The Botanical Review

, Volume 58, Issue 2, pp 107–222 | Cite as

Carbohydrate sources and sinks in woody plants

  • T. T. Kozlowski


Each perennial woody plant is a highly integrated system of competing carbohydrate sinks (utilization sites). Internal competition for carbohydrates is shown by changes in rates of carbohydrate movement from sources to sinks and reversals in direction of carbohydrate transport as the relative sink strengths of various organs change. Most carbohydrates are produced in foliage leaves but some are synthesized in cotyledons, hypocotyls, buds, twigs, stems, flowers, fruits, and strobili. Although the bulk of the carbohydrate pool moves to sinks through the phloem, some carbohydrates are obtained by sinks from the xylem sap. Sugars are actively accumulated in the phloem and move passively to sinks along a concentration gradient. The dry weight of a mature woody plant represents only a small proportion of the photosynthate it produced. This discrepancy results not only from consumption of plant tissues by herbivores and shedding of plant parts, but also from depletion of carbohydrates by respiration, leaching, exudation, secretion, translocation to other plants through root grafts and mycorrhizae and losses to parasites. Large spatial and temporal variations occur in the use of reserve- and currently produced carbohydrates in metabolism and growth of shoots, stems, roots, and reproductive structures. A portion of the carbohydrate pool is diverted for production of chemicals involved in defense against fungi, herbivores, and competing plants. Woody plants accumulate carbohydrates during periods of excess production and deplete carbohydrates when the rate of utilization exceeds the rate of production. Stored carbohydrates play an important role in metabolism, growth, defense, cold hardiness, and postponement or prevention of plant mortality.


Jede mehrjährige Holzpflanze stellt ein komplexes System von miteinander konkurrierenden Kohlenhydratverbrauchsorten (sinks) dar. Interne Konkurrenz um Kohlenhydrate zeigt sich in Veränderungen der Kohlenhydrattransportraten vom Produktionsort (source) zum Verbrauchsort (sink) und in Richtungsänderungen des Kohlenhydrattransportes, wenn der relative Kohlenhydratverbrauch einzelner Organe sich ändert. Die meisten Kohlenhydrate werden in Laubblättern produziert, einige jedoch werden in Keimblättern, Hypokotylen, Knospen, Zweigen, Stengeln, Blüten, Früchten und Blütenachsen synthetisiert. Obwohl sich der größte Teil des Kohlenhydratpools im Phloem zu den Verbrauchsorten bewegt, werden jedoch einige Kohlenhydrate dem Xylem entnommen. Zucker werden aktiv im Phloem akkumuliert und bewegen sich entlang eines Konzentrationsgefälles passiv zum Verbrauchsort. Das Trockengewicht einer ausgewachsenen Holzpflanze stellt nur einen geringen Teil der photosynthetischen Produktion dar. Diese Diskrepanz beruht nicht nur auf dem Verbrauch von pflanzlichem Gewebe durch Herbivore und Abwurf von Pflanzenteilen, sondern auch auf der Abschöpfung von Kohlenhydraten durch Atmung, Auswaschung, Ausscheidung, Translokation in andere Pflanzenteile durch Wurzelpfropfe und Verluste an Parasiten. Große räumliche und zeitliche Veränderungen zeigen sich beim Verbrauch von gespeicherten und laufend produzierten Kohlenhydraten im Stoffwechsel und Wachstum von Keimlingen, Sproßachsen, Wurzeln und reproduktiven Organen. Ein Teil des Kohlenhydratpools wird in die Produktion von Abwehrstoffen gegen Pilze, Herbivoren und konkurrierende Pflanzen umgelenkt. Holzpflanzen akkumulieren Kohlenhydrate in Zeiten der Überproduktion, die wieder abgebaut werden, wenn die Verbrauchstrate die Produktionstrate übersteigt. Speicherkohlenhydrate spielen eine wichtige Rolle im Stoffwechsel, Wachstum, Abwehr, Kälteresistenz, und in der Verzögerung oder Vermeidung von Pflanzentod.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abeles, F. B. 1973. Ethylene in plant biology. Academic Press, New York.Google Scholar
  2. Abod, S. A., A. D. Webster &J. D. Quinlan. 1991. Carbohydrates and their effects on the growth and establishment ofTilia andBetula. II. The early season movement of carbohydrates between shoots and roots. J. Hort. Sci.66: 345–355.Google Scholar
  3. Abrusrewil, G. S., F. E. Larsen &R. Fritts, Jr. 1983. Prestorage and poststorage starch levels in chemically and hand-defoliated ‘Delicious’ apple nursery stock. J. Amer. Soc. Hort. Sci.108: 20–23.Google Scholar
  4. Adams, M. B., H. L. Allen &C. B. Davey. 1986. Accumulation of starch in roots and foliage of loblolly pine (Pinus taeda L.): Effects of season, site, and fertilization. Tree Physiol.2: 35–46.PubMedGoogle Scholar
  5. Adams, M. S. &B. R. Strain. 1969. Seasonal photosynthetic rates in stems ofCercidium floridum Benth. Photosynthetica3: 55–62.Google Scholar
  6. —— &I. P. Ting. 1967. Photosynthesis in chlorophyllous stem tissue and leaves ofCercidium floridum: Accumulation and distribution of14C from14CO2. Pl. Physiol.42: 1797–1799.CrossRefGoogle Scholar
  7. Adicott, F. T. 1982. Abscission. Univ. California Press, Berkeley.Google Scholar
  8. Agnihortri, V. P. &O. Vaartaja. 1967. Root exudates from red pine seedlings and their effects onPythium ultimum. Canad. J. Bot.45: 1031–1040.CrossRefGoogle Scholar
  9. Aharoni, Y. &L. G. Houck. 1980. Improvement of internal color of oranges stored in oxygen-enriched atmospheres. Sci. Hortic.13: 331–338.CrossRefGoogle Scholar
  10. Ajmal, S. &M. Iqbal. 1987. Seasonal rhythms of structure and behaviour of vascular cambium inFicus rumphii. Ann. Bot.60: 649–656.Google Scholar
  11. Aldrich, W. W. 1936. Relative efficiency of spur and shoot leaves for fruit growth of pears. Proc. Amer. Soc. Hort. Sci.34: 227–232.Google Scholar
  12. — &T. R. Young. 1941. Carbohydrate changes in the date palm during the summer. Proc. Amer. Soc. Hort. Sci.39: 110–118.Google Scholar
  13. Alfleri, F. J. &R. F. Evert. 1968. Seasonal development of the secondary phloem inPinus. Amer. J. Bot.55: 518–528.CrossRefGoogle Scholar
  14. ——. 1973. Structure and seasonal development of the secondary phloem in the Pinaceae. Bot. Gaz.134: 17–25.CrossRefGoogle Scholar
  15. All, J. N. &D. J. Benjamin. 1975. Influence of needle maturity on larval feeding preference and survival ofNeodiprion swainei andN. rugifrons on jack pine,Pinus banksiana. Ann. Entomol. Soc. Amer.68: 579–584.Google Scholar
  16. Allen, P. J. 1952. Toxins and tissue respiration. Phytopathology41: 1179–1184.Google Scholar
  17. Allen, R. M. 1969. Racial variation in physiological characteristics of shortleaf pine roots. Silvae Genet.18: 40–42.Google Scholar
  18. -& N. M. Scarbrough. 1969. Development of a year’s height growth in longleaf pine saplings. U.S. Forest Serv., Res. Pap. SO-45.Google Scholar
  19. Aloni, R. 1987. Differentiation of vascular tissues. Ann. Rev. Pl. Physiol.38: 179–204.CrossRefGoogle Scholar
  20. — &M. H. Zimmermann. 1983. The control of vessel size and density along the plant axis. Differentiation24: 203–208.CrossRefGoogle Scholar
  21. Alpert, P., E. A. Newell, C. Chu, J. Glyphis, S. L. Gulmon, D. Y. Hollinger, N. D. Johnson, H. A. Mooney &G. Puttick. 1985. Allocation to reproduction in the chaparral shrub,Diplacus aurantiacus. Oecologia66: 309–316.CrossRefGoogle Scholar
  22. Alvim, R. E., E. W. Hewett &P. F. Saunders. 1976. Seasonal variation in the hormone content of willow. I. Changes in abscisic acid content and cytokinin activity in the xylem sap. Pl. Physiol.57: 474–476.CrossRefGoogle Scholar
  23. Ames, I. H. &H. B. Tepper. 1978. Seasonal changes in the ultrastructure of aspen bark chloroplasts. Photosynthetica12: 70–72.Google Scholar
  24. Ampofo, S. T., K. G. Moore &P. H. Lovell. 1976. The role of the cotyledon in fourAcer species and inFagus sylvatica during early seedling development. New Phytol.76: 31–39.CrossRefGoogle Scholar
  25. Amthor, J. S. 1984. The role of maintenance respiration in plant growth. Pl. Cell Environ.7: 561–569.Google Scholar
  26. Andersen, F. G. 1929. Some seasonal changes in the tracheal sap of pear and apricot trees. Pl. Physiol.4: 459–476.CrossRefGoogle Scholar
  27. Andersen, P. C. &B. V. Brodbeck. 1989. Diurnal and temporal changes in the chemical profile of xylem exudate fromVitis rotundifolia. Physiol. Plant.75: 63–70.CrossRefGoogle Scholar
  28. —,J. M. Montano &P. B. Lombard. 1985. Root anaerobiosis, root respiration, and leaf conductance of peach, willow, quince, and several pear species. HortScience20: 248–250.Google Scholar
  29. Angeles, G., R. F. Evert &T. T. Kozlowski. 1986. Development of lenticels and adventitious roots in floodedUlmus americana seedlings. Canad. Jour. Forest Res.16: 585–590.CrossRefGoogle Scholar
  30. Ap Rees, T. 1984. Sucrose metabolism. Pages 53–73in D. H. Lewis (ed.), Storage carbohydrates in vascular plants. Cambridge Univ. Press, Cambridge.Google Scholar
  31. Asahi, T., M. Kojima &T. Kosuge. 1979. The energetics of parasitism, pathogenism, and resistance in plant disease. Pages 47–74in J. G. Horsfall & E. B. Cowling (eds.), Plant disease. Vol. V. Academic Press, New York.Google Scholar
  32. Ash, J. 1983. Growth rings inAgathis robusta andAraucaria cunninghamii from tropical Australia. Austral. J. Bot.31: 269–275.CrossRefGoogle Scholar
  33. —. 1985. Growth rings and longevity ofAgathis vitiensis (Seeman) Benth. and Hook. f. ex Drake in Fiji. Austral. J. Bot.33: 81–88.CrossRefGoogle Scholar
  34. —. 1986. Growth rings, age and taxonomy ofDacrydium (Podocarpaceae) in Fiji. Austral. J. Bot.34: 197–205.CrossRefGoogle Scholar
  35. Ashcroft, W. J. &D. R. Murray. 1979. The dual functions of the cotyledons ofAcacia iteaphylla F. Muell. (Mimosoideae). Austral. Jour. Bot.27: 343–352.Google Scholar
  36. Atalay, A., H. E. Garrett, T. P. Mawhinney &R. J. Mitchell. 1988. Boron fertilization and carbohydrate relations in mycorrhizal and nonmycorrhizal shortleaf pine. Tree Physiol.4: 275–280.PubMedGoogle Scholar
  37. Atkinson, D. 1980. The distribution and effectiveness of the roots of tree crops. Hort. Rev.2: 424–490.Google Scholar
  38. Awad, M. &R. E. Young. 1979. Postharvest variation in cellulose, polygalacturonase, and pectinmethylesterase in avocado (Persea americana Mill. cv. Fuerte) fruits in relation to respiration and ethylene production. Pl. Physiol.64: 306–308.CrossRefGoogle Scholar
  39. Axelsson, E. &B. Axelsson. 1986. Changes in carbon allocation patterns in spruce and pine trees following irrigation and fertilization. Tree Physiol.2: 189–204.PubMedGoogle Scholar
  40. Babu, A. M. &A. R. S. Menon. 1990. Distribution of gum and gum-resin ducts in plant body: Certain familiar features and their significance. Flora184: 257–261.Google Scholar
  41. Bachelard, E. F. &R. Sands. 1968. Effect of weedicides on starch content and coppicing of cut stumps of manna gum. Austral. Forestry32: 49–54.Google Scholar
  42. Bakanidze, M. Sh. 1979. The intensity of respiration of different organs of tea in relation to temperature. Subtropicheskie Kul’tury4: 15–18.Google Scholar
  43. Balatinecz, J. J., D. F. Forward &R. G. S. Bidwell. 1966. Distribution of photoassimilated C14O2 in young jack pine seedlings. Canad. J. Bot.44: 362–364.CrossRefGoogle Scholar
  44. Baldwin, I. T. &J. C. Schultz. 1983. Rapid changes in tree leaf chemistry induced by damage: Evidence for communication between plants. Science221: 277–279.PubMedCrossRefGoogle Scholar
  45. Bamber, R. K. &F. R. Humphreys. 1965. Variations in sapwood starch levels in some Autralian forest species. Austral. Forestry29: 15–23.Google Scholar
  46. Bannister, P. 1980. The non-structural carbohydrate content of ericaceous shrubs from Scotland and Australia. Acta Oecol./Oecol. Plant1: 275–292.Google Scholar
  47. Barlow, P. W. 1986. Adventitious roots of whole plants: Their forms, functions, and evolution. Pages 67–110in M. B. Jackson (ed.), New root formation in plants and cuttings. Martinus Nijhoff, Dordrecht.Google Scholar
  48. Barnard, E. L. &J. R. Jorgensen. 1977. Respiration of field-grown loblolly pine roots as influenced by temperature and root type. Canad. J. Bot.55: 740–743.CrossRefGoogle Scholar
  49. Barnes, R. L. 1972. Effects of chronic exposure to ozone on photosynthesis and respiration of pines. Environ. Pollut.3: 133–138.CrossRefGoogle Scholar
  50. Bauer, T., S. Blechschmidt-Schneider &W. Eschrich. 1991. Regulation of the photoassimilate allocation inPinus sylvestris seedlings by the nutritional status of the mycorrhizal fungusSuillus variegatus. Trees5: 36–43.CrossRefGoogle Scholar
  51. Bazzaz, F. A., R. W. Carlson &J. L. Harper. 1979. Contribution to reproductive effort by photosynthesis of flowers and fruits. Nature279: 554–555.CrossRefGoogle Scholar
  52. Bean, R. C. &G. W. Todd. 1960. Photosynthesis and respiration in developing fruits. I. C14O2 uptake by young oranges in the light and in the dark. Pl. Physiol.35: 425–429.CrossRefGoogle Scholar
  53. —,G. E. Porter &B. K. Barr. 1963. Photosynthesis and respiration in developing fruits. III. Variations in photosynthetic capacities during color change in citrus. Pl. Physiol.38: 285–290.CrossRefGoogle Scholar
  54. Beaudry, R. M., J. A. Payne &S. J. Kays. 1985. Variation in the respiration of harvested pecans due to genotype and kernel moisture level. HortScience20: 752–754.Google Scholar
  55. Behrens, V. 1987. Kühllagerung von unbewurzelten Koniferenstecklingen. III. Zusammenhang Reservestoffgehalte und Bewurzelung. Gartenbauwissenschaft52: 161–165.Google Scholar
  56. Bentley, B. &T. Elias. 1983. The biology of nectaries. Columbia Univ. Press, New York.Google Scholar
  57. Berlyn, G. P. 1979. Physiological control of differentiation of xylem elements. Wood and Fiber11: 109–126.Google Scholar
  58. — &Y. C. Battey. 1985. Metabolism and synthetic function of cambial tissue. Pages 63–85in T. Higuchi (ed.), Biosynthesis and biodegradation of wood components. Academic Press, Orlando.Google Scholar
  59. Bernard, A. C. 1985. La détection cytochimique et les sites de dépôts de l’amidon dans les feuilles et les rameaux de la vigne (Vitis vinifera L.). Progrès Agricole et Viticole102: 223–230.Google Scholar
  60. Bernays, A. &S. Woodhead. 1982. Plant phenols utilized as nutrients by a phytophagous insect. Science216: 201–202.PubMedCrossRefGoogle Scholar
  61. Berryman, A. A. 1986. Forest insects, principles and practice of population management. Plenum Press, New York.Google Scholar
  62. Bevege, D. I., G. D. Brower &M. F. Skinner. 1975. Comparative carbohydrate physiology of ecto- and endomycorrhizas. Pages 149–174in F. E. Sanders, B. Mosse & P. B. Tinker (eds.), Endomycorrhizas. Academic Press, London.Google Scholar
  63. Bewley, J. D. &M. Black. 1978. Physiology and biochemistry of seeds in relation to germination. Springer-Verlag, Berlin.Google Scholar
  64. ——. 1982. Physiology and biochemistry of seeds. Vol. 2. Viability, dormancy, and environment. Springer-Verlag, Berlin and New York.Google Scholar
  65. Bieleski, R. L. 1982. Sugar alcohols. Encycl. Plant Physiol. N.S.13A: 158–192.Google Scholar
  66. — &R. J. Redgwell. 1985. Sorbitol versus sucrose as photosynthesis and translocation products in developing apricot leaves. Austral. J. Pl. Physiol.12: 657–668.CrossRefGoogle Scholar
  67. Birk, E. M. &P. A. Matson. 1986. Site fertility affects seasonal carbon reserves in loblolly pine. Tree Physiol.2: 17–27.PubMedGoogle Scholar
  68. Björkman, E. 1942. Über die Bedingungen der Mykorrhizabildung bei Kiefer und Fichte. Symb. Bot. Upsal.6: 1–191.Google Scholar
  69. —. 1944. The effect of Strangulation on the formation of mycorrhiza in pine. Svensk. Bot. Tidskr.38: 1–14.Google Scholar
  70. —. 1970. Mycorrhiza and tree nutrition in poor forest soils. Stud. Forest Suec.83: 1–24.Google Scholar
  71. Blanke, M. 1988. Wieviel Kohlenstoff verat met eine Apfelfrucht während ihrer Entwicklung. Erwerbsobstbau30: 68, 70.Google Scholar
  72. —,D. P. Hucklesby &B. A. Notton. 1987. Distribution and physiological significance of photosynthetic phosphoenolpyruvate carboxylase in developing apple fruit. J. Pl. Physiol.129: 319–325.Google Scholar
  73. — &F. Lenz. 1989. Fruit photosynthesis. Pl. Cell Environ.12: 31–46.CrossRefGoogle Scholar
  74. Blechschmidt-Schneider, S. 1989. Phloembeladung beiPicea abies (L.) Karst. Physiologische Betrachtungen Kali-Briefe19: 467–489.Google Scholar
  75. —. 1990. Phloem transport inPicea abies (L.) Karst. in mid-winter. I. Microautoradiographic studies onl4C-assimilate translocation in shoots. Trees4: 179–186.CrossRefGoogle Scholar
  76. Bogatek, R. &A. Rychter. 1984. Respiratory activity of apple seeds during dormancy removal and germination. Physiol. Vegetale22: 181–191.Google Scholar
  77. Bogdanovic, M. 1973. Chloropyll formation in the dark. I. Chlorophyll in pine seedlings. Physiol. Pl.29: 17–18.CrossRefGoogle Scholar
  78. Bollard, E. G. 1958. Nitrogenous compounds in the xylem sap. Pages 83–93in K. V. Thimann (ed.), The physiology of forest trees. Ronald Press, New York.Google Scholar
  79. —. 1960. Transport in the xylem. Ann. Rev. Pl. Physiol.11: 141–166.CrossRefGoogle Scholar
  80. Bonicel, A., G. Haddad &J. Gagnaire. 1987. Seasonal variations of starch and major soluble sugars in the different organs of young poplars. Pl. Physiol. Biochem.25: 451–459.Google Scholar
  81. Borges, R. G. &W. R. Chaney. 1989. Root temperature affects mycorrhizal efficacy inFraxinus pennsylvanica Marsh. New Phytol.112: 411–417.CrossRefGoogle Scholar
  82. Bormann, F. H. 1965. Changes in the growth pattern of white pine trees undergoing suppression. Ecology46: 269–277.CrossRefGoogle Scholar
  83. — &T. T. Kozlowski. 1962. Measurements of tree ring growth with dial-gauge dendrometers and vernier tree ring bands. Ecology43: 289–294.CrossRefGoogle Scholar
  84. Boscaglia, A. 1983. The starch content ofFraxinus ornus L. during the yearly cycle. Histological observations. Giorn. Bot. Ital.116: 41–49.Google Scholar
  85. Bowen, G. D. 1969. Nutrient status effects on loss of amides and amino acids from pine roots. Pl. & Soil30: 139–142.CrossRefGoogle Scholar
  86. —. 1984. Tree roots and the use of soil nutrients. Pages 147–179in G. D. Bowen and E. S. Nambiar (eds.), Nutrition of plantation crops. Academic Press, London.Google Scholar
  87. Braekke, F. H. &T. T. Kozlowski. 1975. Shrinkage and swelling of stems ofPinus resinosa andBetula papyrifera in northern Wisconsin. Pl. & Soil43: 387–410.CrossRefGoogle Scholar
  88. Brayman, A. A. &M. Schaedle. 1982. Photosynthesis and respiration of developingPopulus tremuloides internodes. Pl. Physiol.69: 911–915.CrossRefGoogle Scholar
  89. Breen, P. J. &T. Muraoka. 1973. Effect of indolebutyric acid on distribution of14C photosynthate in softwood cuttings of Marianna 2624 plum. J. Amer. Soc. Hort. Sci.98: 436–439.Google Scholar
  90. ——. 1974. Effect of leaves on carbohydrate content and movement of14C-assimilate in plum cuttings. J. Amer. Soc. Hort. Sci.99: 326–332.Google Scholar
  91. Breitsprecher, A. &J. S. Bethel. 1990. Stem-growth periodicity of trees in a tropical wet forest of Costa Rica. Ecology71: 1156–1164.CrossRefGoogle Scholar
  92. Brown, R. T. 1967. Influence of naturally occurring compounds on germination and growth of jack pine. Ecology48: 542–546.CrossRefGoogle Scholar
  93. Bryant, J. P. 1981. Phytochemical deterrence of snowshoe hare browsing by adventitious shoots of four Alaskan trees. Science313: 889–890.CrossRefGoogle Scholar
  94. —,F. S. Chapin III &D. R. Klein. 1983. Carbon nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos40: 357–368.CrossRefGoogle Scholar
  95. Burley, J. 1966a. Genetic variation in seedling development of Sitka spruce,Picea sitchensis (Bong.) Carr. Forestry39: 68–94.CrossRefGoogle Scholar
  96. —. 1966b. Provenance variation in growth of seedling apices of Sitka spruce. Forest Sci.12: 170–175.Google Scholar
  97. Butler, D. R. &J. J. Landsberg. 1981. Respiration rates of apple trees, estimated by CO2-efflux measurements. Plant Cell Environ.4: 153–159.CrossRefGoogle Scholar
  98. Buttrose, M. S. 1969. The dissolution and reaccumulation of starch granules in grape vine cane. Austral. J. Biol. Sci.22: 1297–1303.Google Scholar
  99. Calder, M. &P. Bernhardt. 1983. The biology of mistletoes. Academic Press, Sydney.Google Scholar
  100. Camerford, N. B. &E. H. White. 1977. Nutrient content of throughfall in paper birch and red pine stands in northern Minnesota. Canad. J. Forest Res.7: 556–561.CrossRefGoogle Scholar
  101. Cameron, S. H. &G. Borst. 1938. Starch in the avocado tree. Proc. Amer. Soc. Hort. Sci.36: 255–258.Google Scholar
  102. Cannell, M. G. R. 1971a. Effects of fruiting, defoliation and ring-barking on the accumulation and distribution of dry matter in branches ofCoffea arabica L. in Kenya. Exptl. Agr.7: 63–74.CrossRefGoogle Scholar
  103. —. 1971b. Production and distribution of dry matter in trees ofCoffea arabica L. in Kenya as affected by seasonal climatic differences and the presence of fruits. Ann. Appl. Biol.67: 99–120.CrossRefGoogle Scholar
  104. —. 1971c. Changes in the respiration and growth rates of developing fruits ofCoffea arabica L. J. Hort. Sci.46: 263–272.Google Scholar
  105. —. 1975. Crop physiological aspects of coffee bean yield: A review. J. Coffee Res.5: 7–20.Google Scholar
  106. —. 1976. Shoot apical growth and cataphyll initiation rates in provenancesof Pinus contorta. Canad. J. Forest Res.6: 539–556.Google Scholar
  107. —. 1985. Dry matter partitioning in tree crops. Pages 160–193in M. G. R. Cannell and J. E. Jackson (eds.), Attributes of trees as crop plants. Institute of Terrestrial Ecology, Huntington, England.Google Scholar
  108. —. 1989. Physiological basis of wood production: A review. Scand. J. Forest Res.4:459–490.CrossRefGoogle Scholar
  109. — &P. A. Huxley. 1969. Seasonal differences in the pattern of assimilate movement in branches ofCoffea arabica L. Ann. Appl. Biol.64: 345–357.CrossRefGoogle Scholar
  110. — &R. I. Smith. 1984. Spring frost damage on youngPicea sitchensis. Predictability of dates of budburst and probability of frost damage. Forestry57: 177–197.CrossRefGoogle Scholar
  111. — &J. Morgan. 1990. Theoretical study of variables affecting the export of assimilates from branchesof Picea. Tree Physiol.6: 257–266.PubMedGoogle Scholar
  112. —,S. Thompson &R. Lines. 1976. An analysis of inherent differences in shoot growth within some north temperate conifers. Pages 173–205in M. G. R. Cannell & F. T. Last (eds.), Tree physiology and yield improvement. Academic Press, New York.Google Scholar
  113. —,P. M. Tabbush, J. D. Deans, M. K. Hollingsworth, L. J. Sheppard, J. J. Philipson &M. B. Murray. 1990. Sitka spruce and Douglas-fir seedlings in the nursery and in cold storage: Root growth potential, carbohydrate content, dormancy, frost hardiness, and mitotic index. Forestry63: 9–27.CrossRefGoogle Scholar
  114. Cardemil, L. &A. Reinero. 1982. Changesof Araucaria araucana seed reserves during germination and early seedling growth. Canad. J. Bot.60: 1629–1638.CrossRefGoogle Scholar
  115. Carlisle, A. 1965. Carbohydrates in the precipitation beneath a sessile oak,Quercus petraea (Mattushka) Liebl. canopy. Pl. & Soil22: 399–400.CrossRefGoogle Scholar
  116. Castle, W. S. 1987. Citrus rootstocks. Pages 361–401in R. C. Rom and R. F. Carlson (eds.), Rootstocks for fruit crops. Wiley, New York.Google Scholar
  117. Chalmers, D. J., R. L. Canterford, P. H. Jerie, T. R. Jones &T. D. Ugalde. 1975. Photosynthesis in relation to growth and distribution of fruit in peach trees. Austral. J. Pl. Physiol.2: 635–645.CrossRefGoogle Scholar
  118. Chariot, M., P. M. Battut, B. Botton, F. Le Tacon &J. Garbaye. 1988. Recent advances in physiological and practical aspects of ectomycorrhizal effects on tree development. Acta Oecologica9: 333–351.Google Scholar
  119. Chapin, F. S. Ill,E. -D. Schulze &H. A. Mooney. 1990. The ecology and economics of storage in plants. Ann. Rev. Ecol. Syst.21: 423–447.CrossRefGoogle Scholar
  120. Ching, Te May. 1973. Metabolism of germinating seeds. Pages 103–218in T. T. Kozlowski (ed.), Seed biology. Vol. II. Academic Press, New York.Google Scholar
  121. — &K. K. Ching. 1962. Physical and physiological changes in maturing Douglas-fir cones and seeds. Forest Sci.8: 21–31.Google Scholar
  122. — &S. C. Fang. 1963. Utilization of labeled glucose in developing Douglas-fir seed cones. Pl. Physiol.38: 551–554.CrossRefGoogle Scholar
  123. Christiansen, E., R. H. Waring &A. A. Berryman. 1987. Resistance of conifers to bark beetle attack: Searching for general relationships. Forest Ecol. Managern.22: 89–106.CrossRefGoogle Scholar
  124. Chung, H. H. &R. L. Barnes. 1977. Photosynthate allocation inPinus taeda I. Substrate requirements for synthesis of shoot biomass. Canad. J. Forest Res.7: 106–111.CrossRefGoogle Scholar
  125. ——. 1980a. Photosynthate allocation inPinus taeda. II. Seasonal aspects of photosynthate allocation to different biochemical fractions in shoots. Canad. J. Forest Res.10: 338–347.Google Scholar
  126. ——. 1980b. Photosynthate allocation inPinus taeda. III. Photosynthate economy: Its production, consumption and balance in shoots during the growing season. Canad. J. Forest Res.10: 348–356.Google Scholar
  127. Clark, F. B. & F. G. Liming. 1953. Sprouting of blackjack oak in the Missouri Ozarks. U.S. Forest Service, Central States Forest Expt. Sta., Tech. Pap. 137.Google Scholar
  128. Clark, J. 1956. Photosynthesis of white spruce and balsam fir. Canada Dept. Agric. Div. Forest Biol. Bi-Monthly Progress Rept.12: 1–2.Google Scholar
  129. -. 1961. Photosynthesis and respiration in white spruce and balsam fir. New York State Univ. College of Forestry, Syracuse Univ. Tech. Bull. 85.Google Scholar
  130. Clausen, J. J. &T. T. Kozlowski. 1965. Heterophyllous shoots inBetula papyrifera. Nature205: 1020–1031.CrossRefGoogle Scholar
  131. ——. 1967a. Food sources for growth ofPinus resinosa shoots. Advancing Frontiers Pl. Sci.18: 23–32.Google Scholar
  132. ——. 1967b. Seasonal growth characteristics of long and short shoots of tamarack. Canad. J. Bot.45: 1643–1651.CrossRefGoogle Scholar
  133. ——. 1970. Observations on growth of long shoots ofLarix lancina. Canad. J. Bot.48: 1045–1048.CrossRefGoogle Scholar
  134. Clausen, T. P., J. P. Bryant &P. B. Reichardt. 1986. Defense of winter-dormant green alder against showshoe hares. J. Chem. Ecol.12: 2117–2131.CrossRefGoogle Scholar
  135. Clemens, J., A. M. Kirk &P. D. Mills. 1978. The resistance to water-logging of threeEucalyptus species, effect of flooding and of ethylene-releasing growth substances onE. robusta, E. grandis, andE. saligna. Oecologia34: 125–131.CrossRefGoogle Scholar
  136. Coe, J. M. &J. B. McLaughlin. 1980. Winter season corticular photosynthesis inCornus florida, Acer rubrum, Quercus alba, andLiriodendron tulipifera. Forest Sci.26: 561–566.Google Scholar
  137. Coley, P. D. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol. Monogr.53: 209–233.CrossRefGoogle Scholar
  138. —. 1986. Costs and benefits of defense by tannins in a neotropical tree. Oecologia70: 238–241.CrossRefGoogle Scholar
  139. —,J. P. Bryant &F. S. Chapin III. 1985. Resource availability and plant antiherbivore defense. Science230: 895–899.PubMedCrossRefGoogle Scholar
  140. Cook, J. M., A. F. Mark &B. F. Shore. 1980. Responses ofLeptospermum scoparium andL. ericoides (Myrtaceae) to waterlogging. N.Z. J. Bot.18: 233–246.Google Scholar
  141. Corlett, R. T. 1987. The phenology ofFicus fistulosa in Singapore. Biotropica19: 122–124.CrossRefGoogle Scholar
  142. Cortes, P. M. &T. R. Sinclair. 1985. The role of osmotic potential in spring sap flow of mature sugar maple trees (Acer saccharum Marsh.). J. Exp. Bot.36: 12–24.CrossRefGoogle Scholar
  143. Coté, W. A. 1977. Wood ultrastructure in relation to chemical composition. Recent Adv. Phytochem.11: 1–44.Google Scholar
  144. Cottam, W. P. 1954. Prevernal leafing of aspen in Utah mountains. J. Arnold Arbor.35: 239–250.Google Scholar
  145. Cottignies, A. 1986. The hydrolysis of starch as related to the interruption of dormancy in the ash bud. J. Pl. Physiol.123: 381–388.Google Scholar
  146. Courts, M. P. &J. J. Philipson. 1978. The tolerance of tree roots to waterlogging. II. Adaptation of Sitka spruce and lodgepole pine to waterlogged soil. New Phytol.80: 71–77.CrossRefGoogle Scholar
  147. Cox, G., F. E. Sanders, P. B. Tinker &J. A. Wild. 1975. Ultrastructural evidence relating to host endophyte transfer in a vesicular-arbuscular mycorrhiza. Pages 297–312in F. E. Sanders, B. Mosse & P. B. Tinker (eds.) Endomycorrhizas. Academic Press, London.Google Scholar
  148. Crane, J. C., P. B. Catlin &I. M. Al-Shalan. 1976. Carbohydrate levels in the pistachio as related to alternate bearing. J. Amer. Soc. Hort. Sci.101: 371–374.Google Scholar
  149. Cranswick, A. M., D. A. Rook &J. A. Zabkiewicz. 1987. Seasonal changes in carbohydrate concentration and composition of different tissue types ofPinus radiata trees. N.Z. J. Forest Sci.17: 229–240.Google Scholar
  150. Crawford, R. M. M. 1984. Anaerobic respiration and flood tolerance in higher plants. Pages 67–75in J. M. Palmer (ed.), The physiology and biochemistry of plant respiration. Cambridge University Press, Cambridge.Google Scholar
  151. Creasy, L. L. 1985. Biochemical responses of plants to fungal attack. Recent Adv. Phytochem.19: 47–79.Google Scholar
  152. Creber, G. T. &W. G. Chaloner. 1984. Influence of environmental factors on the wood structure of living and fossil trees. Bot. Rev.50: 357–448.CrossRefGoogle Scholar
  153. Crocker, W. &L. V. Barton. 1953. Physiology of seeds. Chronica Botanica, Waltham, Massachusetts.Google Scholar
  154. Crossley, A. &D. Fowler. 1986. The weathering of Scots pine epicuticular wax in polluted and clean air. New Phytol.103: 207–218.CrossRefGoogle Scholar
  155. Curl, E. A. 1982. The rhizosphere: Relation to pathogen behavior and root disease. Pl. Dis.66: 624–630.CrossRefGoogle Scholar
  156. Dalbro, S. 1955. Leaching of nutrients from apple foliage. Proc. XIV Int. Hort. Congr. Pp. 770–778.Google Scholar
  157. Dale, J. E. 1985. The carbon relations of the developing leaf. Pages 135–153in N. R. Baker, W. J. Davies & C. K. Ong (eds.), Control of leaf growth. Cambridge Univ. Press, London and New York.Google Scholar
  158. — &F. L. Milthorpe. 1983. General features of the production and growth of leaves. Pages 151–178in J. E. Dale & F. L. Milthorpe (eds.), The growth and function of leaves. Cambridge University Press, Cambridge.Google Scholar
  159. — &J. F. Sutcliffe. 1986. Phloem transport. Pages 455–549in F. C. Steward, J. F. Sutcliffe & J. E. Dale (eds.), Plant physiology. Vol. IX. Water and solutes in plants. Academic Press, Orlando.Google Scholar
  160. Dann, I. R., P. H. Jerie &D. J. Chalmers. 1985. Short-term changes in cambial growth and endogenous IAA concentrations in relation to phloem girdling of peach,Prunus persica (L.) Batsch. Austral. J. Pl. Physiol.12: 395–402.CrossRefGoogle Scholar
  161. Dave, Y. S. &K. S. Rao. 1982a. Seasonal activity of the vascular cambium inGmelina arborea. IAWA Bull.3: 59–65.Google Scholar
  162. ——. 1982b. Cambial activity inMangifera indica L. Acta Bot. Acad. Sci. Hung.28: 73–79.Google Scholar
  163. Davis, D. D. 1980. Anaerobic metabolism and the production of organic acids. Pages 581–611in D. D. Davis (ed.), The biochemistry of plants. Vol. 2. Academic Press, New York.Google Scholar
  164. Davies, F. T., Jr. &H. T. Hartmann. 1988. The physiological basis of adventitious root formation. Acta Hort.227: 113–120.Google Scholar
  165. Davis, J. D. &R. F. Evert. 1968. Seasonal development of the secondary phloem inPopulus tremuloides. Bot. Gaz.129: 1–8.CrossRefGoogle Scholar
  166. Davis, J. T. &D. Sparks. 1974. Assimilation and translocation patterns of carbon 14 in the shoots of fruiting pecan treesCarya illinoensis Koch. J. Amer. Soc. Hort. Sci.99: 468–480.Google Scholar
  167. Deans, J. D. &E. D. Ford. 1986. Seasonal patterns of radial root growth and starch dynamics in plantation-grown Sitka spruce trees of different ages. Tree Physiol.1: 241–251.PubMedGoogle Scholar
  168. De Bell, D. S. 1971. Phytotoxic effects of cherry-bark oak. Forest Sci.17: 180–185.Google Scholar
  169. De Boois, H. M. &E. Jansen. 1976. Effects of nutrients in throughfall water and of litterfall upon fungal growth in a forest soil layer. Pedobiologia16: 161–166.Google Scholar
  170. De Jong, T. M. &E. F. Walton. 1989. Carbohydrate requirements of peach fruit growth and respiration. Tree Physiol.5: 329–335.Google Scholar
  171. Dell, B. &A. J. McComb. 1978. Plant resins—Their formation, secretion, and possible functions. Pages 278–316in W. H. Woodhouse (ed.), Advances in botanical research. Vol. 6. Academic Press, New York.Google Scholar
  172. Delmer, D. P. &B. A. Stone. 1988. Biosynthesis of plant cell walls. Pages 373–420in J. Preiss (ed.), Biochemistry of plants. Vol. 14. Academic Press, San Diego, California.Google Scholar
  173. Del Moral, R. &C. H. Müller. 1969. Fog drip: A mechanism of toxin transport fromEucalyptus globulus. Bull. Torrey Bot. Club96: 467–475.CrossRefGoogle Scholar
  174. ——. 1970. The allelopathic effectsof Eucalyptus camaldulensis. Amer. Midl. Nat.83: 254–282.CrossRefGoogle Scholar
  175. Delrot, S. 1987. Phloem loading: Apoplastic or symplastic? Pl. Physiol. Biochem.25: 667–676.Google Scholar
  176. —. 1989. Loading of photoassimilates. Pages 167–205in D. A. Baker & J. A. Milburn (eds.), Transport of photoassimilates. Wiley, New York.Google Scholar
  177. De Mason, D. A. &W. W. Thomson. 1981. Structure and ultrastructure of the cotyledon of date palm (Phoenix dactylifera L.). Bot. Gaz.142: 320–328.CrossRefGoogle Scholar
  178. Denne, M. P. &J. E. Wilson. 1977. Some quantitative effects of indoleacetic acid on the wood production and tracheid dimensions ofPicea. Planta134: 223–228.CrossRefGoogle Scholar
  179. De Pamphilis, C. W. &H. S. Neufeld. 1989. Phenology and ecophysiology ofAesculus sylvatica, a vernal understory tree. Canad. J. Bot.67: 2161–2167.CrossRefGoogle Scholar
  180. De Souza, S. M. &P. Felker. 1986. The influence of stockplant fertilization on tissue concentrations of N, P and carbohydrates and the rooting ofProsopis alba cuttings. Forest Ecol. Managern.16: 181–190.CrossRefGoogle Scholar
  181. Dick, J. McP., P. G. Jarvis &R. R. B. Leakey. 1990a. Influence of male cones on early season vegetative growth ofPinus contorta trees. Tree Physiol.6: 105–117.PubMedGoogle Scholar
  182. —,R. R. B. Leakey &P. G. Jarvis. 1990b. Influence of female cones on the vegetative growthof Pinus contorta trees. Tree Physiol.6: 151–163.PubMedGoogle Scholar
  183. Dickmann, D. I. 1971a. Photosynthesis and respiration by developing leaves of cottonwood (Populus deltoides Bartr.). Bot. Gaz.132: 253–259.CrossRefGoogle Scholar
  184. —. 1971b. Chlorophyll, ribulose-l,5-diphosphate carboxylase and Hill reaction activity in developing leavesof Populus deltoides. Bartr. Pl. Physiol.48: 143–145.CrossRefGoogle Scholar
  185. — &J. C. Gordon. 1975. Incorporation of14C photosynthate into protein during leaf development of youngPopulus plants. Pl. Physiol.56: 23–27.CrossRefGoogle Scholar
  186. — &T. T. Kozlowski. 1968. Mobilization byPinus resinosa cones and shoots of C14-photosynthate from needles of different ages. Amer. J. Bot.55: 900–906.CrossRefGoogle Scholar
  187. ——. 1969. Seasonal growth patterns of ovulate strobili ofPinus resinosa in Wisconsin. Canad. Jour. Bot.47: 839–848.CrossRefGoogle Scholar
  188. ——. 1970a. Photosynthesis by rapidly expanding green strobiliof Pinus resinosa. Life Sciences9, Part II. No.10: 549–552.CrossRefGoogle Scholar
  189. ——. 1970b. Mobilization and incorporation of photoassimilated14C by growing vegetative and reproductive tissues of adultPinus resinosa Ait. trees. Pl. Physiol.45: 284–288.CrossRefGoogle Scholar
  190. ——. 1973. Water, nutrient, and carbohydrate relations in growth ofPinus resinosa ovulate strobili. Pages 195–209in Proc. First All Union Symposium on Sexual Reproduction in Conifers. Novosibirsk, U.S.S.R.Google Scholar
  191. — &K. W. Stuart. 1983. The culture of poplars. Dept. of Forestry, Michigan State University, East Lansing, Michigan.Google Scholar
  192. Dickson, R. E. 1986. Carbon fixation and distribution in youngPopulus trees. Pages 409–426in T. Fujimori & D. Whitehead (eds.), Proc. Crown and Canopy Structure in Relation to Productivity. Forestry and Forest Products Res. Inst., Ibaraki, Japan.Google Scholar
  193. —. 1989. Carbon and nitrogen allocation in trees. Ann. Sci. Forest46 suppl.: 631s-647s.CrossRefGoogle Scholar
  194. — &J. G. Isebrands. 1991. Leaves as regulators of stress responses. Pages 3–34in H. A. Mooney, W. E. Winner & E. J. Pell (eds.). Response of plants to multiple stresses. Academic Press, San Diego.Google Scholar
  195. — &P. R. Larson. 1981.14C fixation, metabolic labeling patterns, and translocation profiles inPopulus deltoides. Planta152: 461–470.CrossRefGoogle Scholar
  196. — &J. B. Shive, Jr. 1982.14CO2 fixation, translocation, and carbon metabolism in rapidly expanding leaves ofPopulus deltoides. Ann. Bot.50: 37–47.Google Scholar
  197. —,J. G. Isebrands &P. T. Tomlinson. 1990. Distribution and metabolism of current photosynthate by single-flush northern red oak seedlings. Tree Physiol.7: 65–77.PubMedGoogle Scholar
  198. Digby, J. &P. F. Wareing. 1966. The effect of applied growth hormones on cambial division and the differentiation of the cambial derivatives. Ann. Bot.30: 539–548.Google Scholar
  199. Dixon, R. K., S. G. Pallardy, H. E. Garrett &G. S. Cox. 1983. Comparative water relations of container-grown and bare-root ectomycorrhizal and nonmycorrhizalQuercus velutina seedlings. Canad. J. Bot.61: 1559–1565.Google Scholar
  200. Doley, D. &L. Leyton. 1968. Effects of growth regulating substances and water potential on the development of secondary xylem inFraxinus. New Phytol.67: 579–594.CrossRefGoogle Scholar
  201. Domanski, R., T. T. Kozlowski &S. Sasaki. 1969. Interactions of applied growth regulators and temperature on root initiation inSalix cuttings. J. Amer. Soc. Hort. Sci.94: 39–41.Google Scholar
  202. Donnelly, J. R. 1974. Seasonal changes in photosynthate transport within elongating shoots ofPopulus grandidentata. Canad. J. Bot.52: 2547–2559.CrossRefGoogle Scholar
  203. Dosskey, M. G., R. G. Linderman &L. Boersma. 1990. Carbon-sink stimulation of photosynthesis in Douglas fir seedlings by some mycorrhizas. New Phytol.115: 269–274.CrossRefGoogle Scholar
  204. —,L. Boersma &R. G. Linderman. 1991. Role for the photosynthate demand of ectomycorrhizas of Douglas fir seedlings to drying soils. New Phytol.117: 327–331.CrossRefGoogle Scholar
  205. Douds, D. D., C. J. Johnson &K. E. Koch. 1988. Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis. Pl. Physiol.86: 491–496.CrossRefGoogle Scholar
  206. Dougherty, P. M., R. O. Teskey, J. E. Phelps &T. M. Hinckley. 1979. Net photosynthesis and early growth trends of a dominant white oak (Quercus alba L.). Pl. Physiol.64: 930–935.CrossRefGoogle Scholar
  207. Dowler, W. M. &F. D. King. 1966. Seasonal changes in starch and soluble sugar content of dormant peach tissues. Proc. Amer. Soc. Hort. Sci.89: 80–84.Google Scholar
  208. Duchesne, L. C. &D. W. Larson. 1989. Cellulose and the evolution of plant life. BioScience39: 238–241.CrossRefGoogle Scholar
  209. Duddridge, J. A., A. Malibari &D. J. Read. 1980. Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature287: 834–836.CrossRefGoogle Scholar
  210. Dunlap, J. R. &J. P. Barnett. 1983. Influence of seed size on germination and early development of loblolly pine (Pinus taeda L.) germinants. Canad. J. Forest Res.13: 40–44.CrossRefGoogle Scholar
  211. Eaks, I. L. 1980. Effect of chilling on respiration and volatiles of California lemon fruit. J. Amer. Soc. Hort. Sci.105: 865–869.Google Scholar
  212. Edgerton, L. J. 1973. Chemical thinning of flowers and fruits. Pages 435–474in T. T. Kozlowski (ed.), Shedding of plant parts. Academic Press, New York.Google Scholar
  213. Edwards, C. A. &P. M. Mumford. 1985. Factors affecting the oxygen consumption of sour orange (Citrus aurantiacum L.) seeds during imbibed storage and germination. Seed Sci. Tech.13: 201–212.Google Scholar
  214. Edwards, N. T. &W. F. Harris. 1977. Carbon cycling in a mixed deciduous forest floor. Ecology58: 431–437.CrossRefGoogle Scholar
  215. Eggler, W. A. 1961. Stem elongation and time of cone initiation in southern pines. Forest Sci.7: 149–158.Google Scholar
  216. Eis, S. 1972. Root grafts and their silvicultural implications. Canad. J. Forest Res.2: 111–120.CrossRefGoogle Scholar
  217. Emerich, D. W., J. E. Lepo &H. J. Evans. 1983. Nodule metabolism. Pages 213–244in W. J. Broughton (ed.), Nitrogen fixation. Vol. 3. Clarendon Press, Oxford.Google Scholar
  218. Ericsson, A. 1978. Seasonal changes in translocation of14C from different age classes of needles on 20-year-old Scots pine trees (Pinus sylvestris). Physiol. Pl.43: 351–358.CrossRefGoogle Scholar
  219. —. 1984. Effects of low temperature and light treatment, following winter cold storage, on starch accumulation in Scots pine seedlings. Canad. J. Forest Res.14: 114–118.CrossRefGoogle Scholar
  220. -& A. Persson. 1980. Seasonal changes in starch reserves and growth of fine roots of 20-year-old Scots pines.In T. Persson (ed.), Structure and function of northern coniferous forests—An ecosystem study. Ecol. Bull. (Stockholm)32: 239–250.Google Scholar
  221. Essiamah, S.&W. Eschrich. 1985. Changes of starch content in the storage tissues of deciduous trees during winter and spring. IAWA Bull. n.s.6: 97–106.Google Scholar
  222. Etter, H. M. &L. W. Carlson. 1973. Sugars, relative water content and growth after planting of dormant lodgepole pine seedlings. Canad. J. Plant Sci.53: 395–399.CrossRefGoogle Scholar
  223. Evert, R. F. 1961. Some aspects of cambial development inPyrus communis. Amer. J. Bot.48: 479–488.CrossRefGoogle Scholar
  224. —. 1963. The cambium and seasonal development of the phloem inPyrus malus. Amer. J. Bot.48: 479–488.CrossRefGoogle Scholar
  225. —. 1977. Phloem structure and histochemistry. Ann. Rev. Pl. Physiol.28: 199–222.CrossRefGoogle Scholar
  226. — &T. T. Kozlowski. 1967. Effect of isolation of bark on cambial activity and development of xylem and phloem in trembling aspen. Amer. J. Bot.54: 1045–1055.CrossRefGoogle Scholar
  227. — &J. D. Davis. 1972. Influence of phloem blockage on cambial growth ofAcer saccharum. Amer. J. Bot.49: 632–641.CrossRefGoogle Scholar
  228. Ewel, K. C., W. P. Cropper, Jr. &H. L. Gholz. 1987. Soil CO2 evolution in Florida slash pine plantations. II. Importance of root respiration. Canad. J. Forest Res.17: 330–333.CrossRefGoogle Scholar
  229. Fahn, A. 1979. Secretary tissues in plants. Academic Press, London.Google Scholar
  230. -,J. Burley, K. A. Longman, A. Mariaux & P. B. Tomlinson. 1981. Possible contributions of wood anatomy to the determination of the age of tropical trees. Pages 31–54in F. H. Bormann & G. Berlyn (eds.), Age and growth of tropical trees. Yale University School of Forestry Bull. 94, New Haven, Connecticut.Google Scholar
  231. — &E. Zamski. 1970. The influence of pressure, wind, wounding and growth substances on the rate of resin duct formation inPinus halepensis wood. Israel J. Bot.19: 429–446.Google Scholar
  232. Fails, B. S., A. J. Lewis &J. A. Barden. 1982. Light acclimatization potential ofFicus benjamina. J. Amer. Soc. Hort. Sci.107: 762–766.Google Scholar
  233. Fairley, R. I. &I. J. Alexander. 1985. Methods of calculating fine root production in forests. Pages 37–42in A. H. Fitter (ed.), Ecological interactions in soil. Blackwell, Oxford.Google Scholar
  234. Fallahi, E., J. W. Moon, Jr. & D. R. Rodney. 1989. Yield and quantity of ‘Redblush’ grapefruit on twelve rootstocks. J. Amer. Soc. Hort. Sci.114: 187–190.Google Scholar
  235. Farmer, R.E. 1975. Seasonal carbohydrate levels in roots of Appalachian hardwood planting stock. U.S. Forest Service, Tree Planters Notes29: 22–44.Google Scholar
  236. Farrar, J. L. 1961. Longitudinal variations in the thickness of the annual ring. Forestry Chron.37: 323–331.Google Scholar
  237. Fayle, D. C. F. 1968. Radial growth in tree roots. Faculty of Forestry Tech. Rept. 9, Univ. of Toronto, Canada.Google Scholar
  238. —. 1975. Distribution of radial growth during the development of red pine root systems. Canad. J. Forest Res.5: 608–625.CrossRefGoogle Scholar
  239. —. 1980. Secondary thickening in tree roots and environmental influences. Pages 93–118in D. N. Sen (ed.), Environment and root behaviour. Geobios International, Jodhpur, India.Google Scholar
  240. — &C. V. Bentley. 1989. Temporal changes in growth layer patterns of plantation-grown red oak and red pine. Canad. J. Forest Res.19: 440–446.CrossRefGoogle Scholar
  241. Feeny, P. 1976. Plant apparency and chemical defense. Rec. Adv. Phytochem.10: 1–40.Google Scholar
  242. Ferguson, A. R. 1980. Xylem sap fromActinidia chinensis: Apparent differences in sap composition arising from the method of collection. Ann. Bot.46: 791–801.Google Scholar
  243. —,J. A. Eiseman &J. R. Dale. 1981. Xylem sap fromActinidia chinensis: Gradients in sap composition. Ann. Bot.48: 75–80.Google Scholar
  244. —, &J. A. Leonard. 1983. Xylem sap fromActinidia chinensis: Seasonal changes in composition. Ann. Bot.51: 823–833.Google Scholar
  245. Ferree, D. C. &J. W. Palmer. 1982. Effect of spur defoliation and ringing during bloom on fruiting, fruit mineral level, and photosynthesis of ‘Golden Delicious’ apple. J. Amer. Soc. Hort. Sci.107: 1182–1185.Google Scholar
  246. Fielder, P. &J. N. Owens. 1989. A comparative study of shoot and root development of interior and coastal Douglas-fir seedlings. Canad. J. Forest Res.19: 539–549.CrossRefGoogle Scholar
  247. Fink, S. 1982. Histochemische Untersuchungen über Stärkeverteilung und Phosphataseaktivität im Holz einiger tropischer Baumarten. Holzforschung36: 295–302.CrossRefGoogle Scholar
  248. Fischer, C. &W. Höll. 1988. Soluble carbohydrates and starch in needles, trunk- and root wood of Scots’ pine (Pinus sylvestris L.). Abstracts 6th Congr., Federation of European Societies of Plant Physiology, Split, Yugoslavia.Google Scholar
  249. Fisher, R. F. 1978. Juglone inhibits pine growth under certain moisture regimes. Soil Sci. Soc. Amer. J.42: 801–803.CrossRefGoogle Scholar
  250. Flinn, B. S., D. T. Webb &W. Newcomb. 1989. Morphometric analysis of reserve substances and ultrastructural changes during caulogenic determination and loss of competence of eastern white pine (Pinus strobus) cotyledonsin vitro. Canad. J. Bot.67: 779–789.CrossRefGoogle Scholar
  251. Fogel, R. 1980. Mycorrhizae and nutrient cycling in natural forest ecosystems. New Phytol.86: 199–212.CrossRefGoogle Scholar
  252. —. 1983. Root turnover and productivity of coniferous forests. Pl. & Soil71: 75–86.CrossRefGoogle Scholar
  253. —. 1985. Roots as primary producers in belowground ecosystems. Pages 23–36in A. H. Fitter et al. (eds.), Ecological interactions in soil. Blackwell, Oxford.Google Scholar
  254. — &G. Hunt. 1979. Fungal and arboreal biomass in a Western Oregon Douglas-fir ecosystem: Distribution patterns and turnover. Canad. J. Forest Res.9: 245–256.CrossRefGoogle Scholar
  255. Foote, K. C. &M. Schaedle. 1976. Diurnal and seasonal patterns of photosynthesis and respiration by stems ofPopulus tremuloides Michx. Pl. Physiol.58: 651–655.CrossRefGoogle Scholar
  256. —. 1978. The contribution of aspen bark photosynthesis to the energy balance of the stem. Forest Sci.24: 569–573.Google Scholar
  257. Ford, E. D. &J. D. Deans. 1977. Growth of a Sitka spruce plantation: Spatial distribution and seasonal fluctuations of lengths, weights, and carbohydrate concentrations of fine roots. Pl. & Soil47: 463–485.CrossRefGoogle Scholar
  258. Forward, D. F. 1965. The respiration of bulky organs. Pages 311–376in F. C. Steward (ed.), Plant physiology. Vol. IVA. Academic Press, New York.Google Scholar
  259. — &N. J. Nolan. 1961. Growth and morphogenesis in the Canadian forest species. IV. Further studies of wood growth in branches and main axis ofPinus resinosa Ait. under conditions of open growth, suppression, and release. Canad. J. Bot.39: 411–436.CrossRefGoogle Scholar
  260. Fowells, H. A. & G. H. Schubert. 1956. Seedcrops of forest trees in the pine region of California. U.S. Dept. Agr. Tech. Bull. 1150.Google Scholar
  261. Franceschi, V. R. 1986. Temporary storage and its role in partitioning among sinks. Pages 399–409in J. Cronshaw, W. J. Lucas & R. T. Giaquinta (eds.), Phloem transport. Liss, New York.Google Scholar
  262. Freeland, W. J. &D. H. Janzen. 1974. Strategies in herbivory by mammals: The role of plant secondary compounds. Amer. Naturalist108: 269–289.CrossRefGoogle Scholar
  263. Fuchs, Y. &M. Lieberman. 1968. Effects of kinetin, IAA, and gibberellin on ethylene production, and their interactions in growth of seedlings. Pl. Physiol.43: 2029–2036.CrossRefGoogle Scholar
  264. Fukuda, H. &A. Komamine. 1980. Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyllof Zinnia elegans. Pl. Physiol.65: 57–60.CrossRefGoogle Scholar
  265. Gagnon, B., Y. Desjardins &R. Bedard. 1990. Fruiting as a factor in accumulation of carbohydrates and nitrogen and in fall cold hardening of day-neutral strawberry roots. J. Amer. Soc. Hort. Sci.115: 520–525.Google Scholar
  266. Gamalei, Y. 1991. Phloem loading and its development related to plant evolution from trees to herbs. Trees5: 50–64.CrossRefGoogle Scholar
  267. Gardner, D. C. &A. J. Peel. 1972. Some observations on the role of ATP in sieve tube translocation. Planta107: 217–226.CrossRefGoogle Scholar
  268. Gäumann, E. 1935. Der Stoffhaushalt der Büche (Fagus sylvatica L.) im Laufe eines Jahres. Ber. Deutsch. Bot. Ges.53: 366–377.Google Scholar
  269. Gedalovich, E. &A. Fahn. 1985. The development and ultrastructure of gum ducts inCitrus plants formed as a result of brown-rot gummosis. Photoplasma127: 73–81.CrossRefGoogle Scholar
  270. Geiger, D. R. 1975. Phloem loading. Encycl. Pl. Physiol. 1: 395–431.Google Scholar
  271. —. 1987. Understanding interactions of source and sink regions of plants. Pl. Physiol. Biochem.25: 659–666.Google Scholar
  272. — &B. R. Fondy. 1980. Phloem loading and unloading: Pathways and mechanisms. What’s New in Plant Physiology11: 25–28.Google Scholar
  273. — &S. A. Savonick. 1975. Effects of temperature, anoxia and other metabolic inhibitors on translocation. Encycl. Pl. Physiol.1: 256–286.Google Scholar
  274. Gerdemann, J. W. 1975. Vesicular-arbuscular mycorrhizae. Pages 575–591in J. G. Torrey & D. T. Clarkson (eds.), The development and function of roots. Academic Press, New York.Google Scholar
  275. Gersper, D. L. &N. Hollowaychuck. 1971. Some effects of stemflow from forest canopy trees on chemical properties of soils. Ecology52: 691–702.CrossRefGoogle Scholar
  276. Gholz, H. L., L. C. Hendry &W. P. Cropper, Jr. 1986. Organic matter dynamics of fine roots in plantations of slash pine (Pinus elliottii) in North Florida. Canad. J. Forest Res.16: 529–538.CrossRefGoogle Scholar
  277. Giaquinta, R. T. 1980. Translocation of sucrose and oligosaccharides. Pages 271–320in P. K. Stumpf & E. E. Conn (eds.), The biochemistry of plants. Vol. 3. Academic Press, New York.Google Scholar
  278. —. 1983. Phloem loading of sucrose. Ann. Rev. Pl. Physiol.34: 347–387.CrossRefGoogle Scholar
  279. Gibbs, R. D. 1940. Studies in tree physiology. II. Seasonal changes in the food reserves of field birch (Betula populifolia Marsh.). Canad. J. Res. C18: 1–9.Google Scholar
  280. Gibson, A. C. 1983. Anatomy of photosynthetic old stems of nonsucculent dicotyledons from North American deserts. Bot. Gaz.144: 347–362.CrossRefGoogle Scholar
  281. Gifford, R. M. &L. T. Evans. 1981. Photosynthesis, carbon partitioning, and yield. Ann. Rev. Pl. Physiol.32: 485–509.CrossRefGoogle Scholar
  282. —,J. H. Thorne, W. D. Hitz &R. T. Giaquinta. 1984. Crop productivity and photoassimilate partitioning. Science225: 801–808.PubMedCrossRefGoogle Scholar
  283. Gill, A. M. &P. B. Tomlinson. 1975. Aerial roots: An array of forms and functions. Pages 237–260in J. G. Torrey & D. T. Clarkson (eds.), The development and function of roots. Academic Press, London.Google Scholar
  284. Gill, C. J. 1975. The ecological significance of adventitious rooting as a response to flooding in woody species, with special reference toAlnus glutinosa (L.) Gaertn. Flora164: 85–97.Google Scholar
  285. Gilmore, A. R. 1962. Root growth of transplanted loblolly pine (Pinus taeda L.) seedlings in relation to chemical root reserves. Trans. Illinois State Acad. Sci.55: 38–41.Google Scholar
  286. Glerum, C. 1980. Food sinks and food reserves of trees in temperate climates. N. Z. J. Forest Sci.10: 176–185.Google Scholar
  287. Glerum, C. &J. J. Balatinecz. 1980. Formation and distribution of food reserves during autumn and their subsequent utilization in jack pine. Canad. J. Bot.58: 40–54.Google Scholar
  288. Goldschmidt, E. E., N. A. Aschkenazi, Y. Herzano, A. A. Schaeffer &S. P. Monselise. 1985. A role for carbohydrate levels in the control of flowering in citrus. Sci. Hort.26: 159–166.CrossRefGoogle Scholar
  289. — &A. Golomb. 1982. The carbohydrate balance of alternate-bearing citrus trees and the significance of reserves for flowering and fruiting. J. Amer. Soc. Hort. Sci.107: 206–208.Google Scholar
  290. Goldwin, G. K. &H. Ermen. 1989. Tree-to-tree variability in the yield of apple.Malus pumila, cv. Cox’s Orange Pippin. J. Hort. Sci.64: 259–264.Google Scholar
  291. Good, G. L. &H. B. Tukey, Jr. 1966. Leaching of metabolites from cuttings propagated under intermittent mist. Proc. Amer. Soc. Hort. Sci.89: 727–733.Google Scholar
  292. Goodwin, T. W. &E. I. Mercer. 1983. Introduction to plant biochemistry. Pergamon Press, New York.Google Scholar
  293. Gordon, J. C. &P. R. Larson. 1968. Seasonal course of photosynthesis, respiration, and distribution of14C in youngPinus resinosa trees as related to wood formation. Pl. Physiol.43: 1617–1624.CrossRefGoogle Scholar
  294. ——. 1970. Redistribution of14C-labelled reserve food in young red pines during shoot elongation. Forest Sci.16: 14–20.Google Scholar
  295. Gregory, R. A. 1980. Annual cycle of shoot development in sugar maple. Canad. J. Forest Res.10: 316–326.Google Scholar
  296. —,M. W. Williams, Jr.,B. L. Wong &G. J. Hawley. 1986. Proposed scenario for dieback and decline ofAcer saccharum in northeastern U.S.A. and southeastern Canada. IAWA Bull. n.s.7: 357–369.Google Scholar
  297. Grier, C. C., K. A. Vogt, M. R. Keys &R. L. Edmonds. 1981. Biomass distribution and above- and belowground production in young and matureAbies amabilis zone ecosystems of the Washington Cascades. Canad. J. Forest Res.11: 155–167.CrossRefGoogle Scholar
  298. Griffin, A. R. 1972. The effects of seed size, germination time and growing density on seedling development in radiata pine. Austral. Forest. Res.5: 25–26.Google Scholar
  299. Grill, D. 1973. A study by scanning electron microscope of spruce needles exposed to SO2. Phytopathol. Z.78: 75–80.CrossRefGoogle Scholar
  300. Grochowska, M. J. 1973. Comparative studies on physiological and morphological features of bearing and nonbearing spurs of the apple tree. I. Changes in starch content during growth. J. Hort. Sci.48: 347–356.Google Scholar
  301. Guardiola, J. L., F. Garcia-Mari &M. Augusti. 1984. Competition and fruit set in the Washington navel orange. Physiol. Pl.62: 297–302.CrossRefGoogle Scholar
  302. Gulmon, S. L. & H. A. Mooney. 1986. Costs of defense and their effects on plant productivity. Pages 681–698in T. J. Givnish (ed.), On the economy of plant growth and function. Cambridge, New York.Google Scholar
  303. Gunckel, J. E., K. V. Thimann &R. H. Wetmore. 1949. Study of development in long and short shoots ofGinkgo biloba L. IV. Growth habit, shoot expansion, and the mechanism of its control. Amer. J. Bot.36: 309–318.CrossRefGoogle Scholar
  304. Hacskaylo, E. 1973. Carbohydrate physiology of mycorrhizae. Pages 207–230in G. C. Marks & T. T. Kozlowski (eds.), Ectomycorrhizae. Academic Press, New York.Google Scholar
  305. Haddon, L. &D. H. Northcote. 1976. Correlation of the induction of various enzymes concerned with phenylpropanoid and lignin synthesis during differentiation of bean cells. Planta128: 255–262.CrossRefGoogle Scholar
  306. Haissig, B. E. 1972. Meristematic activity during adventitions root primordium development. Influences of endogenous auxin and applied gibberellic acid. Pl. Physiol.49: 886–892.CrossRefGoogle Scholar
  307. —. 1974a. Origins of adventitious roots. N.Z. J. Forest Sci.4: 299–310.Google Scholar
  308. —. 1974b. Influence of auxins and auxin synergists on adventitious root primordium initiation and development. N.Z. J. Forest Sci.4: 311–323.Google Scholar
  309. —. 1974c. Metabolism during adventitious root primordium initiation and development. N.Z. J. Forest. Sci.4: 324–337.Google Scholar
  310. —. 1982a. Carbohydrate and amino acid concentrations during adventitious root primordium development inPinus banksiana Lamb, cuttings. Forest Sci.28: 813–821.Google Scholar
  311. —. 1982b. Activity of some glycolytic and pentose phosphate pathway enzymes during the development of adventitious roots. Physiol. Pl.55: 261–272.CrossRefGoogle Scholar
  312. —. 1984. Carbohydrate accumulation and partitioning inPinus banksiana seedlings and seedling cuttings. Physiol. Pl.61: 13–19.CrossRefGoogle Scholar
  313. —. 1986. Metabolic processes in adventitious rooting of cuttings. Pages 141–189in M. B. Jackson (ed.), New root formation in plants and cuttings. Martinus Nijhoff, Dordrecht.Google Scholar
  314. —. 1989. Carbohydrate relations during propagation of cuttings from sexually maturePinus banksiana trees. Tree Physiol.5: 319–328.PubMedGoogle Scholar
  315. Hale, M. G., L. D. Moore &G. J. Griffin. 1978. Root exudates and exudation. Pages 163–203in Y. R. Dommergues & S. V. Krupa (eds.), Interaction between nonpathogenic soil microorganisms and plants. Elsevier, New York.Google Scholar
  316. Han, Y. S. &Y. M. Kim. 1988. Characteristics of photosynthesis and respiration rate in strobili ofPinus koraiensis S. et Z. J. Korean Forest Soc.77: 92–99.Google Scholar
  317. Hansen, J. &E. Beck. 1990. The fate and path of assimilation products in the stem of 8-year-old Scots pine (Pinus sylvestris L.) trees. Trees4: 16–21.CrossRefGoogle Scholar
  318. Hansen, P. 1967a.14C-studies on apple trees. I. The effect of the fruit on the translocation and distribution of photosynthates. Physiol. Pl.20: 382–391.CrossRefGoogle Scholar
  319. —. 1967b.14C-studies on apple trees. II. Distribution of photosynthates from top and base leaves from extension shoots. Physiol. Pl.20: 720–725.CrossRefGoogle Scholar
  320. —. 1967c.14C-studies on apple trees. III. The influence of season on storage and mobilization of labelled compounds. Physiol. Pl.20: 1103–1111.CrossRefGoogle Scholar
  321. —. 1969.14C-studies on apple trees. IV. Photosynthate consumption in fruits in relation to the leaf-fruit ratio and the leaf-fruit position. Physiol. Pl.22: 186–198.CrossRefGoogle Scholar
  322. —. 1971a.14C-studies on apple trees. VII. The early seasonal growth in leaves, flowers and shoots as dependent upon current photosynthates and existing reserves. Physiol. Pl. 25: 469–473.CrossRefGoogle Scholar
  323. —. 1971b. The effect of cropping on the distribution of growth in apple trees. Tidsskr. Plantearl.75: 119–127.Google Scholar
  324. —. 1977a. The relative importance of fruits and leaves for cultivar-specific growth rates of apple fruits. J. Hort. Sci.52: 501–508.Google Scholar
  325. —. 1977b. Carbohydrate allocation. Pages 247–255in J. J. Landsberg & C. V. Cutting (eds.), Environmental effects on crop physiology. Academic Press, London.Google Scholar
  326. — &J. Grauslund. 1973.14C-studies on apple trees. VIII. The seasonal variation and nature of reserves. Physiol. Pl.28: 24–32.CrossRefGoogle Scholar
  327. — &K. Ryugo. 1979. Translocation and metabolism of carbohydrate fraction of14C-photosynthates in “French” prune,Prunus domestica L. J. Amer. Soc. Hort. Sci. 104:622–625.Google Scholar
  328. ——,D. E. Ramos &L. Fitch. 1982. Influence of cropping on Ca, K, Mg, and carbohydrate status of “French” prune trees grown on potassium-limited soils. J. Amer. Soc. Hort. Sci. 107:511–515.Google Scholar
  329. Hanson, P. J., J. G. Isebrands, R. E. Dickson &R. K. Dixon. 1988a. Ontogenetic patterns of CO2 exchange ofQuercus rubra L. leaves during three flushes of shoot growth. I. Median flush leaves. Forest Sci.34: 55–68.Google Scholar
  330. —. 1988b. Ontogenetic patterns of CO2 exchange ofQuercus rubra L. leaves during three flushes of shoot growth. II. Insertion gradients of leaf photosynthesis. Forest Sci.34: 69–76.Google Scholar
  331. Harborne, J. B. 1980. Plant phenolics. Encycl. Pl. Physiol.8: 329–401.Google Scholar
  332. Hardy, P. J. &J. V. Possingham. 1969. Studies on the translocation of metabolites in the xylem of grapevine shoots. J. Exp. Bot.20: 325–335.CrossRefGoogle Scholar
  333. Hare, R. C. 1966. Physiology of resistance to fungal diseases in plants. Bot. Rev.32: 95–127.CrossRefGoogle Scholar
  334. Harley, J. L. 1971. Fungi in ecosystems. J. Ecol.59: 653–668.CrossRefGoogle Scholar
  335. —. 1973. Symbiosis in the ecosystem. J. Nat. Sci. Council, Sri Lanka1: 31–48.Google Scholar
  336. — &D. H. Lewis. 1969. The physiology of mycorrhizas. Adv. Microb. Physiol.3: 53–78.CrossRefGoogle Scholar
  337. — &S. E. Smith. 1983. Mycorrhizal symbiosis. Academic Press, London.Google Scholar
  338. Harris, J. M. 1952. Discontinuous growth layers inPinus radiata. N.Z. Forest Service, Forest Prod. Res. Notes1: 1–10.Google Scholar
  339. Harris, W. F. & D. E. Todd. 1972. Forest root biomass production and turnover. Eastern Deciduous Forest Biome Memo Rept. pp. 72–156. Oak Ridge, Tennessee.Google Scholar
  340. —,P. Sollins, N. T. Edwards, B. E. Dinger &H. H. Shugart. 1975. Analysis of carbon flow and productivity in a temperate deciduous forest ecosystem. Pages 116–122in Productivity of world ecosystems. Nat’l. Acad. Sci., Washington, D.C.Google Scholar
  341. Havranek, W. M. 1981. Stammatmung, Dickenwachstum und Photosynthese einer Zirbe (Pinus cembra L.) an der Waldgrenze. Mitt. Forstl. Bundes Versuchswesen, Wien.142: 443–467.Google Scholar
  342. Head, G. C. 1968. Seasonal changes in the diameter of secondarily thickened roots of fruit trees in relation to growth of other parts of the tree. J. Hort. Sci.43: 275–282.Google Scholar
  343. Heichel, G. H. &C. P. Vance. 1983. Physiology and morphology of perennial legumes. Pages 99–143in W. J. Broughton (ed.), Nitrogen fixation. Vol. 3. Legumes. Clarendon Press, Oxford.Google Scholar
  344. Heisey, R. M. 1990. Allelopathic and herbicidal effects of extracts from tree of heaven (Ailanthus altissima). Amer. J. Bot.77: 662–670.CrossRefGoogle Scholar
  345. Hejnowicz, A. &M. Tomaszewski. 1969. Growth regulators and wood formation inPinus silvestris. Physiol. Pl.22: 984–992.CrossRefGoogle Scholar
  346. Hepting, G. H. 1945. Reserve food storage in shortleaf pine in relation to little-leaf disease. Phytopathology35: 106–119.Google Scholar
  347. Higuchi, T. 1985. Biosynthesis of lignin. Pages 141–160in T. Higuchi (ed.), Biosynthesis and biodegradation of wood components. Academic Press, Orlando, Florida.Google Scholar
  348. Hillis, W. E. &A. G. Brown (eds.). 1984. Eucalypts for wood production. Academic Press, Sydney.Google Scholar
  349. Ho, L. C. 1988. Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength. Ann. Rev. Pl. Physiol.39: 355–378.Google Scholar
  350. Holst, M. H. & C. W. Yeatman. 1961. A provenance study inPinus banksiana Lamb. Recent Adv. Bot., Part 2, 1612–1616.Google Scholar
  351. Hook, D. D. 1984. Adaptations to flooding with fresh water. Pages 265–294in T. T. Kozlowski (ed.), Flooding and plant growth. Academic Press, New York.Google Scholar
  352. -& J. Stubbs. 1967. An observation of understory growth retardation under three species of oaks. U.S. Forest Service Res. Note SE-70.Google Scholar
  353. Höll, W. 1975. Radial transport in rays. Encycl. Pl. Physiol. N.S.1: 432–450.Google Scholar
  354. —. 1985. Seasonal fluctuation of reserve materials in the trunkwood of spruce (Picea abies (L.) Karst.). J. Pl. Physiol.117: 355–362.Google Scholar
  355. Hori, H. &A. D. Elbein. 1985. The biosynthesis of plant cell walls. Pages 109–139in T. Higuchi (ed.), Biosynthesis and biodegradation of wood components. Academic Press, Orlando, Florida.Google Scholar
  356. Horsley, S. B. 1977a. Allelopathic inhibition of black cherry by fern, grass, goldenrod, and aster. Canad. J. Forest Res.7: 205–216.CrossRefGoogle Scholar
  357. —. 1977b. Allelopathic inhibition of black cherry. II. Inhibition by woodland grass, ferns, and club moss. Canad. J. Forest. Res.7: 515–519.CrossRefGoogle Scholar
  358. Howe, H. F. &W. Richter. 1982. Effects of seed size on seedling size inVirola surinamensis: A within and between tree analysis. Oecologia53: 347–351.CrossRefGoogle Scholar
  359. Hu, Y., S. Lin, S. Li &Y. Lin. 1984. Studies on respiration in aHevea population. III. Estimates of respiratory output of a clone RRIM600 stand. Chinese J. Trop. Crops5: 51–57.Google Scholar
  360. Huxley, P. A. &W. A. Van Eck. 1974. Seasonal changes in growth and development of some woody perennials near Kampala, Uganda. J. Ecol.62: 579–592.CrossRefGoogle Scholar
  361. Ikeda, T., F. Matsumura &D. M. Benjamin. 1977. Chemical basis for feeding adaptation of pine sawflies,Neodiprion rugifrons andNeodiprion swainei. Science197: 497–499.PubMedCrossRefGoogle Scholar
  362. Iqbal, M. &A. K. M. Ghouse. 1985. Impact of climatic variation on the structure and activity of vascular cambium inProsopis spicigera. Flora177: 147–156.Google Scholar
  363. Isebrands, J. G. &N. D. Nelson. 1983. Distribution of [14C]-labeled photosynthates within intensively culturedPopulus clones during the establishment year. Physiol. Pl.59: 9–18.CrossRefGoogle Scholar
  364. Jackson, J. E. 1985. Future fruit orchard design: Economics and biology. Pages 441–459in M. G. R. Cannell & J. E. Jackson (eds.), Attributes of trees as crop plants. Institute of Terrestrial Ecology, Huntington, England.Google Scholar
  365. Jackson, L. W. R. 1952. Radial growth of forest trees in the Georgia Piedmont. Ecology33: 336–341.CrossRefGoogle Scholar
  366. Janardhan, K. V., N. H. Gopal &P. K. Ramaiah. 1971. Carbohydrate reserves in relation to vegetative growth, flower bud formation and crop levels in arabica coffee. Indian Coffee35: 145–148.Google Scholar
  367. Jenkins, P. A. 1974. Influence of applied indoleacetic acid and abscisic acid on xylem cell dimensions inPinus radiata D. Don. Pages 737–742in R. L. Bieleski, A. R. Ferguson & M. M. Creswell (eds.), Mechanisms of regulation of plant growth. Bull. Roy. Soc. N.Z. No. 12.Google Scholar
  368. Jiao, X., Z. Feng, L. Li, K. Wang, R. Xu, Q. Lu &S. Zhuang. 1982. The effects of high CO2 and low O2 on ethylene production and quality of fruits of the apple cv. White Winter Pearmain. Acta Hort. Sinica9: 25–30.Google Scholar
  369. Jobidon, R. 1986. Allelopathic potential of coniferous species to old-field weeds in eastern Quebec. Forest Sci.32: 112–118.Google Scholar
  370. — &J. R. Thibault. 1982. Allelopathic growth inhibition of nodulated and unnodulatedAlnus crispa seedlings byPopulus balsamifera. Amer. J. Bot.69: 1213–1223.CrossRefGoogle Scholar
  371. Johnson, R. S. &A. N. Lakso. 1986a. Carbon balance of a growing apple shoot. I. Development of the model. J. Amer. Soc. Hort. Sci.111: 160–164.Google Scholar
  372. ——. 1986b. Carbon balance model of a growing apple shoot. II. Simulated effects of light and temperature on long and short shoots. J. Amer. Soc. Hort. Sci.111: 164–169.Google Scholar
  373. Johnson, R. W. &R. T. Riding. 1981. Structure and ontogeny of the stomatal complex inPinus strobus L. andPinus banksiana Lamb. Amer. J. Bot.68: 260–265.CrossRefGoogle Scholar
  374. —,M. T. Tyree &M. A. Dixon. 1987. A requirement for sucrose in xylem sap flow from dormant maple trees. Pl. Physiol.84: 495–500.CrossRefGoogle Scholar
  375. Jones, C. H. & J. L. Bradlee. 1933. The carbohydrate contents of the maple tree. Vermont Agr. Expt. Sta. Bull. 358.Google Scholar
  376. Jones, H. G. 1981. Carbon dioxide exchange of developing apple (Malus pumila Mill.) fruits. J. Exp. Bot.32: 1203–1210.CrossRefGoogle Scholar
  377. Jones, W. W. &C. B. Cree. 1954. Effect of time of harvest on yield, size and grade of Valencia oranges. Proc. Amer. Soc. Hort. Sci.64: 139–145.Google Scholar
  378. —,T. W. Embleton &C. W. Coggins, Jr. 1975. Starch content of roots of ‘Kinnow’ mandarin trees bearing fruits in alternate years. HortScience10: 514.Google Scholar
  379. ——,M. L. Steinacker &C. B. Cree. 1964. The effect of time of fruit harvest on fruiting and carbohydrate supply in the Valencia orange. Proc. Amer. Soc. Hort. Sci.84: 152–157.Google Scholar
  380. — &M. L. Steinacker. 1951. Seasonal changes in concentration of sugar and starch in leaves and twigs of citrus trees. Proc. Amer. Soc. Hort. Sci.58: 1–4.Google Scholar
  381. Jonkers, H. 1979. Biennial bearing in apple and pear: A literature survey. Sci. Hort.11: 303–317.CrossRefGoogle Scholar
  382. Kaini, B. R., D. I. Jackson &R. N. Rowe. 1984. Studies on shoot growth patterns in Lincoln Canopy apples. J. Hort. Sci.59: 141–149.Google Scholar
  383. Kandiah, S. 1979a. Turnover of carbohydrates in relation to growth in apple trees. I. Seasonal variation of growth and carbohydrates reserves. Ann. Bot.44: 175–183.Google Scholar
  384. —. 1979b. Turnover of carbohydrates in relation to growth in apple trees. II. Distribution of14C assimilates labelled in autumn, spring and summer. Ann. Bot.44: 185–195.Google Scholar
  385. Kappel, F. 1991. Partitioning of above-ground dry matter in ‘Lambert’ sweet cherry trees with or without fruit. J. Amer. Soc. Hort. Sci.116: 201–205.Google Scholar
  386. Kappes, E. M. &J. A. Flore. 1986. Carbohydrate balance models for ‘Montmorency’ sour cherry leaves shoots, and fruits during development. Acta Hort.184: 123–127.Google Scholar
  387. Katagiri, S. 1988. Estimation of the proportion of root respiration in total soil respiration in deciduous hardwood stands. J. Jap. Forest. Soc.70: 151–158.Google Scholar
  388. Kawase, M. 1972. Submersion increases ethylene and stimulates rooting in cuttings. Int. Plant Prop. Soc. Combined Proc.22: 360–366.Google Scholar
  389. Keller, J. D. &W. H. Loescher. 1986. Seasonal carbohydrate partitioning in sweet cherry. HortScience21: 697.Google Scholar
  390. ——. 1989. Nonstructural carbohydrate partitioning in perennial parts of sweet cherry. J. Amer. Soc. Hort. Sci.114: 969–975.Google Scholar
  391. Keller, T. 1973. CO2 exchange of bark of deciduous species in winter. Photosynthetica7: 320–324.Google Scholar
  392. Kellogg, R. M. &F. J. Barber. 1981. Stem eccentricity in coastal western hemlock. Canad. J. Forest Res.11:714–718.CrossRefGoogle Scholar
  393. Keyes, M. R. &C. C. Grier. 1981. Above- and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Canad. J. Forest Res.11: 599–605.CrossRefGoogle Scholar
  394. Kimmerer, T. W. &M. A. Stringer. 1988. Alcohol dehydrogenase and ethanol in the stems of trees. Pl. Physiol.87: 693–697.CrossRefGoogle Scholar
  395. Kimura, M. 1969. Ecological and physiological studies on the vegetation of Mt. Shimagare. VII. Analysis of production processes of youngAbies stand based on the carbohydrate economy. Bot. Mag. Tokyo82: 6–19.Google Scholar
  396. Kinerson, R. S. 1975. Relationships between plant surface area and respiration in loblolly pine. J. Appl. Ecol.12: 965–971.CrossRefGoogle Scholar
  397. —,C. Ralston &C. Wells. 1977. Carbon cycling in a loblolly pine plantation. Oecologia29: 1–10.CrossRefGoogle Scholar
  398. Kira, T. 1975. Primary production of forests. Pages 5–40in J. P. Cooper (ed.), Photosynthesis and productivity in different environments. Cambridge Univ. Press, Cambridge.Google Scholar
  399. Kite, G. A. 1981. Annual variations in soluble sugars, starch, and total food resources inEucalyptus obliqua roots. Forest Sci.27: 449–454.Google Scholar
  400. Kling, G. J., M. M. Meyer, Jr. &D. Siegler. 1988. Rooting cofactors in fiveAcer species. J. Amer. Soc. Hort. Sci.113: 252–257.Google Scholar
  401. Knee, M. 1980. Physiological responses of apple fruits to oxygen concentrations. Ann. Appl. Biol.96: 243–253.CrossRefGoogle Scholar
  402. Koch, K. E. &C. R. Johnson. 1984. Photosynthate partitioning in split-root citrus seedlings with mycorrhizal and non-mycorrhizal root systems. Pl. Physiol.75: 26–30.CrossRefGoogle Scholar
  403. Koch, W. &T. Keller. 1961. Der Einfluss von Alterung und Abschneiden auf den CO2-Gaswechsel von Pappelblättern. Ber. Deutsch. Bot. Ges.74: 64–74.Google Scholar
  404. Koide, R. T. 1991. Nutrient supply, nutrient demand and plant response to mycorrhizal infections. New Phytol.117: 365–386.CrossRefGoogle Scholar
  405. — &G. Elliott. 1989. Cost, benefit and efficiency of the vesicular-arbuscular mycorrhizal symbiosis. Functional Ecol.3: 252–255.Google Scholar
  406. Korcak, R. F. 1983. Root respiration and soil aeration status of blueberries (Vaccinium sp.). J. Pl. Nutr.6: 283–289.CrossRefGoogle Scholar
  407. Korol, R. L., S. W. Running, K. S. Milner &E. R. Hunt, Jr. 1991. Testing a mechanistic carbon balance model against observed tree growth. Canad. J. Forest Res. 21:1098–1105.CrossRefGoogle Scholar
  408. Kottke, I. &R. Agerer. 1983. Untersuchungen zur Bedeutung der Mykorrhiza in älteren Laub- und Nadelwaldbeständen des Südwestdeutschen Keuperberglandes. Mitt. Vereins Forstl. Standortsk. Forstpfl.30: 30–39.Google Scholar
  409. Kovac, M. &I. Kregar. 1989. Starch metabolism in silver fir seeds during germination. Pl. Physiol. Biochem.27: 873–880.Google Scholar
  410. Kozina, L. V. 1986. Outflow and storage of assimilates in plants ofPicea jezoensis andPinus koraiensis. Soviet Pl. Physiol.33: 56–65.Google Scholar
  411. Kozlowski, T. T. 1949. Light and water in relation to growth and competition of Piedmont forest tree species. Ecol. Monogr.19: 207–231.CrossRefGoogle Scholar
  412. —. 1962. Photosynthesis, climate, and growth of trees. Pages 149–164in T. T. Kozlowski (ed.), Tree growth. Ronald Press, New York.Google Scholar
  413. —. 1963. Characteristics and improvement of forest growth. Adv. Frontiers Pl. Sci.2: 73–136.Google Scholar
  414. —. 1964. Shoot growth in woody plants. Bot. Rev.30: 335–392.CrossRefGoogle Scholar
  415. —. 1967. Diurnal variations in stem diameters of small trees. Bot. Gaz.128: 60–68.CrossRefGoogle Scholar
  416. —. 1968a. Diurnal changes in diameters of fruits and tree stems of Montmorency cherry. J. Hort. Sci.43: 1–15.Google Scholar
  417. —. 1968b. Soil water and tree growth. Pages 30–57in N. E. Linnartz (ed.), The ecology of southern forests. Louisiana State University Press, Baton Rouge, Louisiana.Google Scholar
  418. —. 1971a. Growth and development of trees. Vol. I. Seed germination, ontogeny, and shoot growth. Academic Press, New York.Google Scholar
  419. —. 1971b. Growth and development of trees. Vol. II. Cambial growth, root growth, and reproductive growth. Academic Press, New York.Google Scholar
  420. —. 1972. Shrinking and swelling of plant tissues. Pages 1–64in T. T. Kozlowski (ed.), Water deficits and plant growth. Vol. 3. Academic Press, New York.Google Scholar
  421. —. 1973. Extent and significance of shedding of plant parts. Pages 1–44in T. T. Kozlowski (ed.), Shedding of plant parts. Academic Press, New York.Google Scholar
  422. —. 1976. Susceptibility of young tree seedlings to environmental stresses. Amer. Nurseryman144(11): 11–13; 55–59.Google Scholar
  423. —. 1978. How healthy plants grow. Pages 19–51in J. Horsfall & E. Cowling (eds.), Plant pathology-An advanced treatise. Academic Press, New York.Google Scholar
  424. —. 1979. Tree growth and environmental stresses. Univ. of Washington Press, Seattle.Google Scholar
  425. —. 1982a. Water supply and tree growth. Part I. Water deficits. Forestry Abstr.43: 57–95.Google Scholar
  426. —. 1982b. Water supply and tree growth. Part II. Flooding. Forestry Abstr.43:145–161.Google Scholar
  427. —. 1983. Reduction in yield of forest and fruit trees by water and temperature stress. Pages 67–88in C. D. Raper & P. J. Kramer (eds.), Crop reactions to water and temperature stresses in humid, temperate climates. Westview Press, Boulder, Colorado.Google Scholar
  428. —. 1984a. Responses of woody plants to flooding. Pages 129–163in T. T. Kozlowski (ed.), Flooding and plant growth. Academic Press, New York.Google Scholar
  429. —. 1984b. Plant responses to flooding of soil. BioScience34: 162–167.CrossRefGoogle Scholar
  430. —. 1985. Soil aeration, flooding, and tree growth. J. Arboric.11: 85–96.Google Scholar
  431. —. 1986. Soil aeration and growth of forest trees (Review article). Scand. J. Forest Res.1: 113–123.CrossRefGoogle Scholar
  432. —. 1991. Effects of environmental stresses on deciduous trees. Pages 391–411in H. A. Mooney, E. Pell & W. E. Winner (eds.), Response of plants to multiple stresses. Academic Press, San Diego, California.Google Scholar
  433. — &G. A. Borger. 1971. Effect of temperature and light intensity early in ontogeny on growth ofPinus resinosa seedlings. Canad. J. Forest Res.1: 57–65.CrossRefGoogle Scholar
  434. — &J. J. Clausen. 1965. Changes in moisture contents and dry weights of buds and leaves of forest trees. Bot. Gaz.126: 20–26.CrossRefGoogle Scholar
  435. ——. 1966a. Seasonal development of long and short shoot components of tamarack. Bull. Ecol. Soc. Amer.47: 113–114.Google Scholar
  436. ——. 1966b. Shoot growth characteristics of heterophyllous woody plants. Canad. J. Bot.44: 827–843.CrossRefGoogle Scholar
  437. — &J. C. Cooley. 1961. Root grafting in northern Wisconsin. J. Forestry59: 105–107.Google Scholar
  438. — &A. C. Gentile. 1958. Respiration of white pine buds in relation to oxygen availability and moisture content. Forest Sci.4: 147–152.Google Scholar
  439. ——. 1959. Influence of the seed coat on germination, water absorption, and oxygen uptake of eastern white pine seed. Forest Sci.5: 389–395.Google Scholar
  440. — &T. E. Greathouse. 1970. Shoot growth characteristics of tropical pines. Unasylva24: 1–10.Google Scholar
  441. — &C. R. Gunn. 1972. Importance and characteristics of seeds. Pages 1–20in T. T. Kozlowski (ed.), Seed biology, Vol. I. Academic Press, New York.Google Scholar
  442. — &T. Keller. 1966. Food relations of woody plants. Bot. Rev.32: 293–382.CrossRefGoogle Scholar
  443. — &S. G. Pallardy. 1984. Effects of flooding on water, carbohydrate, and mineral relations. Pages 165–193in T. T. Kozlowski (ed.), Flooding and plant growth. Academic Press, New York.Google Scholar
  444. — &W. H. Scholtes. 1948. Growth of roots and root hairs of pine and hardwood seedlings in the Piedmont. J. Forestry46: 750–754.Google Scholar
  445. —,P. J. Kramer &S. G. Pallardy. 1991. The physiological ecology of woody plants. Academic Press, San Diego.Google Scholar
  446. —,J. H. Torrie &P. E. Marshall. 1973. Predictability of shoot length from bud size inPinus resinosa Ait. Canad. J. Forest Res.3: 34–38.CrossRefGoogle Scholar
  447. — &R. C. Ward. 1957a. Seasonal height growth of conifers. Forest Sci.3: 61–66.Google Scholar
  448. ——. 1957b. Seasonal height growth of deciduous trees. Forest Sci.3: 168–174.Google Scholar
  449. ——. 1961. Shoot elongation characteristics of forest trees. Forest Sci.7: 357–368.Google Scholar
  450. — &C. H. Winget. 1964. The role of reserves in leaves, branches, stems, and roots on shoot growth of red pine. Amer. J. Bot.51: 522–529.CrossRefGoogle Scholar
  451. Kramer, P. J. 1943. Amount of duration of growth of various species of tree seedlings. Pl. Physiol. 18:239–251.CrossRefGoogle Scholar
  452. — &T. T. Kozlowski. 1960. Physiology of trees. McGraw-Hill, New York.Google Scholar
  453. ——. 1979. Physiology of woody plants. Academic Press, New York.Google Scholar
  454. Krasny, M. E., J. C. Zasada &K. A. Vogt. 1988. Adventitious rooting of four Salicaceae species in response to a flooding event. Canad. J. Bot.66: 2597–2598.CrossRefGoogle Scholar
  455. Kremer, A. &L. Xu. 1989. Relationship between first-season free growth components and later height growth in maritime pine (Pinus pinaster). Canad. J. Forest Res.19: 690–699.CrossRefGoogle Scholar
  456. Kriebel, H. B. 1957. Patterns of genetic variation in sugar maple. Ohio Agric. Expt. Sta. Res. Bull.791: 1–56.Google Scholar
  457. Kriedemann, P. E. 1968. Observations on gas exchange in the developing sultana berry. Austral. J. Biol. Sci.21: 907–916.Google Scholar
  458. — &M. S. Buttrose. 1971. Chlorophyll content and photosynthetic activity within woody shoots ofVitis vinifera (L.). Photosynthetica5: 22–27.Google Scholar
  459. Kropp, B. R. &C-G. Langlois. 1990. Ectomycorrhizae in reforestation. Canad. J. Forest Res.20:438–451.CrossRefGoogle Scholar
  460. Krotkov, G. 1941. The respiratory metabolism of McIntosh apples during ontogeny as determined at 22°C. Pl. Physiol.16: 799–812.CrossRefGoogle Scholar
  461. Knieger, K. W. 1967. Nitrogen, phosphorus and carbohydrates in expanding and year-old Douglas-fir shoots. Forest Sci.13: 352–356.Google Scholar
  462. — &J. M. Trappe. 1967. Food reserves and seasonal growth of Douglas-fir seedlings. Forest Sci.13: 192–202.Google Scholar
  463. Kuboi, T. &Y. Yamada. 1978. Regulation of the enzyme activities related to lignin synthesis in cell aggregates of tobacco cell cultures. Biochim. Biophys. Acta542: 181–190.PubMedGoogle Scholar
  464. Kuc, J. A. 1976. Phytoalexins. Encycl. Pl. Physiol.4: 632–652.Google Scholar
  465. Kuhns, M. R. &D. H. Gjerstad. 1991. Distribution of14C-labeled photosynthate in loblolly pine (Pinus taeda) seedlings as affected by season and time after exposure. Tree Physiol.8:259–271.PubMedGoogle Scholar
  466. Lachaud, S. 1989. Participation of auxin and abscisic acid in the regulation of seasonal variations in cambial activity and xylogenesis. Trees3: 125–137.CrossRefGoogle Scholar
  467. Lai, R., D. J. Wooley &G. S. Lawes. 1988. Patterns of assimilate transport from leaves to fruit within a kiwifruit (Actinidia deliciosa) lateral. J. Hort. Sci.63: 725–730.Google Scholar
  468. ———. 1989a. Effect of leaf to fruit ratio on fruit growth of kiwifruit (Actinidia deliciosa). Scientia Hort.39: 247–255.CrossRefGoogle Scholar
  469. ———. 1989b. Fruit growth in kiwifruit (Actinidia deliciosa): Patterns of assimilate distribution between laterals. Scientia Hort.40: 43–52.CrossRefGoogle Scholar
  470. Lambers, H. 1985. Respiration in intact plants and tissues: Its regulation and dependence on environmental factors, metabolism, and invaded organisms. Encycl. Pl. Physiol. N.S.18: 418–473.Google Scholar
  471. Landsberg, J. J. 1986. Physiological ecology of forest production. Academic Press, London.Google Scholar
  472. Langenfeld-Heyser, R. 1987. Distribution of leaf assimilates in the stem ofPicea abies L. Trees1: 102–109.CrossRefGoogle Scholar
  473. Langenheim, J. H. 1984. The role of plant secondary chemicals in wet tropical ecosystems. Pages 189–208in E. Medina, H. A. Mooney & C. Vazquez-Yanes (eds.), Physiological ecology of plants of the wet tropics. Junk Publishers, The Hague.Google Scholar
  474. Långström, B. 1971. Viktförlust, vattenhalt och plantavgång hos kyllagrade tallplantor. Silva Fenn.5:20–31.Google Scholar
  475. Lanner, R. M. 1976. Patterns of shoot development inPinus and their relationship to growth potential. Pages 223–243in M. G. R. Cannell & F. T. Last (eds.), Tree physiology and yield improvement. Academic Press, London.Google Scholar
  476. Larcher, W., C. Lutz, M. Nagele &M. Bodner. 1988. Photosynthetic functioning and ultrastructure of chloroplasts in stem tissues ofFagus sylvatica. J. Pl. Physiol.132: 731–737.Google Scholar
  477. Larson, M. M. 1975. Pruning northern red oak nursery seedlings: Effects on root regeneration and early growth. Canad. J. Forest Res.5: 381–386.CrossRefGoogle Scholar
  478. Larson, P. R. 1956. Discontinuous growth rings in suppressed slash pine. Trop. Woods104: 80–89.Google Scholar
  479. —. 1962a. The indirect effect of photoperiod on tracheid diameter in red pine. Amer. J. Bot.49: 132–137.CrossRefGoogle Scholar
  480. —. 1962b. Auxin gradients and the regulation of cambial activity. Pages 97–117in T. T. Kozlowski (ed.), Tree growth. Ronald Press, New York.Google Scholar
  481. -. 1963a. Stem form and silviculture. Proc. Soc. Amer. Foresters, pp. 103–107.Google Scholar
  482. -. 1963b. Stem form development of forest trees. Forest Sci. Monogr. No. 5.Google Scholar
  483. —. 1969. Incorporation of14C in the developing walls ofPinus resinosa tracheids (earlywood and latewood). Holzforschung23: 17–26.CrossRefGoogle Scholar
  484. — &R. E. Dickson. 1973. Distribution of imported14C in developing leaves of eastern cottonwood according to phyllotaxy. Planta111: 95–112.CrossRefGoogle Scholar
  485. ——. 1986.14C translocation pathways in honeylocust and green ash: Woody plants with complex leaf forms. Physiol. Pl.66: 21–30.CrossRefGoogle Scholar
  486. — &J. C. Gordon. 1969. Leaf development, photosynthesis, and C14 distribution inPopulus deltoides seedlings. Amer. J. Bot.56: 1058–1066.CrossRefGoogle Scholar
  487. —,J. G. Isebrands &R. E. Dickson. 1972. Fixation patterns of14C within developing leaves of eastern cottonwood. Planta107: 301–314.CrossRefGoogle Scholar
  488. ———. 1980. Sink to source transition ofPopulus leaves. Ber. Deutsch. Bot. Ges.93: 79–90.Google Scholar
  489. Larsson, S., R. Oren, R. H. Waring &J. W. Barnett. 1983. Attacks of mountain pine beetle as related to tree vigor of ponderosa pine. Forest Sci.29: 395–402.Google Scholar
  490. Lasheen, A. M. &C. E. Chaplin. 1971. Biochemical comparisons of seasonal variations in three peach cultivars differing in cold hardiness. J. Amer. Soc. Hort. Sci.96: 154–159.Google Scholar
  491. Lavigne, M. B. 1988. Stem growth and respiration of young balsam fir trees in thinned and unthinned stands. Canad. J. Forest Res.18: 483–489.CrossRefGoogle Scholar
  492. —. 1991. Effects of thinning on the allocation of growth and respiration in young stands of balsam fir. Canad. J. Forest Res.21: 186–192.CrossRefGoogle Scholar
  493. Lawrence, W. T. &W. C. Oechel. 1983. Effect of soil temperature on the carbon exchange of seedlings. I. Root respiration. Canad. J. Forest Res.3: 840–849.CrossRefGoogle Scholar
  494. Leakey, R. R. B. &M. P. Coutts. 1989. The dynamics of rooting inTriplochiton scleroxylon cuttings: Their relation to the leaf area, node position, dry weight accumulation, leaf water potential and carbohydrate composition. Tree Physiol.5: 135–146.PubMedGoogle Scholar
  495. Lechowicz, M. J. 1984. Why do temperate deciduous trees leaf out at different times? Adaptations and ecology of forest communities. Amer. Naturalist124: 821–842.CrossRefGoogle Scholar
  496. Leech, R. M. 1985. The synthesis of cellular components in leaves. Pages 93–113in N. R. Baker, W. J. Davies & C. K. Ong (eds.), Control of leaf growth. Cambridge Univ. Press, London and New York.Google Scholar
  497. Ledig, F. T. 1983. The influence of genotype and environment on dry matter distribution in plants. Pages 427–454in P. A. Huxley (ed.), Plant research and agroforestry. International Council for Research in Agroforestry. Nairobi, Kenya.Google Scholar
  498. —,A. P. Drew &J. G. Clark. 1976. Maintenance and constructive respiration, photosynthesis and net assimilation rate in seedlings of pitch pine. Ann. Bot.40: 289–300.Google Scholar
  499. Lenz, F. &U. Küntzel. 1974. Carbohydrate content of citrus as affected by fruit load. Gartenbauwissenschaft39: 99–101.Google Scholar
  500. — &G. Noga. 1982. Photosynthese und Atmung bei Apfelfrüchten. Erwerbsobstbau24: 198–200.Google Scholar
  501. Lerner, R. H. &M. Evenari. 1961. The nature of the germination inhibitor present in leavesof Eucalyptus rostrata. Physiol. Pl.14: 221–229.CrossRefGoogle Scholar
  502. Levin, D. A. 1976. The chemical defenses of plants to pathogens and herbivores. Ann. Rev. Ecol. Syst.7: 121–159.CrossRefGoogle Scholar
  503. Levy, Y. &J. Krikun. 1980. Effect of vesicular-arbuscular mycorrhiza onCitrus jambhiri water relations. New Phytol.85: 25–31.CrossRefGoogle Scholar
  504. Lewis, D. H. &J. L. Harley. 1965a. Carbohydrate physiology of mycorrhizal roots of beech. I. Identity of endogenous sugars and utilization of exogenous sugars. New Phytol.64: 224–237.CrossRefGoogle Scholar
  505. ——. 1965b. Carbohydrate physiology of mycorrhizal roots of beech. II. Utilization of exogenous sugars by uninfected and mycorrhizal roots. New Phytol.64: 238–256.CrossRefGoogle Scholar
  506. ——. 1965c. Carbohydrate physiology of mycorrhizal roots of beech. III. Movement of sugars between host and fungus. New Phytol.64: 256–269.CrossRefGoogle Scholar
  507. Li, J.-R., J. T. A. Proctor &D. P. Murr. (1985). Effects of cotyledon removal on apple seedling growth and distribution of14C-labelled photosynthates. Canad. J. Bot.63: 1736–1739.Google Scholar
  508. Lieth, H. 1975. Primary productivity of the major vegetative units of the world. Pages 203–205in H. Lieth & R. H. Whittaker (eds.), Primary productivity of the biosphere. Academic Press, New York.Google Scholar
  509. Linder, S. &E. Troeng. 1981a. The seasonal course of respiration and photosynthesis in strobili of Scots pine. Forest Sci.27: 267–276.Google Scholar
  510. ——. 1981b. The seasonal variation in stem and coarse root respiration of a 20-year-old Scots pine (Pinus sylvestris L.). Mitt. Forstl. Bundes Versuchswesen, Wien.Google Scholar
  511. Lindgren, K. 1983. Provenances ofPinus contorta in northern Sweden. Dept. of Forest Genetics and Plant Physiology. The Swedish University of Agricultural Sciences, Umea, Sweden.Google Scholar
  512. Lines, R. & A. F. Mitchell. 1966. Differences in phenology of Sitka spruce provenances. Forest Bur. (London) Dept. of Forest Res., pp. 173–184.Google Scholar
  513. Little, C. H. A. 1975. Inhibition of cambial activity inAbies balsamea by internal water stress: Role of abscisic acid. Canad. J. Bot.53: 3041–3050.CrossRefGoogle Scholar
  514. — &J. M. Bonga. 1974. Rest in the cambium ofAbies balsamea. Canad. J. Bot.52: 1723–1730.CrossRefGoogle Scholar
  515. — &R. A. Savidge. 1987. The role of plant growth regulators in forest tree cambial growth. Pl. Growth Reg.6: 137–169.CrossRefGoogle Scholar
  516. —,B. Sundberg &A. Ericsson. 1990. Induction of acropetal14C-photosynthate transport and radial growth by indole-3-acetic acid inPinus sylvestris shoots. Tree Physiol.6: 177–189.PubMedGoogle Scholar
  517. — &P. F. Wareing. 1981. Control of cambial activity and dormancy inPicea sitchensis by indol-3-ylacetic and abscisic acids. Canad. J. Bot.59: 1480–1493.CrossRefGoogle Scholar
  518. Loach, K. &C. H. A. Little. 1973. Production, storage, and use of photosynthate during shoot elongation in balsam fir (Abies balsamea). Canad. J. Bot.51: 1161–1168.CrossRefGoogle Scholar
  519. Loehle, C. 1988a. Tree life history strategies: The role of defenses. Canad. J. Forest Res.18: 209–222.Google Scholar
  520. —. 1988b. Forest decline: Endogenous dynamics, tree defenses, and the elimination of spurious correlation. Vegetatio77: 65–78.CrossRefGoogle Scholar
  521. Loescher, W. H. 1987. Physiology and metabolism of sugar alcohols in higher plants. Physiol. Pl.70: 553–557.CrossRefGoogle Scholar
  522. —,T. McCamant &J. D. Keller. 1990. Carbohydrate reserves, translocation, and storage in woody plant roots. HortScience25: 274–281.Google Scholar
  523. —,T. R. Roper &J. Keller. 1986. Carbohydrate partitioning in sweet cherry. Proc. Wash. State Hort. Assoc.1985, 81: 240–248.Google Scholar
  524. Lorio, P. L. Jr. &R. A. Sommers. 1986. Evidence for competition for photosynthates between growth processes and oleoresin synthesis inPinus taeda L. Tree Physiol.2: 301–306.Google Scholar
  525. Lovell, P. H. &K. G. Moore. 1971. A comparative study of the role of the cotyledon in seedling development. J. Exp. Bot.22: 153–162.CrossRefGoogle Scholar
  526. Lucas, W. J. &M. A. Madore. 1988. Recent advances in sugar transport. Pages 35–84in J. Preiss (ed.), The biochemistry of plants. Vol. 14. Academic Press, San Diego.Google Scholar
  527. Luxmoore, R. J. 1981. CO2 and phytomass. BioScience31: 626.CrossRefGoogle Scholar
  528. MacDonald, A. D., D. H. Mothersill &J. C. Caesar. 1984. Shoot development inBetula papyrifera. III. Long-shoot organogenesis. Canad. J. Bot.62: 437–445.CrossRefGoogle Scholar
  529. MacLean, K. D. &W. A. DeLong. 1956. On the carbohydrate component in leaf extracts and in leachates obtained under forest canopy. Canad. J. Agric. Sci.36: 267–275.Google Scholar
  530. Maestri, M. &R. S. Barros. 1977. Coffee. Pages 249–278in P. de T. Alvim & T. T. Kozlowski (eds.), Ecophysiology of tropical crops. Academic Press, New York.Google Scholar
  531. Magnussen, S. &C. W. Yeatman. 1989. Height growth components in inter- and intra-provenance jack pine families. Canad. J. Forest Res.19: 962–972.CrossRefGoogle Scholar
  532. Mailette, L. 1982a. Structural dynamics of silver birch. I. Fates of buds. Jour. Appl. Ecol.19:203–218.CrossRefGoogle Scholar
  533. —. 1982b. Structural dynamics of silver birch. II. A martrix model of the bud population. J. Appl. Ecol.19: 219–238.CrossRefGoogle Scholar
  534. Mamaev, V. V. 1984. Respiration of tree roots in thePinetum andBetuleum oxalidosomyrtillosum. Lesovedenie6: 53–60.Google Scholar
  535. Marshall, J. D. &R. H. Waring. 1985. Predicting fine root production and turnover by monitoring root starch and soil temperature. Canad. J. Forest Res.15: 791–800.CrossRefGoogle Scholar
  536. Marshall, P. E. &T. T. Kozlowski. 1974a. The role of cotyledons in growth and development of woody angiosperms. Canad. J. Bot.52: 239–245.CrossRefGoogle Scholar
  537. ——. 1974b. Photosynthetic activity of cotyledons and foliage leaves of young angiosperm seedlings. Canad. J. Bot.52: 2023–2032.CrossRefGoogle Scholar
  538. ——. 1975. Changes in mineral contents of cotyledons and young seedlings of woody angiosperms. Canad. J. Bot.53: 2026–2031.CrossRefGoogle Scholar
  539. ——. 1976a. Importance of photosynthetic cotyledons for early growth of woody angiosperms. Physiol. Pl.37: 336–340.CrossRefGoogle Scholar
  540. ——. 1976b. Importance of endosperm for nutrition ofFraxinus pennsylvanica seedlings. J. Exptl. Bot.27: 572–574.CrossRefGoogle Scholar
  541. ——. 1976c. Compositional changes in cotyledons of woody angiosperms. Canad. J. Bot.54: 2473–2477.CrossRefGoogle Scholar
  542. ——. 1977. Changes in structure and function of epigeous cotyledons of woody angiosperms during early seedling growth. Canad. J. Bot.55: 208–215.CrossRefGoogle Scholar
  543. Marx, D. H. 1969. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infection. II. Production, identification, and biological activity of antibiotics produced byLeucopaxillus cerealus var.piceina. Phytopathology59: 411–417.PubMedGoogle Scholar
  544. Matheson, N. K. 1984. The synthesis of reserve oligosaccharides and polysaccharides in seeds. Pages 167–208in D. R. Murray (ed.), Seed physiology, Vol. 1. Development. Academic Press, Sydney.Google Scholar
  545. Matyssek, R. 1986. Carbon, water and nitrogen relations in evergreen and deciduous conifers. Tree Physiol.2: 177–187.PubMedGoogle Scholar
  546. McClaugherty, C. A., J. D. Aber &M. M. Melillo. 1982. The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology63: 1481–1490.CrossRefGoogle Scholar
  547. McCracken, I. J. 1979. Changes in the carbohydrate concentration of pine seedlings after cold storage. N.Z. J. Forest Sci.9: 34–43.Google Scholar
  548. McKay, V.W. 1947. Embryology of pecan. J. Agric. Res.74: 263–283.Google Scholar
  549. McKey, D. 1979. The distribution of secondary compounds within plants. Pages 55–133in G. A. Rosenthal & D. H. Janzen (eds.), Herbivores: Their interactions with secondary plant metabolites. Academic Press, New York.Google Scholar
  550. McLaughlin, S. B. &R. K. McConathy. 1979. Temporal and spatial patterns of carbon allocation in the canopy of white oak. Canad. J. Bot.57: 1407–1413.CrossRefGoogle Scholar
  551. ——,R. L. Barnes &N. T. Edwards. 1980. Seasonal changes in energy allocation by white oak (Quercus alba). Canad. J. Forest Res.10: 379–388.Google Scholar
  552. ——,D. Duvik &L. K. Mann. 1982. Effects of chronic air pollution stress on photosynthesis, carbon allocation, and growth of white pine trees. Forest Sci.28: 60–70.Google Scholar
  553. —— &D. S. Shriner. 1980. Allocation of resources to defense and repair. Pages 407–431 in J. G. Horsfall & E. B. Cowling (eds.), Plant disease, Vol. 5. Academic Press, New York.Google Scholar
  554. McNaughton, S. J. 1983. Physiological and ecological implications of herbivory. Encycl. Pl. Physiol.12C: 657–677.Google Scholar
  555. Melville, R. 1947. The nutritive value of nuts. Chem. Indus.22: 304–306.Google Scholar
  556. Mengel, K., M. Th. Breininger &H. J. Lutz. 1988. Effect of acidic mist on nutrient leaching, carbohydrate status and damage symptoms ofPicea abies. Pages 312–320in P. Mathy (ed.), Air pollution and ecosystems. Reidel, Dordrecht.Google Scholar
  557. Meyer, G. A. &M. E. Montgomery. 1987. Relationship between leafage and the food quality of cottonwood foliage for the gypsy mothLymantria dispar. Oecologia72: 527–532.CrossRefGoogle Scholar
  558. Meyer, M. M. &W. E. Splittstoesser. 1969. The utilization of carbohydrate and nitrogen reserves in the spring growth of lilac. Physiol. Pl.22: 870–879.CrossRefGoogle Scholar
  559. ——. 1971. The utilization of carbohydrate and nitrogen reserves byTaxus during its spring growth period. Physiol. Pl.24: 306–314.CrossRefGoogle Scholar
  560. Meyer, M. W. &W. H. Karasov. 1989. Antiherbivore chemistry ofLarrea tridentata: Effects on woodrat (Neotoma lepida) feeding and nutrition. Ecology70: 953–961.CrossRefGoogle Scholar
  561. Mikola, J. 1985. Relationships between height growth differences of Scots pine full-sib families and variation in seed size, annual growth rhythm, and some foliage characteristics. Pages 233–243in M. A. Tigerstedt, P. Puttonen & V. Koski (eds.), Crop production of forest trees. University of Helsinki, Finland.Google Scholar
  562. Milburn, J. A. &J. Kallarackal. 1989. Physiological aspects of phloem translocation. Pages 264–305in D. A. Baker and J. A. Milburn (eds.), Transport of photoassimilates. Wiley, New York.Google Scholar
  563. Miller, A. R., D. L. Crawford &L. W. Roberts. 1985. Lignification and xylogenesis inLactuca pith expiants culturedin vitro in the presence of auxin and cytokinin: A role for endogenous ethylene. J. Exp. Bot.36: 110–118.CrossRefGoogle Scholar
  564. Miller, P. M., L. E. Eddleman &S. Kramer. 1990. Allocation patterns of carbon and minerals in juvenile and small-adultJuniperus occidentalis. Forest Sci.36: 734–737.Google Scholar
  565. Milton, K. D., D. M. Windsor, D. W. Morrison &M. A. Estribi. 1982. Fruiting phenologies of two neotropicalFicus species. Ecology63: 752–762.CrossRefGoogle Scholar
  566. Minckler, L. S. &J. D. Woerheide. 1968. Weekly height growth of cottonwood. Forest Sci.14: 212–222.Google Scholar
  567. Mirov, N. T. 1962. Phenology of tropical pines. J. Arnold Arbor.43: 218–219.Google Scholar
  568. Mitchell, R. G., R. H. Waring &G. B. Pitman. 1983. Thinning lodgepole pine increases tree vigor and resistance to mountain pine beetle. Forest Sci.29: 204–211.Google Scholar
  569. Miyanishi, K. &M. Kellman. 1986. The role of pine in recruitment of two neotropical savanna shrubs,Miconia albicans andClidemia sericea. Biotropica18: 224–230.CrossRefGoogle Scholar
  570. Mochizuki, T. 1962. Studies on the elucidation of factors affecting the decline in tree vigor in apples as induced by fruit load. Bull. Fac. Agric, Hirosaki Univ.8: 40–124.Google Scholar
  571. — &S. Hanada. 1957. The anisophylly on the lateral shoots of apple trees and the effect of soil moisture. Bull. Fac. Agric, Hirosaki University3: 1–8.Google Scholar
  572. Möller, C. M. 1946. Untersuchungen über Laubmenge, Stoffverlust und Stoffproduktion des Waldes. Forstl. Forsoegsvaes. Dan.21: 327–335.Google Scholar
  573. Monselise, S. P. &E. E. Goldschmidt. 1982. Alternate bearing in fruit trees. Hort. Rev.4: 128–173.Google Scholar
  574. Mooney, H. A. 1972. The carbon balance of plants. Ann. Rev. Ecol. Syst.3: 315–346.CrossRefGoogle Scholar
  575. — &S. L. Gulmon. 1982. Constraints on leaf structure and function in relation to herbivory. BioScience32: 198–206.CrossRefGoogle Scholar
  576. -, -& N. D. Johnson. 1983. Physiological constraints on plant chemical defenses. Pages 21–36in P. A. Hedin (ed.), Plant resistance to insects. Amer. Chem. Soc. Symp. Series 208, Washington, D.C.Google Scholar
  577. —— &R. I. Hays. 1973. Carbohydrate storage cycles in two California Mediterraneanclimate trees. Flora162: 295–304.Google Scholar
  578. — &B. R. Strain. 1964. Bark photosynthesis in ocotillo. Madroño17: 230–233.Google Scholar
  579. Moorby, J. 1977. Integration and regulation of translocation within the whole plant. Symp. Soc. Exptl. Bot.31: 425–454.Google Scholar
  580. Moreshet, S. &G. C. Green. 1980. Photosynthesis and diffusion conductance of the Valencia orange fruit under field conditions. J. Exp. Bot.31: 15–27.CrossRefGoogle Scholar
  581. Mori, S. &A. Hagihara. 1991. Root respiration inChamaecyparis obtusa trees. Tree Physiol.8: 217–225.PubMedGoogle Scholar
  582. Morrison, T. M. 1965. Xylem sap composition in woody plants. Nature205: 1027.CrossRefGoogle Scholar
  583. Mulligan, D. R. &J. W. Patrick. 1985. Carbon and phosphorus assimilation and deployment inEucalyptus pilularis Smith seedlings with special reference to the role of cotyledons. Austral. J. Bot.33: 485–496.CrossRefGoogle Scholar
  584. Murmanis, L. &R. F. Evert. 1967. Parenchyma cells of secondary phloem inPinus strobus. Planta73: 301–318.CrossRefGoogle Scholar
  585. Murneek, A. E. 1933. Carbohydrate storage in apple trees. Proc. Amer. Soc. Hort. Sci.30: 319–321.Google Scholar
  586. -. 1942. Quantitative distribution of nitrogen and carbohydrates in apple trees. Missouri Agr. Expt. Sta. Res. Bull. 348.Google Scholar
  587. Murphy, J. B. &T. L. Noland. 1982. Temperature effects on oxidative metabolism of dormant sugar pine seeds. Pl. Physiol.70: 1410–1412.CrossRefGoogle Scholar
  588. Muzik, T. J. 1954. Development of fruit, seed, embryo, and seedling ofHevea brasiliensis. Amer. J. Bot.41: 39–43.CrossRefGoogle Scholar
  589. Nagy, S., H. E. Nordby &S. Nemec. 1980. Composition of lipids in roots in six citrus cultivars infected with the vesicular-arbuscular mycorrhizal fungusGlomus mosseae. New Phytol.85: 377–384.CrossRefGoogle Scholar
  590. Nakone, K., M. Yamamoto &H. Tsubota. 1983. Estimation of root respiration rate in a mature forest ecosystem. Jap. J. Ecol.33: 397–408.Google Scholar
  591. Navratil, S. 1976. Nursery storage of spring-lifted planting stock. Page 32in Plantation Establishment Symposium. Ont. Min. Nat. Resour. Great Lakes Forest Res. Centre, O-P-5 (1977).Google Scholar
  592. Nedoff, J. A., J. P. Ting &E. M. Lord. 1985. Structure and function of the green stem tissue in ocotillo (Fouquieria splendens). Amer. J. Bot.72: 143–151.CrossRefGoogle Scholar
  593. Negisi, K. 1977. Respiration in forest trees. Pages 86–93, 96–99in T. Shidei & T. Kira (eds.), Primary productivity of Japanese-forests. Vol. 16. Productivity of terrestrial communities. University of Tokyo Press, Tokyo.Google Scholar
  594. Nelson, C. D. 1964. The production and translocation of photosynthetic C14 in conifers. Pages 243–257in M. W. Zimmermann (ed.), The formation of wood in forest trees. Academic Press, New York.Google Scholar
  595. Nelson, E. A. &R. E. Dickson. 1981. Accumulation of food reserves in cottonwood stems during dormancy induction. Canad. J. Forest Res.11: 145–154.CrossRefGoogle Scholar
  596. Nelson, N. D. &J. G. Isebrands. 1983. Late-season photosynthesis and photosynthate distribution in an intensively culturedPopulus nigra ×laurifolia clone. Photosynthetica17: 537–549.Google Scholar
  597. Neuwirth, G. 1959. Der CO2-Stoffwechsel einiger Koniferen während des Knospenaustriebes. Biol. Zentralbl.78: 559–584.Google Scholar
  598. Newman, E. I. 1978. Root microorganisms. Their significance in the ecosystem. Biol. Rev.53:511–554.CrossRefGoogle Scholar
  599. Nguyen, P. V., D. I. Dickmann, K. S. Pregitzer &R. Hendrick. 1990. Late-season changes in allocation of starch and sugar to shoots, coarse roots, and fine roots in two hybrid poplar clones. Tree Physiol.7: 95–105.PubMedGoogle Scholar
  600. Niimi, Y. &H. Torikata. 1979. Changes in photosynthesis and respiration during berry development in relation to the ripening of Delaware grapes. J. Jap. Soc. Hort. Sci.47: 448–453.CrossRefGoogle Scholar
  601. Njoku, E. 1963. Seasonal periodicity in the growth and development of some forest trees in Nigeria. J. Ecol.51: 617–624.CrossRefGoogle Scholar
  602. —. 1964. Seasonal periodicity in the growth and development of some forest trees in Nigeria. II. Observations on seedlings. J. Ecol.52: 19–26.CrossRefGoogle Scholar
  603. Norby, R. J. 1987. Nodulation and nitrogenous activity in nitrogen-fixing woody plants stimulated by CO2 enrichment of the atmosphere. Physiol. Pl.71: 77–82.CrossRefGoogle Scholar
  604. — &T. T. Kozlowski. 1980. Allelopathic potential of ground cover species inPinus resinosa seedlings. Pl. & Soil57: 363–374.CrossRefGoogle Scholar
  605. —,E. G. O’Neill, W. G. Hood &R. J. Luxmoore. 1987. Carbon allocation, root exudation and mycorrhizal colonization ofPinus echinata seedlings grown under CO2 enrichment. Tree Physiol. 3:203–210.PubMedGoogle Scholar
  606. Northcote, D. H. 1984. Control of cell wall assembly during differentiation. Pages 222–234in W. M. Dugger & S. Bartnicki-Garcia (eds.), Structure, function, and biosynthesis of plant cell walls. Amer. Soc. Plant Physiologists, Rockville, Maryland.Google Scholar
  607. Nylund, J.-E. 1988. The regulation of mycorrhiza formation—Carbohydrate and hormone theories reviewed. Scand. J. Forest Res.3: 465–479.CrossRefGoogle Scholar
  608. Ogawa, K., A. Hagihara &K. Hazumi. 1988. Photosynthesis and respiration in cones of hinoki (Chamaecyparis obtusa). J. Jap. Forestry Soc.70: 220–226.Google Scholar
  609. Oliveira, C. M. &C. A. Priestley. 1988. Carbohydrate reserves in deciduous fruit trees. Hort. Rev.10: 403–430.Google Scholar
  610. Olofinboba, M. O. 1969. Seasonal variations in the carbohydrates in the xylem ofAntiaris africana. Ann. Bot.33: 339–349.Google Scholar
  611. —. 1975. Studies on seedlings ofTheobroma cacao L., variety F3 Amazon. I. Role of cotyledons in seedling development. Turrialba25: 121–127.Google Scholar
  612. — &T. T. Kozlowski. 1973. Accumulation and utilization of carbohydrate reserves in shoot growth ofPinus resinosa. Canad. J. Forest Res.3: 346–353.CrossRefGoogle Scholar
  613. Oohata, S. &T. Shidei. 1972. Seasonal changes in respiratory rate of stems and their growth. Bull. Tokyo Univ. Forest43: 63–72.Google Scholar
  614. Opik, H. 1980. The respiration of higher plants. Edward Arnold, London.Google Scholar
  615. O’Reilly, C. &J. N. Owens. 1987. Long-shoot bud development, shoot growth, and foliage production in provenances of lodgepole pine. Canad. J. Forest Res.17: 1421–1433.CrossRefGoogle Scholar
  616. ——. 1989a. Polycyclic growth and branching in the upper crown in provenances of lodgepole pine. Canad. J. Forest Res.19: 79–87.CrossRefGoogle Scholar
  617. ——. 1989b. Shoot, needle, and cambial growth phenology and branch tracheid dimensions in provenances of lodgepole pine. Canad. J. Forest Res.19: 599–605.CrossRefGoogle Scholar
  618. Owens, J. N. &M. Molder. 1973. Bud development in western hemlock. I. Annual growth cycle of vegetative buds. Canad. J. Bot.51: 2223–2231.CrossRefGoogle Scholar
  619. ——. 1979. Bud development inLarix occidentalis. I. Growth and development of vegetative long shoot and vegetative short shoot buds. Canad. J. Bot.57: 687–700.CrossRefGoogle Scholar
  620. Padgett, M. &J. C. Morrison. 1990. Changes in grape berry exudates during fruit development and their effect on mycelial growth ofBotrytis cinerea. J. Amer. Soc. Hort. Sci.115: 269–273.Google Scholar
  621. Pallardy, S. G. &T. T. Kozlowski. 1979. Early root and shoot growth ofPopulus clones. Silvae Genet.28: 153–156.Google Scholar
  622. Pankow, W., W. Niederer, U. Weiser, B. Schmid, T. Boller &A. Wiemken. 1989. Biochemical symptoms of stress in the mycorrhizal roots of Norway spruce (Picea abies). Trees3: 65–72.CrossRefGoogle Scholar
  623. Parke, J. L., R. G. Linderman &C. H. Black. 1983. The role of ectomycorrhizas in drought tolerance of Douglas-fir seedlings. New Phytol.95: 83–95.CrossRefGoogle Scholar
  624. Parker, G. G. 1983. Throughfall and stemflow in the forest nutrient cycle. Adv. Ecol. Res.13: 57–133.CrossRefGoogle Scholar
  625. Parker, J. 1962. Seasonal changes in cold resistance and free sugars of some hardwood tree barks. Forest Sci.8: 255–262.Google Scholar
  626. Parry, M. S. 1974. The control of biennial bearing of Laxton’s Superb apple trees. J. Hort. Sci.49: 123–130.Google Scholar
  627. Patel, R. Z. 1970. A note on the seasonal variations in starch content of different parts of Arabica coffee trees. E. African Agric. Forest. J.36: 1–4.Google Scholar
  628. Patrick, J. W. 1982. Hormonal control of assimilate transport. Pages 669–678in P. F. Wareing (ed.), Plant growth substances. Academic Press, New York.Google Scholar
  629. —. 1990. Sieve element unloading: Cellular pathway, mechanism and control. Physiol. Pl.78: 298–308.CrossRefGoogle Scholar
  630. Paul, E. A. &R. M. N. Kucey. 1981. Carbon flow in plant microbial association. Science213: 473–474.PubMedCrossRefGoogle Scholar
  631. Pearcy, R. W., O. Björkmann, M. M. Caldwell, J. E. Keeley, R. K. Monson &B. R. Strain. 1987. Carbon gain by plants in natural environments. BioScience37: 21–29.CrossRefGoogle Scholar
  632. Pearson, L. C. &D. B. Lawrence. 1958. Photosynthesis in aspen bark. Amer. J. Bot.45: 383–387.CrossRefGoogle Scholar
  633. Penning de Vries, F. W. T. 1975a. The cost of maintenance processes in plants. Ann. Bot.39: 77–92.Google Scholar
  634. —. 1975b. The use of assimilates in higher plants. Pages 459–480in J. P. Cooper (ed.), Photosynthesis and productivity in different environments. Cambridge University Press, New York.Google Scholar
  635. —,A. H. M. Brunsting &H. H. Van Laar. 1974. Products, requirements and efficiency of biosynthetic processes: A quantitative approach. J. Theor. Biol.45: 339–377.PubMedCrossRefGoogle Scholar
  636. Percy, K. E. &R. T. Riding. 1978. The epicuticular waxes ofPinus strobus subjected to air pollutants. Canad. J. Forest Res.8: 474–477.CrossRefGoogle Scholar
  637. Pereira, J. S. &T. T. Kozlowski. 1977. Variations among woody angiosperms in response to flooding. Physiol. Pl.41: 184–192.CrossRefGoogle Scholar
  638. Perry, D. A., R. Molina &M. P. Amaranthus. 1987. Mycorrhizae, mycorrhizospheres, and reforestation: Current knowledge and research needs. Canad. J. Forest Res.17: 929–940.CrossRefGoogle Scholar
  639. Perry, T. O. 1971. Winter season photosynthesis and respiration by twigs and seedlings of deciduous and evergreen trees. Forest Sci.17: 41–43.Google Scholar
  640. —,C. W. Wang &D. Schmitt. 1966. Height growth for loblolly pine provenances in relation to photoperiod and growing seasons. Silvae Genet.15: 61–64.Google Scholar
  641. Persson, H. 1978. Root dynamics in a young Scots pine stand in central Sweden. Oikos30: 508–519.CrossRefGoogle Scholar
  642. —. 1979. Fine-root production, mortality, and decomposition in forest ecosystems. Vegetatio41: 101–109.CrossRefGoogle Scholar
  643. Phan, C. T. 1970. Photosynthetic activity of fruit tissues. Pl. Cell Physiol.11: 823–825.Google Scholar
  644. —. 1973. Chloroplasts of the peel and the internal tissues of apple fruits. Experientia29: 1555–1557.CrossRefGoogle Scholar
  645. Philipson, J. J. 1988. Root growth in Sitka spruce and Douglas-fir transplants: Dependence on the shoot and stored carbohydrates. Tree Physiol.4: 101–108.PubMedGoogle Scholar
  646. — &M. P. Courts. 1980. Effects of growth hormone applications on the secondary growth of roots and stems inPicea sitchensis (Bong.) Carr. Ann. Bot.46: 747–755.Google Scholar
  647. Phillipson, J., R. J. Putnam, J. Steel &S. R. J. Woodall. 1975. Litter input, litter decomposition and the evolution of carbon dioxide in a beech woodland. Wytham Woods, Oxford. Oecologia20: 203–217.CrossRefGoogle Scholar
  648. Pinfield, N. J., A. K. Stobart, R. M. Crawford &A. Beckett. 1973. Carbon assimilation of sycamore [Acer pseudoplatanus] cotyledons during early seedling development. J. Exp. Bot.24: 1203–1207.CrossRefGoogle Scholar
  649. Pollard, D. F. W. 1970. Leaf area development on different shoot types in a young aspen stand and its effect upon production. Canad. J. Bot.48: 1801–1804.CrossRefGoogle Scholar
  650. — &K. T. Logan. 1976. Inherent variation in “free” growth in relation to numbers of needles produced by provenances ofPicea mariana. Pages 245–251in M. G. R. Cannell & F. T. Last (eds.), Tree physiology and yield improvement. Academic Press, London.Google Scholar
  651. —,A. H. Teich &K. T. Logan. 1975. Seedling shoot and bud development in provenances of Sitka spruce (Picea sitchensis Bong.) Carr. Canad. J. Forest Res.5: 18–25.Google Scholar
  652. — &C. C. Ying. 1979. Variance in flushing among and within stands of seedling white spruce. Canad. J. Forest. Res.9: 517–521.CrossRefGoogle Scholar
  653. Pollock, B. M. 1953. The respiration ofAcer buds in relation to the inception and termination of the winter rest. Physiol. Pl.6: 47–64.CrossRefGoogle Scholar
  654. Porandowski, J., K. Rakowski &T. J. Wodzicki. 1982. Apical control of xylem formation in the pine stem. II. Responses of differentiating tracheids. Acta Soc. Bot. Poloniae51: 203–214.Google Scholar
  655. Potter, D. A. &T. W. Kimmerer. 1989. Evidence for the defensive role of saponins. Oecologia78: 322–329.CrossRefGoogle Scholar
  656. Pregitzer, K. S., D. I. Dickmann, R. Hendrick &P. V. Nguyen. 1990. Whole-tree carbon and nitrogen partitioning in young hybrid poplars. Tree Physiol.7: 79–93.PubMedGoogle Scholar
  657. Priestley, C. A. 1962a. Carbohydrate resources within the perennial plant. Commonw. Bur. Hort. and Plantation Crops, (G.B.). Tech. Commun. 27.Google Scholar
  658. -. 1962b. The location of carbohydrate resources within the apple tree. Proc. 16th Int. Hort. Congress, pp. 319–327.Google Scholar
  659. —. 1977. The annual turnover of resources in young olive trees. J. Hort Sci.52: 105–112.Google Scholar
  660. —,P. B. Catlin &E. A. Olsson. 1976. The distribution of14C-labelled assimilates in young apple trees as influenced by doses of supplementary nitrogen. I. Total14C radioactivity in extracts. Ann. Bot.40: 1163–1170.Google Scholar
  661. Proctor, J. T. A., R. L. Watson &J. J. Landsberg. 1976. The carbon budget of a young apple tree. J. Amer. Soc. Hort Sci.101: 579–582.Google Scholar
  662. Pulkkinen, P., T. Poykko, P. M. A. Tigerstedt &P. Velling. 1989. Harvest index in northern temperate cultivated conifers. Tree Physiol.5: 83–98.PubMedGoogle Scholar
  663. Purvis, A. C. 1988. Limitation of alternative respiratory pathway activity in grapefruit flavedo tissue by oxygen availability. Pl. Physiol.86: 623–625.CrossRefGoogle Scholar
  664. Puttonen, P. 1986. Carbohydrate reserves inPinus sylvestris seedling needles as an attribute of seedling vigor. Scand. J. Forest Res.1: 181–193.CrossRefGoogle Scholar
  665. Quinlan, J. D. 1965. The pattern of distribution of 14C in a potted rootstock following assimilation of 14CO2 by a single leaf. Ann. Rept. East Mailing Res. Sta. 117–118.Google Scholar
  666. —. 1969. Mobilization of14C in the spring following autumn assimilation of14CO2 by apple rootstock. J. Hort. Sci.44: 107–110.Google Scholar
  667. — &A. P. Preston. 1968. Effects of thinning blossoms and fruitlets on growth and cropping of Sunset apple. J. Hort Sci.43: 373–381.Google Scholar
  668. Rangenekar, P. V. &D. F. Forward. 1969. Foliar nutrition and growth in red pine: The fate of photoassimilated carbon in a seedling tree. Canad. J. Bot.47: 897–906.CrossRefGoogle Scholar
  669. ——, &N. J. Nolan. 1969. Foliar nutrition and wood growth in red pine. The distribution of radiocarbon photoassimilated by individual branches of young trees. Canad. J. Bot.47: 1701–1711.CrossRefGoogle Scholar
  670. Raven, J. A. 1983. Phytophages of xylem and phloem: A comparison of animal and plant sap feeders. Adv. Ecol. Res.13: 136–234.Google Scholar
  671. Rawsthorne, J., F. R. Minchin, R. J. Summerfield, C. Cookson &C. Coombs. 1980. Carbon and nitrogen metabolism in legume root nodules. Phytochemistry19: 341–355.CrossRefGoogle Scholar
  672. Read, D. J., R. Francis &R. D. Finlay. 1985. Mycorrhizal mycelia and nutrient cycling in plant communities. Pages 193–217in A. H. Fitter (ed.), Ecological interactions in soil. Blackwell Scientific, Oxford.Google Scholar
  673. Rehfeldt, G. E. 1983. Adaptation ofPinus contorta populations to heterogeneous environments in northern Idaho. Canad. J. Forest. Res.13: 405–411.CrossRefGoogle Scholar
  674. —. 1985. Genetic variances and covariances inPinus contorta: Estimates of genetic gains from index selection. Silvae Genet.34: 26–33.Google Scholar
  675. —. 1988. Ecological genetics ofPinus contorta from the Rocky Mountains (U.S.A.): A synthesis. Silvae Genet.37: 131–135.Google Scholar
  676. — &D. T. Lester. 1966. Variation in shoot elongation ofPinus resinosa Ait. Canad. J. Bot.44: 1457–1469.CrossRefGoogle Scholar
  677. — &W. R. Wycoff. 1981. Periodicity in shoot elongation amongPinus contorta populations from the northern Rocky Mountains. Ann. Bot.48: 371–378.Google Scholar
  678. Reichardt, P. B., J. P. Bryant, T. P. Clausen &G. D. Wieland. 1984. Defense of winterdormant Alaska paper birch against snowshoes hares. Oecologia65: 58–69.CrossRefGoogle Scholar
  679. Reid, C. P. P. 1974. Assimilation, distribution, and root exudation of14C by ponderosa pine seedlings under induced water stress. Pl. Physiol.54: 44–49.CrossRefGoogle Scholar
  680. —. 1984. Mycorrhizae: A root-soil interface in plant nutrition. Pages 29–50in R. L. Todd & J. E. Giddens (eds.), Microbial plant interactions. Amer. Soc. Agron. Special Publ. 47. Madison, Wisconsin.Google Scholar
  681. —,F. A. Kidd &S. A. Ekwebelam. 1983. Nitrogen nutrition, photosynthesis, and carbon allocation in ectomycorrhizal pine. Pl. & Soil71: 415–432.CrossRefGoogle Scholar
  682. Reid, D. M. &K. J. Bradford. 1984. Effects of flooding on hormone relations. Pages 195–219in T. T. Kozlowski (ed.), Flooding and plant growth. Academic Press, New York.Google Scholar
  683. Remphrey, W. R. &G. R. Powell. 1984a. Crown architecture ofLarix laricina saplings: Quantitative analysis and modelling of (nonsylleptic) order 1 branching in relation to development of the main stem. Canad. J. Bot.62: 1904–1915.CrossRefGoogle Scholar
  684. ——. 1984b. Crown architecture ofLarix laricina saplings: Shoot preformation and neoformation and their relationships to shoot vigour. Canad. J. Bot.62: 2181–2192.CrossRefGoogle Scholar
  685. Reuther, G. &A. Reichardt. 1963. Temperatureinflüsse auf Bluting und Stoffwechsel beiVitis vinifera. Planta59: 391–410.CrossRefGoogle Scholar
  686. Rhoades, D. F. 1983. Responses of alder and willow to attack by tent caterpillars and webworms: Evidence for pheromonal sensitivity of willows. Amer. Chem. Soc. Symp. Ser.208: 55–68.Google Scholar
  687. —. 1985. Offensive-defensive interactions between herbivores and plants: Their relevance in herbivore population dynamics and ecological theory. Amer. Naturalist125: 205–238.CrossRefGoogle Scholar
  688. — &R. G. Cates. 1976. Toward a general theory of antiherbivore chemistry. Recent Adv. Biochem.10: 168–213.Google Scholar
  689. Rhodes, M. V. C. &L. S. C. Wooltorton. 1973. Formation of CoA esters of cinnamic acid derivatives by extracts ofBrassica napobrassica root tissue. Phytochemistry12: 2381–2387.CrossRefGoogle Scholar
  690. Rice, E. L.1984. Allelopathy. Academic Press, Orlando, Florida.Google Scholar
  691. Richardson, S. D. 1953. Studies of root growth inAcer saccharinum L. I. The relation between root growth and photosynthesis. Proc. Kon. Ned. Akad. Wetensch. Amsterdam C56:185–193.Google Scholar
  692. —. 1956a. Studies of root growth inAcer saccharinum L. III. The influence of seedling age on the short term relation between photosynthesis and root growth. Proc. Kon. Ned. Akad. Wetensch. AmsterdamC59: 416–427.Google Scholar
  693. —. 1956b. Studies of root growth inAcer saccharinum L. V. The effect of a long-term limitation of photosynthesis on root growth rate in first-year seedlings. Proc. Kon. Ned. Akad. Wetensch. AmsterdamC59: 694–701.Google Scholar
  694. Riding, R. T. 1972. Early ontogeny of seedlings ofPinus radiata. Canad. J. Bot.50: 2381–2387.CrossRefGoogle Scholar
  695. — &J. Aitken. 1982. Needle structure and development of the stomatal complex in cotyledons, primary needles and secondary needles ofPinus radiata. D. Don. Bot. Gaz.143: 52–62.CrossRefGoogle Scholar
  696. Rio, E. del, L. Rallo &J. M. Caballero. 1991. Effects of carbohydrate content on the seasonal rooting of vegetative and reproductive cuttings of olive. J. Hort. Sci.66: 301–309.Google Scholar
  697. Ritchie, G. A. 1982. Carbohydrate reserves and root growth potential in Douglas-fir seedlings before and after cold storage. Canad. J. Forest Res.12: 905–912.CrossRefGoogle Scholar
  698. — &J. R. Dunlap. 1980. Root growth potential: Its development and expression in forest tree seedlings. N.Z. J. Forest Sci.10: 218–248.Google Scholar
  699. Roberts, L. W., P. B. Gahan &R. Aloni. 1988. Vascular differentiation and plant growth regulators. Springer-Verlag, Berlin and New York.Google Scholar
  700. Rom, C. R. &D. C. Ferree. 1986. The influence of fruiting and shading of spurs and shoots on spur performance. J. Amer. Soc. Hort. Sci.111: 352–356.Google Scholar
  701. Ronco, F. 1973. Food reserves of Engelmann spruce planting stock. Forest Sci.19: 213–219.Google Scholar
  702. Rook, D. A. 1971. Effect of undercutting and wrenching on growth ofPinus radiata D. Don seedlings. J. Appl. Ecol.8: 477–490.CrossRefGoogle Scholar
  703. —. 1985. Physiological constraints on yield. Pages 1–19 in P. M. A. Tigerstedt, P. Puttonen & V. Koski (eds.), Crop physiology of forest trees. Helsinki University Press, Helsinki, Finland.Google Scholar
  704. — &G. B. Sweet. 1971. Photosynthesis and photosynthate distribution in Douglas-fir strobili grafted to young seedlings. Canad. J. Bot.49: 13–17.CrossRefGoogle Scholar
  705. Roper, T. R. &R. A. Kennedy. 1986. Photosynthetic characteristics during leaf development in ‘Bing’ sweet cherry. J. Amer. Soc. Hort. Sci.111: 938–941.Google Scholar
  706. —,W. H. Loescher, J. Keller &C. R. Rom. 1987. Sources of photosynthate for fruit growth in ‘Bing’ sweet cherry. J. Amer. Soc. Hort. Sci.112: 808–812.Google Scholar
  707. —,J. D. Keller, W. H. Loescher &C. R. Rom. 1988. Photosynthesis and carbohydrate partitioning in sweet cherry: Fruiting effects. Physiol. Pl.72: 42–47.CrossRefGoogle Scholar
  708. Rosen, C. J. &R. M. Carlson. 1984. Influence of root zone oxygen stress on potassium and ammonium absorption by Myrobalan plum rootstock. Pl. & Soil80: 345–353.CrossRefGoogle Scholar
  709. Rosenthal, G. A. &D. H. Janzen (eds.). 1979. Herbivores: Their interaction with secondary plant metabolites. Academic Press, New York.Google Scholar
  710. Ross, S. D., M. P. Bollman, R. P. Pharis &G. B. Sweet. 1984. Gibberellin A4+7 and the promotion of flowering inPinus radiata. Effects on partitioning of photoassimilates within the bud during primordia differentiation. Pl. Physiol.76: 326–330.CrossRefGoogle Scholar
  711. —,R. P. Pharis &W. D. Binder. 1983. Growth regulators and conifers: Their physiology and potential uses in forestry. Pages 35–78in L. G. Nickeil (ed.), Plant growth regulating chemicals. Vol. II. CRC Press. Boca Raton, Florida.Google Scholar
  712. Rousseau, J. V. D. &C. P. P. Reid. 1989. Measurement of carbon cost in mycorrhizae. Pages 183–196in J. G. Torrey & L. J. Winship (eds.), Applications of continuous and steady state methods to root biology. Kluwer, Dordrecht.Google Scholar
  713. ——. 1990. Effects of phosphorus and ectomycorrhizas on the carbon balance of loblolly pine seedlings. Forest Sci.36: 101–112.Google Scholar
  714. Rovira, A. D. 1965. Plant root exudates and their influence upon soil microorganisms. Pages 170–184in K. F. Baker & W. C. Snyder (eds.), Ecology of soil-borne pathogens. Murray, London.Google Scholar
  715. —. 1969. Plant root exudates. Bot. Rev.35: 35–57.CrossRefGoogle Scholar
  716. —. 1979. Biology of the soil-root interface. Pages 145–160in J. L. Harley & R. S. Russell (eds.), The soil-root interface. Academic Press, London.Google Scholar
  717. — &C. B. Davey. 1974. Biology of the rhizosphere. Pages 154–208in F. W. Carson (ed.), The plant root and its environment. University Press of Virginia, Charlottesville.Google Scholar
  718. Rudolph, T. D. 1964. Lammas growth and prolepsis in jack pine in the Lake States. Forest Sci. Monogr. 6.Google Scholar
  719. Ryan, M. G. 1990. Growth and maintenance respiration in stems ofPinus contorta andPicea engelmannii. Canad. J. Forest Res.20: 48–57.CrossRefGoogle Scholar
  720. Ryugo, K. 1988. Fruit culture: Its science and art. Wiley, New York.Google Scholar
  721. — &L. D. Davis. 1959. The time of ripening on the starch content of bearing peach branches. Proc. Amer. Soc. Hort. Sci.74: 130–133.Google Scholar
  722. —,B. Marangoni &D. E. Ramos. 1980. Light intensity and fruiting effects on carbohydrate contents, spur development, and return bloom of ‘Hartley’ walnut. J. Am. Soc. Hort. Sci.105: 223–227.Google Scholar
  723. —,N. Nii, M. Iwata &R. M. Carlson. 1977. Effects of fruiting on carbohydrate and mineral composition of stems and leaves of ‘French’ prune. J. Amer. Soc. Hort. Sci.102: 813–816.Google Scholar
  724. Saka, S. &D. A. I. Goring. 1985. Localization of lignins in wood cell walls. Pages 51–62in T. Higuchi (ed.), Biosynthesis and biodegradation of wood components. Academic Press, Orlando, Florida.Google Scholar
  725. Sakai, A. &W. Larcher. 1987. Frost survival of plants. Springer-Verlag, Berlin and New York.Google Scholar
  726. Santantonio, D. 1989. Dry-matter partitioning and fine root production in forests—New approaches to difficult problems. Pages 57–72in J. S. Pereira & J. J. Landsberg (eds.), Biomass production by fast-growing trees. Kluwer, Dordrecht.Google Scholar
  727. — &R. K. Hermann. 1985. Standing crop, production, and turn-over of fine roots on dry, moderate, and wet sites of mature Douglas-fir in western Oregon. Ann. Sci. Forest.42: 113–142.CrossRefGoogle Scholar
  728. — &E. Santantonio. 1987. Effects of thinning on production and mortality of fine roots in aPinus radiata plantation on a fertile site in New Zealand. Canad. J. Forest Res.17: 919–928.CrossRefGoogle Scholar
  729. ——, &W. S. Overton. 1977. Root biomass studies in forest ecosystems. Pedobiologia17: 1–31.Google Scholar
  730. Sanz, A., C. Monerri, J. Gonzalez-Ferrer &J. L. Guardiola. 1987. Changes in carbohydrates and mineral elements inCitrus leaves during flowering and fruit set. Physiol. Pl.69: 93–98.CrossRefGoogle Scholar
  731. Saranpää, P. 1988. Plastids and glycolipids in the stemwood ofPinus sylvestris L. Trees2: 180–187.CrossRefGoogle Scholar
  732. — &W. Höll. 1989. Soluble carbohydrates ofPinus sylvestris L. sapwood and heartwood. Trees3: 138–143.CrossRefGoogle Scholar
  733. Sasaki, S. &T. T. Kozlowski. 1968a. The role of cotyledons in early development of pine seedlings. Canad. J. Bot.46: 135–140.Google Scholar
  734. ——. 1968b. Effects of herbicides on seed germination and early seedling development ofPinus resinosa. Bot. Gaz.129: 238–246.CrossRefGoogle Scholar
  735. ——. 1969. Utilization of seed reserves and currently produced photosynthates of embryonic tissues of pine seedlings. Ann. Bot.33: 472–482.Google Scholar
  736. ——. 1970. Effects of cotyledon and hypocotyl photosynthesis on growth of young pine seedlings. New Phytol.69: 493–500.CrossRefGoogle Scholar
  737. Satoh, M. &K. Ohyama. 1976. Studies on photosynthesis and translocation of photosynthate in mulberry tree. V. Utilization of reserve substance in the process of regrowth after shoot pruning in a growing season. Proc. Crop Sci. Soc. Japan45: 51–56.Google Scholar
  738. Sauter, J. J. 1972. Respiratory and phosphatase activities in contact cells of wood rays and their possible role in sugar secretion. Zeit. Pflanzenphysiol.67: 135–145.Google Scholar
  739. —. 1980. Seasonal variation of sucrose content in the xylem sap ofSalix. Zeit. Pflanzenphysiol.98: 377–391.Google Scholar
  740. —. 1981. Sucrose uptake in the xylem ofPopulus. Zeit. Pflanzenphysiol.103: 165–168.Google Scholar
  741. —. 1982. Transport in Markstrahlen. Ber. Deutsch. Bot. Ges.95: 593–618.Google Scholar
  742. —. 1988. Seasonal changes in the efflux of sugars from parenchyma cells into the apoplast in poplar stems (Populus ×canadensis “robusta”). Trees2: 242–249.CrossRefGoogle Scholar
  743. — &X. Ambrosius. 1986. Changes in partitioning of carbohydrates in the wood during bud break inBetula pendula Roth. J. Pl. Physiol.124: 31–43.Google Scholar
  744. —,W. Iten &M. H. Zimmermann. 1973. Studies on the release of sugar into the vessels of sugar maple (Acer saccharum). Canad. J. Bot.51: 1–8.CrossRefGoogle Scholar
  745. — &S. Kloth. 1986. Plasmostomatal frequency and radial translocation rates in ray cells of poplar (Populus ×canadensis Moench ‘robusta’). Planta168: 377–380.CrossRefGoogle Scholar
  746. Savidge, R. A. 1983. The role of plant hormones in higher plant cellular differentiation. II. Experiments with the vascular cambium, and sclereid and tracheid differentiation in the pinePinus contorta. Histochem. J.15: 447–466.PubMedCrossRefGoogle Scholar
  747. —. 1988. Auxin and ethylene regulation of diameter growth in trees. Tree Physiol.4: 401–404.PubMedGoogle Scholar
  748. — &P. F. Wareing. 1981a. A tracheid differentiation factor from pine needles. Planta153: 395–404.CrossRefGoogle Scholar
  749. ——. 1981b. Plant growth regulators and the differentiation of vascular elements. Pages 192–235in J. R. Barnett (ed.), Xylem cell development. Castle House Publ., Tunbridge Wells, England.Google Scholar
  750. Schaedle, M. &A. A. Brayman. 1986. Ribulose-l,5-bisphosphate carboxylase activity ofPopulus tremuloides Michx. bark tissues. Tree Physiol.1: 53–56.PubMedGoogle Scholar
  751. —,P. Iannacone &K. C. Foote. 1968. Hill reaction capacity of isolated quaking aspen bark chloroplasts. Forest Sci.14: 222–223.Google Scholar
  752. Schaeffer, H. &K. G. Schwarz. 1986. Jahreszeitlich bedingte Veränderung im Kohlenhydratstoffwechsel und im Auftreten der Phosphorylase und sauren Phosphatase bei zwei Apfelsorten. Gartenbauwissenschaft51: 165–170.Google Scholar
  753. Scherbatskoy, T. &R. M. Klein. 1983. Response of spruce and birch foliage to leaching by acidic mists. J. Environ. Qual.12: 189–195.CrossRefGoogle Scholar
  754. Schier, G. A. 1970. Seasonal pathways of14C-photosynthate in red pine labeled in May, July, and October. Forest Sci.16: 2–13.Google Scholar
  755. — &J. C. Zasada. 1973. Role of carbohydrate reserves in the development of root suckers inPopulus tremuloides. Canad. J. Forest Res.3: 243–250.CrossRefGoogle Scholar
  756. Schimper, F. W. 1903. Plant geography upon a physiological basis (Engl. transi.). Oxford Univ. Press (Clarendon), London and New York.Google Scholar
  757. Schimpf, C. &R. Stösser. 1984. Histochemische Untersuchungen über die jahreszeitliche Einlagerung und Verteilung von Stärke im Lagentrieben beim Appel. Mitt. Klosterneuburg Rebe und Wein, Obstbau und Früchterwertung34: 209–220.Google Scholar
  758. Schneider, A. &K. Schmitz. 1989. Seasonal course of translocation and distribution of14C-labelled photoassimilate in young trees ofLarix decidua Mill. Trees4: 185–191.Google Scholar
  759. Schneider, G. W. 1977. Studies on the mechanism of fruit abscission in apple and peach. J. Amer. Soc. Hort. Sci.102: 179–181.Google Scholar
  760. Schoeneweiss, D. F. 1978. Water stress as a predisposing factor in plant disease. Pages 61–99in T. T. Kozlowski (ed.), Water deficits and plant growth. Vol. V. Academic Press, New York.Google Scholar
  761. Scholefield, P. B., M. Sedgley &D. McE. Alexander. 1985. Carbohydrate cycling in relation to shoot growth, floral initiation and development and yield in the avocado. Scientia Hort.25:99–110.CrossRefGoogle Scholar
  762. Schubert, K. R. 1986. Products of biological nitrogen fixation in higher plants: Synthesis, transport, and metabolism. Ann. Rev. Pl. Physiol.37: 539–574.CrossRefGoogle Scholar
  763. Schultz, J. C. &I. T. Baldwin. 1982. Oak leaf quality declines in response to defoliation by gypsy moth larvae. Science217: 149–151.PubMedCrossRefGoogle Scholar
  764. Schwab, S. M., J. A. Menge &P. B. Tinker. 1991. Regulation of nutrient transfer between host and fungus in vesicular-arbuscular mycorrhizae. New Phytol.117: 387–398.CrossRefGoogle Scholar
  765. Schwintzer, C. R. 1983. Primary productivity and nitrogen, carbon, and biomass distribution in a denseMyrica gale stand. Canad. J. Bot.61: 2943–2948.CrossRefGoogle Scholar
  766. —,A. M. Berry &L. D. Disney. 1982. Seasonal patterns of root nodule growth, endophyte morphology, nitrogenase activity, and shoot development inMyrica gale. Canad. J. Bot.60: 746–757.CrossRefGoogle Scholar
  767. Sena Gomes, A. R. &T. T. Kozlowski. 1980a. Growth responses and adaptation ofFraxinus pennsylvanica seedlings to flooding. Pl. Physiol.66: 267–271.CrossRefGoogle Scholar
  768. ——. 1980b. Responses ofMelaleuca quinquenervia seedlings to flooding. Physiol. Pl.49: 373–377.CrossRefGoogle Scholar
  769. ——. 1980c. Responses ofPinus halepensis seedlings to flooding. Canad. J. For. Res.10:308–311.Google Scholar
  770. Sequeira, L. 1973. Hormone metabolism in diseased plants. Ann. Rev. Pl. Physiol.24: 353–380.CrossRefGoogle Scholar
  771. Sharpies, G. C. &L. Burkhart. 1954. Seasonal changes in carbohydrates in Marsh grapefruit in Arizona. Proc. Amer. Soc. Hort. Sci.63: 74–80.Google Scholar
  772. Sheldrake, A. R. &D. H. Northcote. 1968. Some constituents of xylem sap and their possible relationship to xylem differentiation. J. Exp. Bot.19: 681–689.CrossRefGoogle Scholar
  773. Sheriff, D. W. 1983. Control by indol-3-acetic acid of wood production inPinus radiata D. Don segments in culture. Austral. J. Pl. Physiol.10: 131–135.CrossRefGoogle Scholar
  774. — &D. Whitehead. 1984. Photosynthesis and wood structure inPinus radiata D. Don during dehydration and immediately after rewatering. Pl. Cell Environ.7: 53–62.CrossRefGoogle Scholar
  775. Shigo, A. L. 1984. Compartmentalization: A conceptual framework for understanding how trees grow and defend themselves. Ann. Rev. Phytopathol.22: 189–214.CrossRefGoogle Scholar
  776. —,G. F. Gregory, R. J. Campana, K. R. Dudzik &D. M. Zimel. 1986. Patterns of starch reserves in healthy and diseased American elms. Canad. J. Forest Res.16: 204–210.CrossRefGoogle Scholar
  777. Shiroya, T., G. R. Lister, V. Slankis, G. Krotkov &C. D. Nelson. 1962. Translocation of products of photosynthesis to roots of pine seedlings. Canad. J. Bot.40: 1125–1136.CrossRefGoogle Scholar
  778. —————. 1966. Seasonal change in respiration, photosynthesis, and translocation of the14C labelled products of photosynthesis in youngPinus strobus L. plants. Ann. Bot.30: 81–91.Google Scholar
  779. Singh, K. P. &S. K. Srivastava. 1986. Seasonal variation in the biomass and nonstructural carbohydrate content of fine roots of teak (Tectona grandis L.f.) plantations in a dry tropical region. Tree Physiol.1: 31–36.PubMedGoogle Scholar
  780. Skene, D. S. 1969. The period of time taken by cambial derivatives to grow and differentiate into tracheids inPinus radiata D. Don. Ann. Bot.33: 253–262.Google Scholar
  781. Skene, K. G. M. 1972. Cytokinins in the xylem sap of grape vine canes: Changes in activity during cold storage. Planta104: 89–92.CrossRefGoogle Scholar
  782. Skeffington, R. A. &T. M. Roberts. 1985. The effects of ozone and acid mist on Scots pine saplings. Oecologia65: 201–206.CrossRefGoogle Scholar
  783. Slack, C. R. &J. A. Browse. 1984. Synthesis of storage lipids in developing seeds. Pages 209–244in D. R. Murray (ed.), Seed physiology. Vol. I. Development. Academic Press, Sydney.Google Scholar
  784. Slankis, V. 1958. The role of auxin and other exudates in mycorrhizal symbiosis of forest trees. Pages 427–443in K. V. Thimann (ed.), The physiology of forest trees. Ronald Press, New York.Google Scholar
  785. —. 1971. Formation of ectomycorrhizae of forest trees in relation to light, carbohydrates, and auxins. Pages 151–167in E. Hacskaylo (ed.), Mycorrhizae. U.S. Forest Service, Misc. Publ. 1189. Washington, D.C.Google Scholar
  786. —. 1973. Hormonal relationships in mycorrhizal development. Pages 232–298in G. C. Marks & T. T. Kozlowski (eds.), Ectomycorrhizae. Academic Press, New York.Google Scholar
  787. —,V. C. Runeckles &G. Krotkov. 1964. Metabolites liberated by roots of white pine (Pinus strobus L.) seedlings. Physiol. Pl.17: 301–313.CrossRefGoogle Scholar
  788. Sleigh, P. A., H. A. Collin &K. Hardwick. 1984. Distribution of assimilate during the flush cycle of growth inTheobroma cacao L. Pl. Growth Regul.2: 381–391.CrossRefGoogle Scholar
  789. Smith, D., L. Muscatine &D. Lewis. 1969. Carbohydrate movement from autotrophs to heterotrophs in parasitic and mutualistic symbiosis. Biol. Rev.44: 17–90.PubMedCrossRefGoogle Scholar
  790. Smith, J. L. &E. A. Paul. 1988. Use of anin situ labeling technique for the determination of seasonal14C-distribution in ponderosa pine. Pl. & Soil106: 221–229.CrossRefGoogle Scholar
  791. Smith, M. W., R. W. McNew, P. L. Ager &B. C. Colten. 1986. Seasonal changes in the carbohydrate concentration in pecan shoots and their relationship to flowering. J. Amer. Soc. Hort. Sci.111: 538–561.Google Scholar
  792. Smith, P. F. 1976. Collapse of ‘Murcott’ tangerine trees. J. Amer. Soc. Hort. Sci.101: 23–25.CrossRefGoogle Scholar
  793. Smith, R. F. 1967. The leaf dimorphism ofLiquidambar styraciflua L. Amer. Midl. Nat.77: 42–50.CrossRefGoogle Scholar
  794. Smith, S. E. &V. Gianinazzi-Pearson. 1988. Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Ann. Rev. Pl. Physiol. Mol. Biol.39: 221–244.CrossRefGoogle Scholar
  795. Smith, W. H. 1969. Release of organic materials from the roots of tree seedlings. Forest Sci.15: 138–143.Google Scholar
  796. —. 1976. Character and significance of forest tree root exudates. Ecology57: 324–331.CrossRefGoogle Scholar
  797. —. 1981. Air pollution and forests. Springer-Verlag, New York.Google Scholar
  798. Snelgar, W. P., T. G. Thorp &K. J. Patterson. 1986. Optimal leaf: fruit ratios for fruit growth in kiwifruit. Acta Hort.175: 115–120.Google Scholar
  799. Snellgrove, R. C., W. E. Splittstoesser, D. P. Stribley &P. B. Tinker. 1982. The carbon distribution and the demand of the fungal symbiont in leek plants with vesicular-arbuscular mycorrhizae. New Phytol.92: 75–81.CrossRefGoogle Scholar
  800. Splittstoesser, W. E. &M. M. Meyer, Jr. 1971. Evergreen foliage contributions to the spring growth ofTaxus. Physiol. Pl.24: 528–533.CrossRefGoogle Scholar
  801. Sprugel, D. &U. Benecke. 1990. Woody tissue respiration and photosynthesis. Pages 329–355in J. P. Lassoie & T. M. Hinkley (eds.), Methods and approaches in ecophysiology. CRC Press, Cleveland.Google Scholar
  802. Sprugel, D. G. 1976. Dynamic structure of wave-regeneratedAbies balsamea forests in the north-eastern United States. J. Ecol.64: 889–910.CrossRefGoogle Scholar
  803. —. 1990. Components of woody tissue respiration in youngAbies amabilis (Dougl.) Forbes trees. Trees4: 88–98.CrossRefGoogle Scholar
  804. Squillace, A. E. 1966. Geographic variation in slash pine. Forest Sci. Monogr. 10.Google Scholar
  805. -& R. R. Silen. 1962. Racial variation in ponderosa pine. Forest Sci. Monogr. 2.Google Scholar
  806. Stanislawek, S. D., P. D. Long &I. K. Davis. 1987. Sugar content of xylem sap and susceptibility of willow toChondrostereum purpureus. N.Z. J. Bot.25: 263–269.Google Scholar
  807. Stassen, P. J. C. 1980. Reserves in deciduous fruit trees and implications to the deciduous fruit grower. Deciduous Fruit Grower30: 467–472.Google Scholar
  808. —. 1984. Seisoenveranderinge in die koolhidraatinghoud van jong appelbome. S. African J. Pl. & Soil1: 92–95.Google Scholar
  809. —,D. K. Strydom &H. W. Stindt. 1981. Seasonal changes in carbohydrates of young ‘Kakamas’ peach trees. Agroplantae13: 47–53.Google Scholar
  810. —,O. Bergh, C. W. J. Bester &M. M. Du Preez. 1982. Reserves in full-bearing peach trees. Carbohydrate reserves and their implications to orchard practices. Deciduous Fruit Grower32: 424–430.Google Scholar
  811. Steinbeck, K. &R. G. McAlpine. 1966. Inter- and intra-specific differences in the root respiration rates of four hardwood species. Forest Sci.12: 473–476.Google Scholar
  812. Steingraber, D. A. 1982. Heterophylly and neoformation of leaves in sugar maple (Acer saccharum). Amer. J. Bot.69: 1277–1282.CrossRefGoogle Scholar
  813. Stephenson, A. G. 1980. Fruit set, herbivory, and the fruiting strategy ofCatalpa speciosa (Bignoniaceae). Ecology61: 57–64.CrossRefGoogle Scholar
  814. Stolzy, L. H. &R. E. Sojka. 1984. Effects of flooding on plant disease. Pages 222–264in T. T. Kozlowski (ed.), Flooding and plant growth. Academic Press, New York.Google Scholar
  815. Stone, E. C. &J. L. Jenkinson. 1970. Influence of soil water on root growth capacity of ponderosa pine transplants. Forest Sci.16: 230–239.Google Scholar
  816. Strain, B. R. &P. L. Johnson. 1963. Corticular photosynthesis and growth inPopulus tremuloides. Ecology44: 581–584.CrossRefGoogle Scholar
  817. Stribley, D. P., P. G. Tinker &J. H. Rayner. 1980. Relation of internal phosphorus concentration and plant weight in plants infected by vesicular-arbuscular mycorrhizae. New Phytol.86:261–266.CrossRefGoogle Scholar
  818. Suryanarayana, V. &V. N. M. Rao. 1976. Studies on certain endogenous constituents of shoots in relation to flowering mango. I. Changes in sugars and starch. Orissa J. Hort.4: 1–12.Google Scholar
  819. Sutton, W. D. 1983. Nodule development and senescence. Pages 144–212in W. J. Broughton (ed.), Nitrogen fixation. Clarendon, Oxford.Google Scholar
  820. Suzuki, T. &K. Kohno. 1983. Changes in nitrogen levels and free amino acids in rooting cuttings of mulberry (Morus alba). Physiol. Pl.59: 455–460.CrossRefGoogle Scholar
  821. Szaniawski, R. K. 1981. Growth and maintenance respiration of shoot and roots of Scots pine seedlings. Zeit. Pflanzenphysiol.101: 391–398.Google Scholar
  822. Taber, R. A. &W. A. Taber. 1984. Evidence for ectomycorrhizal fungus-mediated nutrient transfer betweenPinus andTradescantia. Forest. Sci.30: 892–896.Google Scholar
  823. Takeda, F., K. Ryugo &J. C. Crane. 1980. Translocation and distribution of14C photosynthates in bearing and non-bearing pistachio branches. J. Amer. Hort. Sci.105: 642–644.Google Scholar
  824. Tang, Z. C. &T. T. Kozlowski. 1982a. Some physiological and morphological responses ofQuercus macrocarpa seedlings to flooding. Canad. J. Forest Res.10: 308–311.Google Scholar
  825. ——. 1982b. Physiological, morphological, and growth responses ofPlatanus occidentalis seedlings to flooding. Pl. & Soil66: 243–255.CrossRefGoogle Scholar
  826. ——. 1982c. Some physiological and growth responses ofBetula papyrifera seedlings to flooding. Physiol. Pl.55: 415–420.CrossRefGoogle Scholar
  827. ——. 1983. Responses ofPinus banksiana andP. resinosa seedlings to flooding. Canad. J. Forest Res.13: 633–639.CrossRefGoogle Scholar
  828. ——. 1984a. Water relations, ethylene production, and morphological adaptations ofFraxinus pennsylvanica seedlings to flooding. Pl. & Soil77: 183–192.CrossRefGoogle Scholar
  829. ——. 1984b. Ethylene production and morphological adaptation of woody plants to flooding. Canad. J. Bot.62: 1659–1664.CrossRefGoogle Scholar
  830. Taylor, F. H. 1956. Variation in sugar content of maple sap. Vermont Agr. Expt. Sta. Bull. 587.Google Scholar
  831. Tepper, H. B. 1963. Leader growth of young pitch and shortleaf pines. Forest Sci.9: 344–353.Google Scholar
  832. Teskey, R. O. &T. M. Hinckley. 1981. Influence of temperature and water potential on root growth of white oak. Physiol. Pl.2: 363–369.CrossRefGoogle Scholar
  833. Thom, L. A. 1951. A study of the respiration of hardy pear buds in relation to rest period. Ph.D. Dissertation. University of California, Berkeley.Google Scholar
  834. Thomas, P., P. Paul, N. Nagaraja &V. B. Dalai. 1983. Physicochemical and respiratory changes in Dwarf Cavendish variety of bananas during growth and maturation. J. Food Sci. Tech., India20: 51–56.Google Scholar
  835. Thompson, R. G., D. S. Fensom, R. R. Anderson, R. Drouin &W. Leiper. 1979. Translocation of14C from leaves ofHelianthus, Heracleum, Nymphoides, Ipomoea, Tropaeolum, Zea, Fraxinus, Ulmus, Picea andPinus: Comparative shapes and some fine structure profiles. Canad. J. Bot.57: 845–863.CrossRefGoogle Scholar
  836. Thorne, J. H. &R. T. Giaquinta. 1984. Pathways and mechanisms associated with carbohydrate translocation in plants. Pages 75–96in D. H. Lewis (ed.), Storage carbohydrates in vascular plants. Cambridge University Press, Cambridge.Google Scholar
  837. — &R. M. Rainbird. 1983. An in vivo technique for the study of phloem unloading in seed coats of developing soybean seeds. Pl. Physiol.72: 268–271.CrossRefGoogle Scholar
  838. Timell, T. E. 1986. Compression in wood in gymnosperms. Vols. I, II. Springer-Verlag, Berlin.Google Scholar
  839. Tjepkema, J. D. 1985. Utilization of photosynthate for nitrogen fixation in seedlings ofMyrica gale andAlnus rubra. Pages 183–192in P. W. Ludden & V. E. Burns (eds.), Nitrogen fixation and CO2 metabolism. Elsevier, New York.Google Scholar
  840. —,C. R. Schwintzer &D. R. Benson. 1986. Physiology of actinorhizal nodules. Ann. Rev. Pl. Physiol.37: 209–232.CrossRefGoogle Scholar
  841. Todd, G. W., R. C. Bean &B. Propst. 1961. Photosynthesis and respiration in developing fruits. II. Comparative rates at various stages of development. Pl. Physiol.36: 69–73.CrossRefGoogle Scholar
  842. Torrey, J. G., D. E. Fosket &P. K. Hepler. 1971. Xylem formation: A paradigm of cytodifferentiation in higher plants. Amer. Scientist59: 338–352.Google Scholar
  843. Toumadje, A., J. C. Crane &A. A. Kader. 1980. Respiration and ethylene production of the developing ‘Kerman’ pistachio fruit. HortScience15: 725–727.Google Scholar
  844. Tripathi, R. S. &M. L. Khan. 1990. Effects of seed weight and microsite characteristics on germination and seedling fitness in two species ofQuercus in a subtropical wet hill forest. Oikos57: 289–296.CrossRefGoogle Scholar
  845. Tripepi, R. P. &C. A. Mitchell. 1984. Stem hypoxia and root respiration of flooded maple and birch seedlings. Physiol. Pl.60: 567–571.CrossRefGoogle Scholar
  846. Tschaplinski, T. J. &T. J. Blake. 1989. Water-stress tolerance and late-season organic solute accumulation in hybrid poplar. Canad. J. Bot.67: 1681–1688.CrossRefGoogle Scholar
  847. Tselniker, Y. L., A. G. Cherrverikov &T. A. Andreeva. 1983. Effects of irradiance on photosynthesis, ribulose-1,5-bisphosphate carboxylase activity and photosynthetic unit inPopulus tremula L. Photosynthetica17: 550–556.Google Scholar
  848. Tsukahara, H. &T. T. Kozlowski. 1985. Importance of adventitious roots to growth of floodedPlatanus occidentalis seedlings. Pl. & Soil88: 123–132.CrossRefGoogle Scholar
  849. Tubbs, C. H. 1973. Allelopathic relationships between yellow birch and sugar maple seedlings. Forest Sci.19: 139–145.Google Scholar
  850. -. 1976. Effect of sugar maple root exudate on seedlings of northern conifer species. U.S. Forest Service Res. Note NC-213.Google Scholar
  851. Tukey, H. B. 1935. Growth of the embryo, seed, and pericarp of the sour cherry (Prunus cerasus) in relation to season of fruit ripening. Proc. Amer. Soc. Hort. Sci.31: 125–144.Google Scholar
  852. —. 1936. Development of cherry and peach fruits as affected by destruction of the embryo. Bot. Gaz.98: 1–21.CrossRefGoogle Scholar
  853. — &J. O. Young. 1942. Gross morphology and histology of developing fruit of the apple. Bot. Gaz.104: 3–25.CrossRefGoogle Scholar
  854. Tukey, H. B., Jr. 1966. Leaching of metabolites from above-ground plant parts and its implications. Bull. Torrey Bot. Club93: 385–401.CrossRefGoogle Scholar
  855. —. 1970a. The leaching of substances from plants. Ann. Rev. Pl. Physiol.21: 305–324.CrossRefGoogle Scholar
  856. —. 1970b. Leaching of metabolites from foliage and its implication in the tropical rain forest. Pages H155-H160in H. T. Odum (ed.), A tropical rain forest. U.S. Atomic Energy Commission, Washington, D.C.Google Scholar
  857. —. 1971. Leaching of substances from plants. Pages 67–80in T. F. Preece & L. H. Dickinson (eds.), Ecology of leaf surface microorganisms. Academic Press, London.Google Scholar
  858. —. 1980. Some effects of rain and mist on plants, with implications for acid precipitation. Pages 141–150in T. C. Hutchinson & M. Havas (eds.), Effects of acid precipitation on terrestrial ecosystems. Plenum Press, New York.Google Scholar
  859. Tuomi, J., P. Niemala &R. Mannila. 1982. Resource allocation on dwarf shoots of birch (Betula pendula): Reproduction and leaf growth. New Phytol.91: 483–487.CrossRefGoogle Scholar
  860. Turgeon, R. 1989. The sink-source transition in leaves. Ann. Rev. Pl. Physiol. Mol. Biol.40: 119–138.CrossRefGoogle Scholar
  861. — &D. U. Beebe. 1991. The evidence for symplastic phloem loading. Pl. Physiol.96: 349–354.CrossRefGoogle Scholar
  862. Turunen, M. &S. Huttunen. 1990. A review of the response of epicuticular wax of conifer needles to air pollution. J. Environ. Qual.19: 35–45.CrossRefGoogle Scholar
  863. Uren, N. C. &H. M. Reisenauer. 1988. The role of root exudates in nutrient acquisition. Pages 79–114in B. Tinker & A. Läuchli (eds.), Advances in plant nutrition. Vol. 3. Praeger, New York.Google Scholar
  864. Ursino, D. J. 1973. The translocation of14C-photosynthate in single tree progeny of white spruce (Picea glauca [Moench] Voss). Canad. J. Forest Res.3: 315–318.CrossRefGoogle Scholar
  865. —,C. D. Nelson &G. Krotkov. 1968. Seasonal changes in the distribution of photoassimilated14C in young pine plants. Pl. Physiol.43: 845–852.CrossRefGoogle Scholar
  866. — &J. Paul. 1973. The long-term fate and distribution of14C photoassimilated by young white pines in late summer. Canad. J. Bot.51: 683–686.CrossRefGoogle Scholar
  867. Van Bel, A. J. E. 1990. Xylem-phloem exchange via the rays: The undervalued route of transport. J. Exp. Bot.41: 631–644.CrossRefGoogle Scholar
  868. Van den Driessche, R. 1978. Seasonal changes in root growth capacity and carbohydrates in red pine and white spruce nursery seedlings. Pages 6–19in A. Riedacker & J. Gagnaire-Michard (eds.), Proc. IUFRO Symposium on Root Physiology and Symbiosis.Google Scholar
  869. —. 1979. Respiration rate of cold-stored nursery stock. Canad. J. Forest Res.9: 15–18.CrossRefGoogle Scholar
  870. Van Schaik, C. P. 1986. Phenological changes in a Sumatran rain forest. J. Trop. Ecol.2: 327–347.CrossRefGoogle Scholar
  871. Vapaavouri, E. M. &N. K. S. Valanne. 1982. Activities of ribulose-l,5-bisphosphate carboxylase-oxygenase inSalix sp. during water stress. Photosynthetica16: 1–16.Google Scholar
  872. Villiers, T. A. 1972. Seed dormancy. Pages 219–281in T. T. Kozlowski (ed.), Seed biology. Vol. III. Academic Press, New York.Google Scholar
  873. Vité, J. P. 1961. The influence of water supply on oleoresin exudation pressure and resistance to bark beetle attack inPinus ponderosa. Contr. Boyce Thompson Inst.21: 37–66.Google Scholar
  874. Vogelmann, T. C., P. R. Larson &R. E. Dickson. 1982. Translocation pathways in the petioles and stem between source and sink leaves ofPopulus deltoides Bartr. ex Marsh. Planta156: 345–358.CrossRefGoogle Scholar
  875. Vogt, K. A., R. L. Edmonds, C. C. Grier &S. R. Piper. 1981. Seasonal changes in mycorrhizal and fibrous-textured root biomass in 23- and 180-year-old Pacific silver fir stands in western Washington. Canad. J. Forest Res.10: 523–529.CrossRefGoogle Scholar
  876. —,C. C. Grier, C. E. Meier &R. L. Edmonds. 1982. Mycorrhizal role in net primary production and nutrient cycling inAbies amabilis ecosystems in western Washington. Ecology63: 370–380.CrossRefGoogle Scholar
  877. Vu, J. C. V. &G. Yelenosky. 1989. Non-structural carbohydrate concentrations in leaves of ‘Valencia’ orange subjected to water deficits. Environ. Exp. Bot.29: 149–154.CrossRefGoogle Scholar
  878. ——, &M. G. Bausher. 1985. Photosynthetic activity in the flower buds of ‘Valencia’ orange (Citrus sinensis [L.] Osbeck). Pl. Physiol.78: 420–423.CrossRefGoogle Scholar
  879. Waisel, Y. &A. Fahn. 1965. The effect of environment on wood formation and cambial activity inRobinia pseudoacacia L. New Phytol.64: 436–442.CrossRefGoogle Scholar
  880. Wakeley, P. C. &J. Marrero. 1958. Five-year intercept as site index in southern pine plantations. J. Forestry56: 332–336.Google Scholar
  881. Walters, J. &J. Soos. 1963. Shoot growth patterns of some British Columbia conifers. Forest Sci.9: 73–85.Google Scholar
  882. Wardlaw, I. F. 1980. Translocation and source-sink relationships. Pages 297–339in P. S. Carlson (ed.), The biology of crop productivity. Academic Press, New York.Google Scholar
  883. —. 1990. The control of carbon partitioning in plants. New Phytol.116: 341–381.CrossRefGoogle Scholar
  884. Wardrop, A. B. 1981. Lignification and xylogenesis. Pages 115–152in J. R. Barnett (ed.), Xylem cell development. Castle House, Tunbridge Wells, England.Google Scholar
  885. Wareing, P. F. 1958. The physiology of cambial activity. J. Inst. Wood Sci.1: 34–42.Google Scholar
  886. — &P. F. Saunders. 1971. Hormones and dormancy. Ann. Rev. Pl. Physiol.22: 261–288.CrossRefGoogle Scholar
  887. Wargo, P. M. 1971. Seasonal changes in carbohydrate levels in roots of sugar maple. USDA Forest Service Res. Paper NE-213.Google Scholar
  888. —. 1976. Variation of starch content among and within roots of red and white oak trees. Forest Sci. 22:468–471.Google Scholar
  889. Waring, R. H. 1987. Characteristics of trees predisposed to die. BioScience37: 569–574.CrossRefGoogle Scholar
  890. —,K. Newman &J. Bell. 1981. Efficiency of tree crowns and stemwood production at different canopy leaf densities. Forestry54: 129–137.CrossRefGoogle Scholar
  891. Watson, G. W. &T. D. Sydnor. 1987. The effect of root pruning on the root system of nursery trees. J. Arboric.13: 126–130.Google Scholar
  892. Watson, R. I. &J. J. Landsberg. 1979. The photosynthetic characteristics of apple leaves (cv. Golden Delicious) during their early growth. Pages 39–48in R. Marcelle, H. Clijsters, and N. van Poucke (eds.), Photosynthesis and plant development. Junk, The Hague.Google Scholar
  893. Watts, J. E. &O. T. de Villiers. 1980. Seasonal changes in the sorbitol, sugar, and starch content of Packham’s Triumph pear trees. South African J. Sci.76: 276–277.Google Scholar
  894. Watzig, H. &B. Fischer. 1987. Untersuchungen über den Jahrringausfall an Fichtenbeständen. Wiss. Zeit, der Techn. Universität Dresden36: 273–275.Google Scholar
  895. Webb, D. P. 1976. Root growth inAcer saccharum Marsh, seedlings: Effects of light intensity and photoperiod on root elongation rates. Bot. Gaz.137: 211–217.CrossRefGoogle Scholar
  896. Webb, W. L. 1977. Seasonal allocation of photoassimilated carbon in Douglas-fir seedlings. Pl. Physiol.60: 320–322.CrossRefGoogle Scholar
  897. Wenger, K. F. 1953. The sprouting of sweetgum in relation to season of cutting and carbohydrate content. Pl. Physiol.28: 35–49.CrossRefGoogle Scholar
  898. Werk, K. S.&J. R. Ehleringer. 1983. Photosynthesis by flowers inEncelia farinosa andEncelia californica (Asteraceae). Oecologia57: 311–315.CrossRefGoogle Scholar
  899. Werner, R. A. 1979. Influence of host foliage on development, survival, fecundity, and oviposition of the spear-marked black moth,Rheumaptera hastata (Lépidoptère: Geometridae). Canad. Entomol.111: 317–322.CrossRefGoogle Scholar
  900. Wheeler, C. T., S. H. Watts &J. R. Hillman. 1983. Changes in carbohydrates and nitrogenous compounds in the root nodules ofAlnus glutinosa in relation to dormancy. New Phytol.95: 209–218.CrossRefGoogle Scholar
  901. White, T. L., K. K. Ching &J. Walters. 1979. Effects of provenance, years, and planting location on bud burst of Douglas-fir. Forest Sci.25: 161–167.Google Scholar
  902. Whitmore, T. 1966. The social status ofAgathis in a rain forest in Melanesia. J. Ecol.54: 285–301.CrossRefGoogle Scholar
  903. —. 1984. Tropical rain forests of the far east. Oxford Univ. Press, Oxford.Google Scholar
  904. Wildman, H. G. &D. Parkinson. 1981. Seasonal changes in water-soluble carbohydrates ofPopulus tremuloides leaves. Canad. J. Bot.59: 862–869.CrossRefGoogle Scholar
  905. Willenbrink, J. &R. Kollmann. 1966. Über den Assimilattransport im Phloem vomMetasequoia. Zeit. Pflanzenphysiol.55: 42–53.Google Scholar
  906. Williams, K., G. W. Koch &H. A. Mooney. 1985. The carbon balance of flowers ofDiplacus aurantiacus (Scrophulariaceae). Oecologia66: 530–535.CrossRefGoogle Scholar
  907. Williams, M. W. 1979. Chemical thinning of apples. Hort Rev.1: 270–300.Google Scholar
  908. Williams, R. W. 1975. Out-of-roundness in Douglas-fir stems. Forest Sci.21: 365–370.Google Scholar
  909. Williamson, G. B. 1975. Pattern and seral composition in an old-growth beech-maple forest. Ecology56: 727–731.CrossRefGoogle Scholar
  910. Wilson, B. F. 1964. Structure and growth of woody roots ofAcer rubrum L. Harvard Forest Paper No. 11.Google Scholar
  911. —. 1968. Effect of girdling on cambial activity in white pine. Canad. J. Bot.46: 141–146.CrossRefGoogle Scholar
  912. —. 1989. Shoot production in Douglas-fir branches. Canad. J. Forest Res.19: 802–805.CrossRefGoogle Scholar
  913. Winget, C. H. &T. T. Kozlowski. 1965. Seasonal basal growth as an expression of competition in northern hardwoods. Ecology46: 786–793.CrossRefGoogle Scholar
  914. Wodzicki, T. J. 1965. Annual ring of wood formation and seasonal changes of natural growth inhibitors in larch. Acta Soc. Bot. Poloniae34: 117–151.Google Scholar
  915. — &A. B. Wodzicki. 1980. Seasonal abscisic acid accumulation in stem cambial region ofPinus silvestris and its contribution to the hypothesis of a late-wood control system in conifers. Physiol. Pl.48: 443–447.CrossRefGoogle Scholar
  916. Wolff, J. O. 1980. The role of habitat patchiness in the population dynamics of snowshoe hares. Ecol. Monogr.50: 111–130.CrossRefGoogle Scholar
  917. Wolswinkel, P. 1985. Phloem unloading and turgor-sensitive transport: Factors involved in sink control of assimilate partitioning. Physiol. Pl.65: 331–339.CrossRefGoogle Scholar
  918. Wood, B. W. 1986. Cold injury susceptibility of pecan as influenced by cultivar, carbohydrates, and crop load. HortScience21: 285–286.Google Scholar
  919. —. 1987. Carbohydrate composition of vascular system exudates and characterization of their uptake by leaf tissue of pecan. J. Amer. Soc. Hort. Sci.112: 346–351.Google Scholar
  920. —. 1989. Pecan production responds to root carbohydrates and rootstock. J. Amer. Soc. Hort. Sci.114: 223–228.Google Scholar
  921. — &J. L. McMeans. 1981. Carbohydrate changes in various organs of bearing and nonbearing pecan trees. J. Amer. Soc. Hort. Sci.106: 758–761.Google Scholar
  922. Wood, T. &F. H. Bormann. 1975. Increases in foliar leaching caused by acidification of an artificial mist. Ambio4: 169–171.Google Scholar
  923. Woodwell, G. M. &D. B. Botkin. 1970. Primary production in terrestrial ecosystems by gas exchange techniques. Pages 281–302in D. E. Reichle (ed.), Analysis of temperate forest ecosystems. Ecological studies. Vol. I. Springer-Verlag, Berlin and New York.Google Scholar
  924. Worbes, M. 1985. Structural and other adaptations to long-term flooding by trees in Central Amazonia. Amazoniana9: 459–484.Google Scholar
  925. Worley, R. E. 1979. Fall defoliation date and seasonal carbohydrate concentration of pecan wood tissue. J. Amer. Soc. Hort. Sci.104: 195–199.Google Scholar
  926. Wormer, T. M. &E. H. Ebagole. 1965. Visual scoring of starch inCoffea arabica L. II. Starch in bearing and non-bearing wood. Exp. Agric.1: 41–53.CrossRefGoogle Scholar
  927. Wright, J. W. 1976. Introduction to forest genetics. Academic Press, New York.Google Scholar
  928. Wright, L. C., A. A. Berryman &S. Gurusiddaiah. 1979. Host resistance to the fir engraver beetle,Scolytus ventralis (Coleoptera: Scolytidae). 4. Effect of defoliation on wound monoterpene and inner bark carbohydrate concentrations. Canad. Entomol.111: 1255–1262.CrossRefGoogle Scholar
  929. Wright, R. D. &L. H. Aung. 1975. Carbohydrates in twoRhododendron cultivars. J. Amer. Soc. Hort. Sci.100: 527–529.Google Scholar
  930. Wutscher, H. K. &D. Dube. 1977. Performance of young nucellar grapefruit on 20 rootstocks. J. Amer. Soc. Hort. Sci.102: 267–270.Google Scholar
  931. Wyman, D. 1950. Order of bloom. Arnoldia10: 41–56.Google Scholar
  932. Yamamoto, F., G. Angeles &T. T. Kozlowski. 1987. Effect of ethrel on stem anatomy ofUlmus americana seedlings. IAWA Bull. N.S.8: 3–9.Google Scholar
  933. — &T. T. Kozlowski. 1987a. Effects of flooding, tilting of stems, and ethrel application on growth, stem anatomy, and ethylene production ofPinus densiflora seedlings. J. Exp. Bot.38:293–310.CrossRefGoogle Scholar
  934. ——. 1987b. Effects of flooding, tilting of stems and ethrel application on growth, stem anatomy, and ethylene production ofAcer platanoides seedlings. Scand. J. Forest Res.2: 141–156.CrossRefGoogle Scholar
  935. ——. 1987c. Effects of flooding of soil and application of NPA and NAA to stems on growth and stem anatomy ofAcer negundo seedlings. Environ. Exp. Bot.27: 329–340.CrossRefGoogle Scholar
  936. Yamashita, T. 1990. Variations in amounts of carbohydrates, amino acids, and adenine nucleotides in mulberry tree (Morus alba L.) stems during transitional phases of growth. Tree Physiol.6: 191–200.PubMedGoogle Scholar
  937. Yelenosky, G. &C. L. Guy. 1977. Carbohydrate accumulation in leaves and stems of ‘Valencia’ orange at progressively colder temperatures. Bot. Gaz.138: 13–17.CrossRefGoogle Scholar
  938. Ying, C. C., C. Thompson &L. Herring. 1989. Geographic variation, nursery effects, and early selection in lodgepole pine. Canad. J. Forest Res.19: 832–841.CrossRefGoogle Scholar
  939. Zaerr, J. B. &D. P. Lavender. 1974. The effect of certain cultural and environmental treatments upon the growth of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) seedlings. Pages 27–32in 2nd Int. Symp. on Ecology and Physiology of Root Growth. Academie-Verlag, Berlin.Google Scholar
  940. Zahner, R. 1968. Water deficits and growth of trees. Pages 191–254in T. T. Kozlowski (ed.), Water deficits and plant growth. Vol. 2. Academic Press, New York.Google Scholar
  941. — &F. W. Whitmore. 1967. Early growth of radically thinned loblolly pine. J. Forestry58: 628–634.Google Scholar
  942. Zak, B. 1964. Role of mycorrhizae in root disease. Ann. Rev. Phytopathol.2: 377–392.CrossRefGoogle Scholar
  943. Zakrzewski, J. 1983. Hormonal control of cambial activity and vessel differentiation inQuercus robur. Physiol. Pl.57: 537–542.CrossRefGoogle Scholar
  944. Zasada, J. C. &R. Zahner. 1969. Vessel element development in the earlywood of red oak (Quercus rubra). Canad. J. Bot.47: 1965–1971.CrossRefGoogle Scholar
  945. Ziegler, H. 1965. Use of isotopes in the study of translocation in rays. Pages 361–370in Isotopes and radiation in soil—plant nutrition studies. International Atomic Energy Agency, Vienna.Google Scholar
  946. Ziemer, R. R. 1971. Translocation of14C in ponderosa pine seedlings. Canad. J. Bot.49: 167–172.CrossRefGoogle Scholar
  947. Zimmermann, M. H. 1958. Translocation of organic substances in the phloem of trees. Pages 381–400in K. V. Thimann (ed.), The physiology of forest trees. Ronald Press, New York.Google Scholar

Copyright information

© The New York Botanical Garden 1992

Authors and Affiliations

  • T. T. Kozlowski
    • 1
  1. 1.Environmental Studies Program and Department of Biological SciencesUniversity of CaliforniaSanta Barbara

Personalised recommendations