The Botanical Review

, Volume 32, Issue 3, pp 219–242 | Cite as

Antibiotics produced by fungi

  • Douglas Broadbent


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Abe, S., S. Takeuchi, andH. Yonehara. 1959. Studies on Variotin. A new antifungal Antibiotic II. Taxonomical studies on variotin producing strain. Jour. Antibiotics12(5): 201–202.Google Scholar
  2. 2.
    Abraham, E. P. 1962. The Cephalosporins. Pharmacol. Rev.14: 473–500.PubMedGoogle Scholar
  3. 3.
    Ainsworth, G. C., andG. R. Bisby. 1961. A dictionary of the fungi. 5th ed. Commonwealth Agricultural Bureaux, 519 pp.Google Scholar
  4. 4.
    Akai, S., J. Shishiyama, H. Egawa, andE. Yoshinaga. 1963. On the antifungal antibiotics discovered in Japan. Forsch. Gebiet Pflanzenkrankh (Shokubutsu Byogai Kenkyu) Kyoto7(5): 45–49.Google Scholar
  5. 5.
    Akers Research Labs. (unpublished).Google Scholar
  6. 6.
    Amman, C. A., andR. S. Safferman. 1958. The onion test as a possible screening method for anti-tumour agents. Antibiot. Chemotherapy8: 1–7.Google Scholar
  7. 7.
    Anchel, M. 1952. Chemical studies with pleuromutilin. Jour. Biol. Chem.199: 133–139.Google Scholar
  8. 8.
    —,A. Hervey, andW. J. Robbins. 1952. Antibiotic substances from Basidiomycetes X.Fomes juniperinus Schrenk. Proc. Natl. Acad. Sci.38: 655–659.PubMedGoogle Scholar
  9. 9.
    Anonymous. 1963. Produits et problèmes pharmaceutiques 18: 653–654.Google Scholar
  10. 10.
    Balan, J., L. Ebringer, P. Nemec, S. Kovac, andJ. Dobias. 1963. Antiprotozoal antibiotics II. Isolation and characterization of trypacidin, a new antibiotic active againstTrypanosoma cruzi andToxoplasma gondii. Jour. Antibiot. Sci. A.16(4): 157–160.Google Scholar
  11. 11.
    Bamford, P. C., G. L. F. Norris, andG. Ward. 1961. Flavipin production byEpicoccum spp. Trans. Brit. Mycol. Soc.44: 354–356.Google Scholar
  12. 12.
    Banerjee, N., andS. K. Bose. 1963. Mode of action of mycobacillin, a new fungal antibiotic. Jour. Bact.86(3): 387–391.Google Scholar
  13. 13.
    Barwald, G. Xanthocillin. Brit. Pat. 898, 498, 14th June, 1962.Google Scholar
  14. 14.
    Bekker, Z. E. 1964. Pilzforschung-Antibiotikabildner. Mitteil. Versuchssta. Garungsgewerle Wien1964 (1/2): 1–11.Google Scholar
  15. 15.
    —,E. S. Lisina, V. A. Poltorak, andA. B. Silaev. 1963. Janthinellin with antifungal action produced byPenicillium janthinellum Biorge. Antibiotiki8(3): 207–212.PubMedGoogle Scholar
  16. 16.
    —,M. W. Gorlenko, E. S. Lisina, E. G. Rodionowa, andE. N. Woronina. 1961. Antiphytopathogenic properties of some antibiotics of fungal origin. Erevan. Akad. Wissensch. Arm. SSR.1961: 153–161.Google Scholar
  17. 17.
    —, andT. P. Suprun. 1962. Cytotoxic substances from wood-destroyingfungi.In: “Destruction of wood by fungi,” Int. Symp. Ebersvalde, AkademieVerlag, Berlin, pp. 329–337.Google Scholar
  18. 18.
    Beneke, E. S. 1963.Calvatia, calvacin and cancer. Mycologia55(3): 257–270.Google Scholar
  19. 19.
    Betina, V., P. Nemec, J. Dobias, andZ. Barath. 1962. Cyanein, a new antibiotic fromPenicillium cyaneum. Folia Microbiol. (Prague)7: 353–357.Google Scholar
  20. 20.
    —,—,S. Kovacs, A. Kjaer, andR. H. Shapiro. 1965. The identity of Cyanein and Brefeldin A. Acta Chem. Scand.19(2): 519.Google Scholar
  21. 21.
    Bilai, V. I. 1956. Volatile antibiotics in fungi of the genusTrichoderma. Microbiology25(4): 458–465.PubMedGoogle Scholar
  22. 22.
    —. 1961. Antibiotic properties of dendrochin. Mikrobiologiya30: 1023–1027.Google Scholar
  23. 23.
    —. 1963. Antibiotic-producing microscopic fungi. Elsevier Publ. Co., Amsterdam, London, New York × + 215 pp.Google Scholar
  24. 24.
    Bose, S. R. 1952. Antibacterial principles from some higher fungi. Jour. Sci. Industrial Res. (India)11B: 159–160.Google Scholar
  25. 25.
    —. 1955. Campestrin, the antibiotic fromPsalliota campestris. Nature175:468.PubMedGoogle Scholar
  26. 26.
    Bracken, A., A. Pocker, andH. Raistrick. 1954. Studies in the biochemistry of micro-organisms 93. Cyclopenin, a nitrogen-containing metabolic product ofPenicillium cyclopium. Biochem. Jour.57: 587–595.Google Scholar
  27. 27.
    Breen, J., J. C. Dacre, H. Raistrick, andG. S. Smith. 1955. Rugulosin, a crystalline colouring matter ofPenicillium rugulosum Thom. Biochem. Jour.60: 618–626.Google Scholar
  28. 28.
    Breyer, M. G. 1962. Isolation of antibiotic substances from two fungi. (i)Chaetomium, probablyC. funicolor TRL 1552, and (ii) TRL 80. Jour. South African Chem. Inst.15(2): 31–35.Google Scholar
  29. 29.
    Brian, P. W. 1951. Antibiotics produced by fungi. Bot. Rev.17: 357–430.Google Scholar
  30. 30.
    —,P. J. Curtis, H. G. Hemming, andG. L. F. Norris. 1957. Wortmannin, an antibiotic produced byPenicillium wortmanni. Trans. Brit. Mycol. Soc.40: 365–368.Google Scholar
  31. 31.
    —,—,——. 1957. Pulvilloric acid, an antibiotic obtained from cultures ofPenicillium pulvillorum. Trans. Brit. Mycol. Soc.40: 369–374.Google Scholar
  32. 32.
    —,H. G. Hemming, J. S. Moffatt, andC. H. Unvvin. 1953. Canescin, an antibiotic produced byPenicillium canescens. Trans. Brit. Mycol. Soc.36: 243–247.Google Scholar
  33. 33.
    Brookes, D., B. K. Tidd, andW. B. Turner. 1963. Avenaciolide, an antifungal lactone fromAspergillus avenaceus. Jour. Chem. Soc.1963: 5385–5391.Google Scholar
  34. 34.
    Bunina, A. M. 1960. Possible uses of antibiotics in combating phytopathogenic fungi. Trudy Vses. Nauchno-Issled. Inst. Selskokhoz. Mikrobiol. Leningrad.17: 117–124.Google Scholar
  35. 35.
    Burton, H. S. 1950. An antibiotic, thermophilin, fromLenzites thermophila. Nature166: 570.PubMedGoogle Scholar
  36. 36.
    Cajori, F. A., T. T. Otani, andM. A. Hamilton. 1954. The isolation and some properties of an antibiotic fromFusarium bostrycoides. Jour. Biol. Chem.208: 107–114.Google Scholar
  37. 37.
    Cavill, G. W. K., B. J. Ralph, J. R. Tetaz, andR. L. Werner. 1953. The chemistry of mould metabolites. Part I. Isolation and characterization of a red pigment fromcoriolus sanguineus (Fr.). Jour. Chem. Soc.1953: 525–529.Google Scholar
  38. 38.
    Ciferri, O., andF. Ciferri, 1955. The antibiotic activity of unusual fungal species. Atti Ist. Bot. Univ. Lab. Crittogam Pavia, Ser. 5,13: 84–94.Google Scholar
  39. 39.
    Cole, M., andG. N. Rolinson. 1961. 6-Aminopenicillanic acid 11. Formation of 6-Aminopenicillanic acid byEmericellopsis minima (Stolk) and related fungi. Proc. Roy. Soc. B.154: 490–497.Google Scholar
  40. 40.
    Cunningham, K. G., S. A. Hutchison, W. A. Manson, andF. S. Spring. 1951. Cordycepin, a metabolic product from cultures ofCordyceps militaris (Linn) Link. Part 1. Isolation and characterisation. Jour. Chem. Soc.1951: 2299–2300.Google Scholar
  41. 41.
    Curtis, P. J., H. G. Hemming, andE. G. Jefferys. 1952. Humicolin, an antifungal substance produced byAspergillus humicola. Trans. Brit. Mycol. Soc.35:263–267.Google Scholar
  42. 42.
    —,— andW. K. Smith. 1951. Frequentin; an antibiotic produced by some strains ofPenicillium frequentans Westling. Nature167: 557–558.PubMedGoogle Scholar
  43. 43.
    —,— andC. H. Unwin. 1951. Albidin, an antibiotic red pigment fromPenicillium albidum, Trans. Brit. Mycol. Soc.34: 332–339.Google Scholar
  44. 44.
    Darling, W. M., P. J. Campbell, andM. McArdle. 1963. Antibiotics fromAspergillus amstelodami. Jour. Gen. Microbiol.33: 191–204.Google Scholar
  45. 45.
    De La Rivière, D.,et al. 1951. Pouvoir antibiotique d’un champignon provenant d’une terre de truffière. Compt. Rend. Acad. Sci. Paris232: 454–455.Google Scholar
  46. 46.
    Delmotte, P., andJ. Delmotte-Plaque. 1953. A new antifungal substance of fungal origin. Nature171: 344.PubMedGoogle Scholar
  47. 47.
    —,—, andR. Bastin. 1956. Chlorine containing antibiotic related to geodine. Jour. Pharm Belg.11: 200–205.Google Scholar
  48. 48.
    Elpidina, O. K. 1959. Antibiotic and antiblastic properties of a new preparation-poine. Antibiotiki4: 46–50.PubMedGoogle Scholar
  49. 49.
    Ewart, A. J. 1933. The presence of citrinin inCrotalaria crispata. Ann. Bot.47:913–915.Google Scholar
  50. 50.
    Faivre-Amiot, A., H. Darpoux, andL. Roux. 1952. The production, extraction and physiological properties of chlamydosporin. Compt. Rend. Acad. Sci. Paris235: 982–984.Google Scholar
  51. 51.
    Flynn, E. H., M. H. McCormick, M. C. Stamper, H. Devalera, andC. W. Godzeski. 1962. A new natural penicillin fromPenicillium chrysogenum. Jour. Amer. Chem. Soc.84: 4594–4595.Google Scholar
  52. 52.
    Gaumann, E., undS. Naef-Roth. 1957. Uber die Toxin derEndothia parasitica (Murr.) And. Pflanzenschutzber.19(1/9): 9–16.Google Scholar
  53. 53.
    Glaz, E., E. Scheiber, andK. Jarfas. 1960. Antibiotic with fungistatic effect. Acta Physiol. Acad. Sci. Hung.18: 225–232.PubMedGoogle Scholar
  54. 54.
    Gotfredson, W. O., andO. B. L. Hennings. Antibiotic ZN 6. U.S. patent 3,072,531. January 8th, 1963.Google Scholar
  55. 55.
    Gottschall, R. V. 1951. Synnematin an antibiotic produced byTilachlidium. Proc. Soc. Exp. Biol. & Med.76: 307–311.Google Scholar
  56. 56.
    Greene, R. C. 1957. Incorporation of the carbon chain of methionine into spermidine. Jour. Amer. Chem. Soc.79: 3929.Google Scholar
  57. 57.
    Gregory, E. M., andW. B. Turner. 1963. 7-epi-sclerotiorin. Chem. & Ind.1963: 1625.Google Scholar
  58. 58.
    Guerillot-vinet, J., A. Guerillot-Vinet, L. Guyot, J. Montegut, etL. Roux. 1950. Antibiotiques, sur une substance antibiotique extraite du mycelium deGibberella baccata (Walbr.) Sacc. Compt. Rend. Acad. Sci. Paris230: 1424–1426.Google Scholar
  59. 59.
    Gupta, R., andR. Viswanathan. 1955. Antituberculous substances fromAspergillus proliferans andA. variecolor. Antibiot. and Chemotherapy5: 496–498.Google Scholar
  60. 60.
    Harada, R. 1962. Extraction of anticancer substances from fungi. Japan Pat. 18,196.Google Scholar
  61. 61.
    Harri, E., W. Loeffler, H. P. Sigg, H. Stahelin, Ch. Stoll, Ch. Tamm, andD. Wiesinger. 1962. Verrucarins and roridins, a group of cytostatic high acting antibiotics fromMyrothecium species. Helv. Chim. Acta45: 839–853.Google Scholar
  62. 62.
    —,—,—,—, undCh. Tamm. 1963. Uber die Isolierung neuer Stoffwechselprodukte ausPenicillium brefeldianum Dodge. Helv. Chim. Acta46: 1235–1243.Google Scholar
  63. 63.
    Hashioka, Y.,et al. 1961.Trichoderma viride, as an antagonist of the wood inhabiting Hymenomycetes 1. Ecology and physiology ofTrichoderma occurring on the log wood ofLentinus elodes. Reports Tottori Mycological Inst.1: 1–8.Google Scholar
  64. 64.
    Haskins, R. H., J. A. Thorn, andB. Boothroyd. 1955. Biochemistry of the Ustilaginales XL. Metabolic products ofUstilago zeae in submerged culture. Can. Jour. Microbiol.1: 749–756.Google Scholar
  65. 65.
    Hata, J., T. Sano, A. Matsumae, andS. Kamio. 1963. Sellenin, a novel antibiotic substance. Japan Pat. 3678.Google Scholar
  66. 66.
    Herrman, H. 1962. Cortinellin, an antibiotically active substance fromCortinellus Shiitake. Naturwissenschaften49: 542.Google Scholar
  67. 67.
    Hesseltine, C. W. 1965. A millenium of fungi, food and fermentation. Mycologia57(2): 149–197.PubMedGoogle Scholar
  68. 68.
    —,C. R. Benjamin, B. Bradle, andW. F. Hendershot. 1963. Ramulosin fermentation. Amer. Jour. Bot.50: 209–213.Google Scholar
  69. 69.
    Hiranata, Y., andK. Nakaniski. 1950. Grifolin an antibiotic from a Basidiomycete. Jour. Biol. Chem.184: 135–143.Google Scholar
  70. 70.
    Inagaki, N. 1962. Helmintin. Japan Pat. 6346.Google Scholar
  71. 71.
    Ishibashi, K. 1961. Studies on antibiotics fromHelminthosporium sp. fungi Pt. 3. Ophiobolin production byHelminthosporium turcicum. Jour. Agr. Chem. Soc. Japan35: 257–262.Google Scholar
  72. 72.
    -. 1962. Siccanin, an antibiotic. Japan Pat. 3548.Google Scholar
  73. 73.
    —. 1962. Antibiotics fromHelminthosporium V. Zizanin, a new antifungal antibiotic produced byH. zizaniae. Jour. Antibiotics (Tokyo) Ser. A15: 88–92.Google Scholar
  74. 74.
    —. 1962. Antibiotics fromHelminthosporium VII. Siccanin, a new antifungal antibiotic produced byH. siccans. Jour. Antibiotics (Tokyo) Ser. A15: 161–167.Google Scholar
  75. 75.
    —. 1962. Studies on Antibiotics fromHelminthosporium sp. Fungi VII. Effects of Antibiotics fromHelminthosporium sp. Fungi VIII. Effects of Ophiobolin, Zizanin, Pyrenophorin and Siccanin on spore germination and growing mycelium ofTrichophyton mentagrophytes. Jour. Agr. Chem. Soc. Japan36: 645–648.Google Scholar
  76. 76.
    Kaczka, E. A. 1964. Isolation and inhibitory effects on KB cell cultures of 3’deoxyadenosine fromAspergillus nidulans. Biochem. Biophys. Res. Comm.14: 452–455.PubMedGoogle Scholar
  77. 77.
    —,C. O. Gitterman, E. L. Dulaney, andK. Folkers. 1962. Hadacidin, a new growth inhibitory substance in human tumour systems. Biochemistry1: 340–343.PubMedGoogle Scholar
  78. 78.
    Kamibayashi, A., andM. Matsui. 1961. Metabolic products ofUstilago maydis 1. Isolation of organisms producing ustilagic acid. Kogyo Gijutsuih Hakko Kenkyusho Hokoku19: 89–96.Google Scholar
  79. 79.
    Kimmig, J., andJ. Meyer-Rohn. 1962. Experimental investigations and clinical experiences with a new antibiotic, fucidin. Med. Welt.34: 1742–6.PubMedGoogle Scholar
  80. 80.
    Komatsu, E. 1953. Antibiotics fromPenicillium paxilli. Japan Pat. 4799.Google Scholar
  81. 81.
    Komatsu, J., H. Terekawa, K. Nakanishi, andY. Watanabe. 1963. Flammulin, a basic protein ofFlammulina velutipes with antitumour activities. Jour. Antibiotics (Tokyo) Ser. A16: 139–143.Google Scholar
  82. 82.
    Korzybski, T., andW. Kurylowicz. 1961. Antibiotica. Fischer Verlag., Jena, pp. 863–864.Google Scholar
  83. 83.
    Krywolap, G. N., andL. E. CasidA. 1964. An antibiotic produced by the mycorrhizal fungusCenococcum graniforme. Can. Jour. Microbiol.10: 365–370.Google Scholar
  84. 84.
    —,L. F. Grand, andL. E. Casida. 1964. The natural occurrence of an antibiotic in the mycorrhizal fungusCenoccocum graniforme. Can. Jour. Microbiol.10: 323–328.Google Scholar
  85. 85.
    Levitov, M. M., I. I. Inozemtseva,et al. 1961. Preparation and properties of almecillin. Med. Prom. S.S.S.R.15: 12–19. Chem. Abstr. 57: 77358, 1962.Google Scholar
  86. 86.
    Lewis, U. J., E. L. Rickes, L. McClelland, andN. G. Brick. 1959. Purification and characterisation of the antiviral agent helenine. Jour. Amer. Chem. Soc.81: 4115.Google Scholar
  87. 87.
    Lisina, E. S., andZ. E. Bekker. 1964. Fungistatic action of griseofulvin and janthinellin on some Bacteria, Actinomycetes and Fungi. Antibiotiki9: 1043–1048.Google Scholar
  88. 88.
    Litvinov, M. A., andE. N. Moiseeva. 1951. Antibiotic lenzitin. Priroda1: 60–62.Google Scholar
  89. 89.
    Lloyd, G., A. Robertson, G. B. Sankey, andW. B. Whalley. 1955. The chemistry of fungi Part 25. Oosporein, metabolic product ofChaetomium aureum. Jour. Chem. Soc.1955: 2163–2165.Google Scholar
  90. 90.
    MacDonald, J. C., R. G. Micetich, andR. H. Haskins. 1964. Antibiotic activity of neoaspergillic acid. Can. Jour. Microbiol.10: 90–92.Google Scholar
  91. 91.
    MacMillan, J. 1951. Dechlorogriseofulvin—a metabolic product ofPenicillium griseofulvum Dierckx andP. janczewskii Zal. Chem. and Ind.1951: 719.Google Scholar
  92. 92.
    —. 1953. Griseofulvin Part VII. Dechlorogriseofulvin. Jour. Chem. Soc.1953: 1697–1702.Google Scholar
  93. 93.
    —. 1954. Griseofulvin Part IX. Isolation of the Bromo analogue fromPenicillium griseofulvum andP. nigricans. Jour. Chem. Soc.1953: 2585–2587.Google Scholar
  94. 94.
    Malkov, A. M., andN. V. Rozmanova. 1962. Antibiotic properties of some strains ofGibberella. Mikrobiologiya (Transi.)31: 121–124.Google Scholar
  95. 95.
    Martin, G. W. 1941. Outline of the fungi. Univ. Iowa. Stud. Nat. Hist.18: 1–40.Google Scholar
  96. 96.
    Matsumae, A., S. Nomura, andT. Hata. 1964. Biological characteristics of cerulenin. Jour. Antibiotics (Japan) Ser. A17: 1–7.Google Scholar
  97. 97.
    McCapra, F., andA. I. Scott. 1964. The constitution of Monorden, an antibiotic with tranquilising action. Tetrahedron Letters15: 869–875.Google Scholar
  98. 98.
    Melera, A. 1963. The constitution of helvolic acid (an antibiotic fromAspergillus fumigatus) and cephalosporin P1 (an antibiotic from theCephalosporium species). Experientia19: 565–568.Google Scholar
  99. 99.
    Miller, M. W. 1961. Pfizer Handbook of Microbial metabolites. McGraw-Hill Book Co., Inc., New York.Google Scholar
  100. 100.
    Mirrington, R. N., E. Ritchie, C. W. Shoppee, andW. C. Taylor. 1964. The constitution of Radicicol. Tetrahedron Letters7: 365–370.Google Scholar
  101. 101.
    Mosbach, K. 1959. Das Vorkommen von Orsellinsäure inChaetomium cochliodes, Zeitschr. Naturforsch.14b(1): 69–70.Google Scholar
  102. 102.
    Naficy, K., andD. H. Carver. 1963. Cyclopin: A trypsin sensitive constituent ofPenicillium cyclopin with antiviral properties. Proc. Soc. Exp. Biol. and Med.144: 99.Google Scholar
  103. 103.
    Nakamura, S., andY. Kurimura. 1962. Hydroxyaspergillic acid. Japan Pat. 13, 748.Google Scholar
  104. 104.
    Nakazuka, M., H. Aratani, A. Nakagawa, andH. Tateishi. 1961. Supplementary Pharmacological data on Variotin, an antifungal antibiotic. Jour. Antibiotics (Japan)14: 238–43.Google Scholar
  105. 105.
    Narasinhachari, N., K. S. Gopalkrishnan, R. H. Haskins, andL. C. Vining. 1963. The production of the antibiotic atrovenetin by a strain ofPenicillium herquei Bainier and Sartory. Can. Jour. Microbiol.9: 134–136.Google Scholar
  106. 106.
    Neelameghan, A. 1959. Physicochemical data on antibiotics1. Antibiotics produced by fungi, bacteria and lichens. Hindustani Antibiot. Bull.2: 13–38.Google Scholar
  107. 107.
    Niskivskaya, O. P., andN. M. Milova. 1963. Antagonistic properties of Basidiomycetes. Mikrobiologiya32: 771–777.Google Scholar
  108. 108.
    Olson, B. A. α-sarcin. U.S. Pat. 3,104,204.Google Scholar
  109. 109.
    Olson, B. H. Restrictosin. U.S. Pat. 3,104,208.Google Scholar
  110. 110.
    Patent Neth. Appl. 302,527. May 11th, 1964.Google Scholar
  111. 111.
    Pisano, M. A., A. I. Fleishman, M. L. Littman, J. D. Dutcher, andF. E. Pansy. 1960. Antibiotic production byPaecilomyces persicinus, Antimicrob. Agents Ann.1: 41–47.Google Scholar
  112. 112.
    Raistrick, H., andP. Rudman. 1956. Studies in the biochemistry of microorganisms 97. Flavipin, a crystalline metabolite ofAspergillus flavipes (Bainier & Sartory) Thorn & Church andA. terreus Thom. Biochem. Jour.63: 395–406.Google Scholar
  113. 113.
    Rehm, H., undP. Walinofer. 1964. Zur Kenntnis der antimikrobiellen Winkung der Sorbinsaure. Naturwissenschaften51: 13–14.Google Scholar
  114. 114.
    Rougieux, R. 1963. Actions antibiotiques et stimulantes de la truffe du désert (Terfezia boudieri). Ann. Inst. Pasteur105: 315–318.Google Scholar
  115. 115.
    Roy, D. K. 1962. Antiviral antibiotic material fromAspergillus niger. Sci. & Cult.28(11): 540–541.Google Scholar
  116. 116.
    —. 1963. Effect of jawaharene upon mouse tumours. Naturwissenschaften50: 308.Google Scholar
  117. 117.
    Schloesser, E. 1962. A biologically active substance fromCercospora beticola. Phytopathol. Zeitschr.44: 295–312.Google Scholar
  118. 118.
    Schmidt, J. A. 1963. Bakterienantagonist vonPeronospora tabacina Adam und biologischer nachweis chemataktisch wirkender keimungsauslösender Tabakinhaltsstoffe. Zeitschr. Naturforsch.18b(2): 172–173.Google Scholar
  119. 119.
    Schol-Schwarz, M. B. 1965.Cephalosporium crotocinigenum sp. nov. Trans. Brit. Mycol. Soc.48: 51–53.Google Scholar
  120. 120.
    Semenova, M. N., andV. I. Velikanova. 1962. On the antibiotic culture liquid of the ‘tea fungus’Medusomyces grisewii. Doklady Akad. Nauk. S.S.R. (Transi.)141: 183–184.Google Scholar
  121. 121.
    Shope, R. E. 1953. An antiviral substance fromPenicillium funiculosum. Jour. Exp. Med.97: 601–650.Google Scholar
  122. 122.
    Sproston, T., H. Tomlinson, G. E. Milo, andA. Jones. 1962. Lambertellin, a new hydroxy 1,4-naphthoquinone produced by a fungus. Phytopathology52: 753.Google Scholar
  123. 123.
    Stoll, A., J. Rentz, undA. Brack. 1952. Uber gelbe Farbstoffe in Mutterkorn. 11. Mitteilung uber antibacterial Stoffe. Helv. Chim. Acta35: 2022–2034.Google Scholar
  124. 124.
    Sumiki, Y., H. Umezaha, H. Yonehara, K. Yamanaka, T. Takita, E. Akito, K. Veno, andK. Tohara. 1961. Variotin Japan Antibiotic Research Association. Brit. Pat. 866,425 April 26th.Google Scholar
  125. 125.
    Taber, W. A., andL. C. Vining. 1963.Isaria cretacea: Antibiotic factors produced by strain B. Can. Jour. Microbiol.9: 136–139.Google Scholar
  126. 126.
    Takeuch, S., H. Yonehara, andH. Umezawa. 1959. Studies on Variotin, a new antifungal antibiotic 1. Preparations and properties of Variotin. Jour. Antibiotics (Japan) Ser. A12: 195–200.Google Scholar
  127. 127.
    Takeshita, H., andM. Anchel. 1965. Production of Oosporein and its leuco form by Basidiomycete species. Science147: 152–153.PubMedGoogle Scholar
  128. 128.
    Turian, G. 1955. Recherches sur la nutrition, la variation et les propriétés antibiotiques deChaetomella horrida. Phytopath. Zeitschr.23: 113–120.Google Scholar
  129. 129.
    Tveit, M. 1956. Isolation of a chetomin-like substance from Oat seedlings infected withChaetomium cochliodes. Acta Agric. Scand.6: 13–16.Google Scholar
  130. 130.
    Udagawa, S. I. 1963. A major metabolite ofPenicillium hirayamae Udagawa. Chem. Pharm. Bull. (Tokyo)11: 366–367.Google Scholar
  131. 131.
    Uri, J., I. Szilagyi, undG. Szabo. 1954. Achoricine Wirkstoffe desAchorion gypseum. Acta Phys. Hung. Suppl.5: 49–53.Google Scholar
  132. 132.
    —, andG. Valu. 1963. Production of 6-aminopenicillanic acid by dermatophytes. Nature200: 896–97.PubMedGoogle Scholar
  133. 133.
    Vanderhaeghe, H., P. VanDijck, andP. DeSomer. 1965. Identity of Ramycin with Fusidic Acid. Nature205: 710–711.PubMedGoogle Scholar
  134. 134.
    Van Der Kerk, G. J. M., andJ. C. Overeen. 1957. Mollisin a dichloronaphthaquinone derivative produced by the fungusMollisia caesia. Rec. Trav. Chim. Pays-Bas76: 425–436.Google Scholar
  135. 135.
    Van Dijck, P. J., andP. DeSomer. 1958. Ramycin: a new antibiotic. Jour. Gen. Microbiol.18: 377–381.Google Scholar
  136. 136.
    Vining, L. C., W. J. Kelleher, andA. E. Schwarting. 1962. Oosporein production by a strain ofBeauveria bassiana originally identified asAmanita muscaria. Can. Jour. Microbiol.8: 931–933.Google Scholar
  137. 137.
    Voros, J. 1958. Fungistatic activity of the Sphaeropsidales and Melanconiales. Acta Microbiol. Acad. Sci. Hung.5: 261–266.PubMedGoogle Scholar
  138. 138.
    Watanabe, Y., K. Nakanishi, N. Komatsu, T. Sakabe, andH. Terakawa. 1964. Flammulin an antitumour substance. Bull. Chem. Soc. Japan37: 747–750.Google Scholar
  139. 139.
    Weiss, U., F. Strelitz, H. Flon, andI. N. Asheshov. 1958. Antibiotic compounds with action against bacterial viruses; neohydroxyaspergillic acid. Arch. Biochem. Biophys.74: 150–157.PubMedGoogle Scholar
  140. 140.
    Whitaker, D. R. 1951. A note on the antibiotic activity of 40 species of wood rotting fungi. Can. Jour. Bot.29: 197.Google Scholar
  141. 141.
    White, N. H., G. A. Chilvers, andG. Evans. 1962. Antifungal activity ofCylindrocarpon radicicola Wr. Nature195: 406–407.Google Scholar
  142. 142.
    Wilkins, W. H. 1952. Investigations into the production of bacteriostatic substances by fungi. Preliminary examination of the twelfth 100 species, all basidiomycetes. Brit. Jour. Exp. Path.33: 340–342.Google Scholar
  143. 143.
    —. 1954. Investigations into the production of bacteriostatic substances by fungi. Preliminary examination of the thirteenth 100 species, all Basidiomycetes. Brit. Jour. Exp. Path.35: 28–31.Google Scholar
  144. 144.
    Wood, R. K. S. 1953. The antagonism ofLambertella corni-maris to fungi and bacteria. Trans. Brit. Mycol. Soc.36: 109–110.Google Scholar
  145. 145.
    Zahner, H. 1964. Antibiotics in Microbiology. Naturwissenschaftliche Rundschau17(10): 391–399.Google Scholar

Copyright information

© The New York Botanical Garden 1966

Authors and Affiliations

  • Douglas Broadbent
    • 1
  1. 1.Pharmaceuticals Division, Research DepartmentImperial Chemical Industries LimitedMacclesfieldEngland

Personalised recommendations