Jarvis (eds.), Mediterranean-type ecosystems. The role of nutrients. Springer-Verlag, Berlin.Google Scholar
  113. Mott, J. J. &R. H. Groves. 1981. Germination strategies. Pages 307–341in J. S. Pate & A. J. McComb (eds.), Biology of Australian plants. University of Western Australia Press, Nedlands.Google Scholar
  114. Mowat, E. L. 1960. No serotinous cones on central Oregon lodgepole pine. J. For.58: 118–119.Google Scholar
  115. Muir, P. S. &J. E. Lotan. 1985. Serotiny and life-historyof P. contorta var.latifolia. Canad. J. Bot.63: 938–945.Google Scholar
  116. Myburgh, A. C., L. C. Starke, &D. J. Rust. 1974. Destructive insects in the seed heads ofProtea barbigera Meissner (Proteaceae). J. Entomol. Soc. S. Africa37: 23–29.Google Scholar
  117. Naveh, Z. &R. H. Whittaker. 1979. Structural and floristic diversity of shrublands and woodlands in northern Israel and other mediterranean areas. Vegetatio41: 171–190.CrossRefGoogle Scholar
  118. O’Dowd, D. J. &A. M. Gill. 1984. Predator satiation and site alteration following fire: mass reproduction of alpine ash (Eucalyptus delegatensis) in south-eastern Australia. Ecology65: 1052–1066.CrossRefGoogle Scholar
  119. Ozanne, P. G. &R. L. Specht. 1981. Mineral nutrition of heathlands: phosphorus toxicity. Pages 209–213in R. L. Specht (ed.), Heathlands and related shrublands of the World: Analytical studies. Ecosystems of the World, Vol. 9B. Elsevier, Amsterdam.Google Scholar
  120. Pate, J. S. &J. S. Beard. 1984. Kwongan—Plant life of the sandplain. University of Western Australia Press, Nedlands.Google Scholar
  121. Perry, D. A. &J. E. Lotan. 1979. A model of fire selection for serotiny in lodgepole pine. Evolution33: 958–968.CrossRefGoogle Scholar
  122. Pittock, A. B. 1988. Actual and anticipated changes in Australia’s climate. Pages 35–51in G. I. Pearman (ed.), Greenhouse: Planning for climatic change. CSIRO, Melbourne.Google Scholar
  123. Platt, W. J., G. W. Evans &S. L. Rathbun. 1988. The population dynamics of a long-lived conifer (Pinus palustris). Amer. Nat.131: 491–525.CrossRefGoogle Scholar
  124. Rice, B. &M. Westoby. 1981. Myrmecochory in sclerophyll vegetation of the West Head, New South Wales. Austral. J. Ecol.6: 291–296.CrossRefGoogle Scholar
  125. Rourke, J. P. 1980. The proteas of southern Africa. Purnell, Cape Town.Google Scholar
  126. — 1987. The inflorescence morphology and systematics ofAulax (Proteaceae). S. African J. Bot.53: 464–480.Google Scholar
  127. Rudolph, T. D., R. E. Schoenike & T. Schantz-Hansen. 1959. Results of one-parent progeny tests relating to the inheritance of open and closed cones in jack pine. University Minn. For. Notes 78.Google Scholar
  128. Rundel, P. W. 1988. Leaf structure and nutrition in mediterranean-climate sclerophylls. Pages 157–167in R. L. Specht (ed.), Mediterranean-type ecosystems: A data source book. Kluwer, Dordrecht.Google Scholar
  129. Safford, L. O. 1974.Picea A. Dietr. Pages 587–597in C. S. Schopfmeyer (tech. coord.), Seeds of woody plants in the United States. U.S.D.A. Forest Serv., Agric. Handbook No. 450.Google Scholar
  130. Salisbury, E. J. 1942. The reproductive capacity of plants. Bell, London.Google Scholar
  131. Schoenike, R. E. 1976. Geographic variations in jack pine (Pinus banksiana). University Minn. Agric. Exp. Stn. Tech. Bull. 304.Google Scholar
  132. Scott, J. 1982. The impact of destructive insects on reproduction in six species ofBanksia L.f. (Proteaceae) Austral. J. Zool.30: 901–921.CrossRefGoogle Scholar
  133. Schmidt, J. M., J. C. Mitchell, J. D. Carlin &M. R. Wagner. 1984. Insect damage, cone dimensions and seed production in crown levels of ponderosa pine. Gt. Basin Natur.44: 575–578.Google Scholar
  134. Schopfmeyer, C. S. (tech. coord.) 1974. Seeds of woody plants in the United States. U.S.D.A. Forest Serv., Agric. Handbook No. 450.Google Scholar
  135. Shaw, G. R. 1914. The genusPinus. Publications of the Arnold Arboretum No. 5. Jamaica Plain, Mass.Google Scholar
  136. Shea, S. R., J. McCormick &C. C. Portlock. 1979. The effect of fires on the regeneration of leguminous species in the northern jarrah (Eucalyptus marginata Sm) forest of Western Australia. Austral. J. Ecol.4: 195–205.CrossRefGoogle Scholar
  137. Siddiqi, M. Y., P. J. Myerscough &R. C. Carolin. 1976. Studies in the ecology of coastal heath of New South Wales IV. Seed survival, germination, seedling establishment and early growth inBanksia serratifolia Salisb.,B. asplenifolia Salisb. andB. ericifolia L.f. in relation to fire: Temperature and nutritional effects. Austral. J. Ecol.1: 175–183.CrossRefGoogle Scholar
  138. Smith, C. C. 1970. The co-evolution of pine squirrels (Tamiasciurus) and conifers. Ecol. Monogr.40: 349–371.CrossRefGoogle Scholar
  139. Snyder, T. P., D. A. Stewart &A. F. Stickler. 1985. Temporal analysis of breeding in Jack pine (Pinus banksiana Lamb.). Canad. J. For. Res.15: 1159–1166.CrossRefGoogle Scholar
  140. Specht, R. L. 1979. Heathlands and related shrublands of the world. Pages 1–18in R. L. Specht (ed.), Heathlands and related shrublands of the world: Descriptive studies. Ecosystems of the world, Vol. 9 A. Elsevier, Amsterdam.Google Scholar
  141. — &E. J. Moll. 1983. Mediterranean-type heathlands and sclerophyllous shrublands of the world: An overview. Pages 41–65in F. J. Kruger, D. T. Mitchell & J. U. Jarvis (eds.), Mediterranean-type Ecosystems: The role of nutrients. Springer-Verlag, Berlin.Google Scholar
  142. Stearn, W. T. 1973. Botanical Latin. David and Charles, Newton Abbot.Google Scholar
  143. Strauss, S. H. &F. T. Ledig. 1985. Seedling architecture and life-history in pines. Am. Nat.125: 702–715.CrossRefGoogle Scholar
  144. Taylor, H. C. 1978. Capensis. Pages 171–229in M. J. A. Werger (ed.), Biogeography and ecology of Southern Africa. Dr. W. Junk, The Hague.Google Scholar
  145. Teich, A. H. 1970. Cone serotiny and inbreeding in natural populations ofPinus banksiana andPinus contorta. Canad. J. Bot.48: 1805–1809.CrossRefGoogle Scholar
  146. Thomas, P. A. &R. W. Wein. 1985. Delayed emergence of four conifer species on postfire seedbeds in eastern Canada. Canad. J. For. Res.15: 727–729.CrossRefGoogle Scholar
  147. Van der Pijl, L. 1969. Principles of dispersal in higher plants. Springer-Verlag, Berlin.Google Scholar
  148. Van Staden, J. 1978. Seed viability inProtea neriifolia. I. The effects of time of harvesting on seed viability. Agroplantae10: 65–67.Google Scholar
  149. Van Wilgen, B. W., K. B. Higgens &D. U. Bellstedt. 1990. The role of vegetation structure and fuel chemistry in excluding fire from forest patches in the fire-prone fynbos shrublands of South Africa. J. Ecol.78: 210–222.CrossRefGoogle Scholar
  150. — &M. Viviers. 1985. The effect of season of fire on serotinous Proteaceae in the Western Cape and the implications of fynbos management. S. African For. J.123: 49–53.Google Scholar
  151. Viereck, L. A. 1983. The effects of fire in black spruce ecosystems of Alaska and northern Canada. Pages 201–220in R. W. Wien & D. A. MacLean (eds.), The role of fire in circumpolar ecosystems. J. Wiley & Sons, Chichester, England.Google Scholar
  152. Vogl, R. J. 1973. Ecology of knobcone pine in the Santa Ana Mountains, California. Ecol. Monogr.43: 125–143.CrossRefGoogle Scholar
  153. Vogl, R. J., W. P. Armstrong, K. L. White &K. L. Cole. 1977. The closed cone pines and cypresses. Pages 295–358in M. Barbour & J. Major (eds.), Terrestrial vegetation of California. Wiley, New York.Google Scholar
  154. Waller, D. M. 1979. Models of mast fruiting in trees. J. Theor. Biol.80: 223–232.PubMedCrossRefGoogle Scholar
  155. Wardrop, A. B. 1983. The opening mechanism of follicles of some speciesof Banksia. Austral. J. Bot.31: 485–500.CrossRefGoogle Scholar
  156. Weiss, P. 1984. Seed characteristics and regeneration of some species in invaded coastal communities. Aust. J. Ecol.9: 99–106.CrossRefGoogle Scholar
  157. Wellington, A. B. &I. R. Noble. 1985a. Post-fire recruitment and mortality in a population of the malleeEucalyptus incrassata in semi-arid, south-eastern Australia. J. Ecol.73: 645–655.CrossRefGoogle Scholar
  158. —. 1985b. Seed dynamics and factors limiting recruitment of the malleeEucalyptus incrassata in semi-arid, south-eastern Australia. J. Ecol.73: 657–666.CrossRefGoogle Scholar
  159. Westman, W. E. &R. H. Whittaker. 1975. The pygmy forest region of northern California: Studies on biomass and productivity. J. Ecol.63: 493–520.CrossRefGoogle Scholar
  160. Whelan, R. J. &A. R. Main. 1979. Insect grazing and post-fire plant succession in a southwest Australian woodland. Austral. J. Ecol.4: 387–398.CrossRefGoogle Scholar
  161. Williams, I. J. 1972. A revision of the genusLeucadendron (Proteaceae). Contr. Bolus Herb. No. 3.Google Scholar
  162. Wright, A. A. &A. W. Bailey. 1979. Fire ecology of the United States and southern Canada. Wiley and Sons, New York.Google Scholar
  163. Zammit, C. A. 1984. Seedling recruitment strategies in obligate seeding and resproutingBanksia shrubs. Pages 171–172in Proc. 4th Internat. Conf. on Mediterranean ecosystems. University of Western Australia, Perth.Google Scholar
  164. -. 1986. Regeneration strategies in a fire-prone environment: A comparison of twoBanksia life histories. Ph.D. Thesis. Macquarie University.Google Scholar
  165. — &M. Westoby. 1987. Population structure and reproductive status of twoBanksia shrubs at various times after fire. Vegetatio70: 11–20.Google Scholar
  166. —. 1988. Pre-dispersal seed losses, and the survival of seeds and seedlings of two serotinousBanksia shrubs in burnt and unburnt heath. J. Ecol.76: 200–214.CrossRefGoogle Scholar
  167. Zedler, P. H. 1986. Closed-cone conifers of the chaparral. Fremontia14: 14–17.Google Scholar

Copyright information

© The New York Botanical Garden 1991

Authors and Affiliations

  • Byron B. Lamont
    • 1
  • D. C. Le Maitre
    • 2
  • R. M. Cowling
    • 3
  • N. J. Enright
    • 4
  1. 1.School of Environmental BiologyCurtin University of TechnologyPerthAustralia
  2. 2.Jonkershoek Forestry Research CentreSouth Africa
  3. 3.Botany DepartmentUniversity of Cape TownSouth Africa
  4. 4.Department of GeographyUniversity of MelbourneParkvilleAustralia

Personalised recommendations