The Botanical Review

, Volume 55, Issue 2, pp 77–105 | Cite as

Algae of terrestrial habitats

  • Lucien Hoffmann
Article

Abstract

The paper summarizes the present knowledge on the most important terrestrial habitats for algae and deals with soil, lithophytic, cave, snow and ice, epiphytic, and epizooic algae. For each habitat the physical parameters of the environment, the characteristic vegetation, and the functioning of the ecosystem are detailed.

Résumé

L’article présente une revue de l’état actuel de nos connaissances sur les habitats terrestres les plus importants pour les algues et traite d’algues du sol, des rochers, des grottes, de la neige et de la glace, d’algues épiphytiques et épizoïques. Pour chaque habitat les paramètres physiques de l’environnement, la végétation caractéristique et le fonctionnement de l’écosystème sont détaillés.

Zusammenfassung

Der Artikel beschreibt den aktuellen Stand unserer Kenntnisse der wichtigsten terrestrischen Standorte der Algen und behandelt Algen die im Boden, auf Felsen, in Höhlen, auf Schnee und Eis, auf Pflanzen, und auf Tieren vorkommen. Für jeden Standort werden die physikalischen Parametern, die charakteristische Vegetation und das Funktionieren des Ökosystems geschildert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abdelahad, N. &G. Bazzichelli. 1988.Geitleria calcarea Friedmann, Cyanophycée ca-vernicole nouvelle pour l’Italie. Nova Hedwigia46: 265–270.Google Scholar
  2. Akiyama, M. 1971. On some brazilian species of Trentepohliaceae. Mem. Fac. Educ., Shimane University5: 81–95.Google Scholar
  3. Anagnostidis, K., A. Economou-Amilli &M. Roussomoustakaki. 1983. Epilithic and chas-molithic microflora (Cyanophyta, Bacillariophyta) from marbles of the Parthenon (Acropolis—Athens, Greece). Nova Hedwigia38: 227–287.Google Scholar
  4. Aristovskaya, T. V., A. Y. Daragan, L. V. Zykina &R. S. Kutuzova. 1969. Microbiological factors in the movement of some mineral elements in the soil. Soviet Soil Sci.5: 538–546.Google Scholar
  5. Bachmann, E. 1915. Kalklösende Algen. Ber. Deutsch. Bot. Ges.33: 45–57, Taf.III.Google Scholar
  6. Barkman, J. J. 1958. Phytosociology and ecology of cryptogamic epiphytes. Koninklijke Van Gorcum & Comp. N.V. G. A. Hak & Dr. H. J. Prakke. Assen, The Netherlands. 628 pp., 16 ph.Google Scholar
  7. Beger, H. 1927. Beiträge zur Ökologie und Soziologie der luftlebigen (atmophytischen) Kieselalgen. Ber. Deutsch. Bot. Ges.45: 385–407.Google Scholar
  8. Behre, K. 1953. Cyanophyceen überrieselter Felsen, von Herrn Vaillant vornehmlich in Algerien gesammelt. Bull. Soc. Hist. Nat. Afrique N.44: 209–227.Google Scholar
  9. Bell, R. A., P. V. Athey &M. R. Sommerfeld. 1986. Cryptoendolithic algal communities of the Colorado Plateau. J. Phycol.22: 429–435.Google Scholar
  10. — &M. R. Sommerfeld. 1987. Algal biomass and primary production within a temperate zone sandstone. Amer. J. Bot.74: 294–297.Google Scholar
  11. Bentley, B. L. 1987. Nitrogen fixation by epiphylls in a tropical rainforest. Ann. Missouri Bot. Gard.74: 234–241.Google Scholar
  12. Berner, T. &M. Evenari. 1978. The influence of temperature and light penetration on the abundance of the hypolithic algae in the Negev Desert of Israel. Oekologia33: 255–260.Google Scholar
  13. Bold, H. C. 1970. Some aspects of the taxonomy of soil algae. Ann. New York Acad. Sci.175: 601–616.Google Scholar
  14. Bolyshev, N. N. 1968. “Vodorosli i ikh rol v obrazovanii pochv.” (Algae and their role in the formation of soils.) Moscow University Press, Moscow. 83 pp.Google Scholar
  15. Booth, W. E. 1941. Algae as pioneers in plant succession and their importance in erosion control. Ecology22: 38–46.Google Scholar
  16. —. 1946. The thermal death point of certain soil inhabiting algae. Proc. Montana Acad. Sci.5/6: 21–23.Google Scholar
  17. Borzi, A. 1917. Studi sulle Mixoficee. Nuovo Giorn. Bot. Ital.24: 100–112.Google Scholar
  18. Bourrelly, P. 1954.Cyanoderma, algue des poils de Paresseux. Rev. Algol. N.S.1: 122–123.Google Scholar
  19. —. 1962.Trichophilus, algue verte des poils de Paresseux. Revista Biol.3: 201–204.Google Scholar
  20. — &P. Dupuy. 1973. Quelques stations françaises deGeitleria calcarea, Cyanophycée cavernicole. Schweiz. Z. Hydrol.35: 136–140.Google Scholar
  21. Brand, F. &S. Stockmayer. 1925. Analyse der aerophilen Grünalgenanflüge, insbesondere der proto-pleurococcoiden Formen. Arch. Protistenk.52: 265–355.Google Scholar
  22. Bristol, B. M. 1919. On the retention of vitality by algae from old stored soils. New Phytol.18: 92–107.Google Scholar
  23. Broady, P. A. 1981a. The ecology of chasmolithic algae at coastal locations of Antarctica. Phycologia20: 259–272.Google Scholar
  24. —. 1981b. Ecological and taxonomic observations on subaerial epilithic algae from Princess Elizabeth Land and MacRobertson Land, Antarctica. Brit. Phycol. J.16: 257–266.Google Scholar
  25. —. 1981c. The ecology of sublithic terrestrial algae at the Vestfold Hills, Antarctica. Brit. Phycol. J.16: 231–240.Google Scholar
  26. Brunei, J. 1959. LeTrentepohlia arborum dans le Québec. Naturaliste Canad.86: 193–198.Google Scholar
  27. Büdel, B. 1987. Zur Biologie und Systematik der FlechtengattungenHeppia undPeltula im südlichen Afrika. Biblioth. Lichenologica23: 1–105.Google Scholar
  28. Cameron, R. E. 1963. Algae of southern Arizona. Part I. Introduction—Blue-green algae. Rev. Algol. N.S.6: 282–318.Google Scholar
  29. — &G. B. Blank. 1966. Soil studies. Desert microflora. XI. Desert soil algae survival at extremely low temperatures. J.P.L. Space Programs Summary 37–37,IV: 174–181.Google Scholar
  30. Cedercreutz, C. 1941. Beitrag zur Kenntnis der Felsenalgen in Finnland. Memoranda Soc. Fauna Fl. Fenn.17: 105–121.Google Scholar
  31. —. 1955. Vergleich zwischen der Algenvegetation an den Felsen Süd- und Mittelfinn-lands und an den Felswänden in der alpinen Region Lapplands. Acta Soc. Fauna Fl. Fenn.72: 1–21.Google Scholar
  32. Claus, G. 1955. Algae and their mode of life in the Baradla Cave at Aggtelek. Acta Bot. Acad. Sci. Hung.2: 1–26.Google Scholar
  33. —. 1960. Re-evaluation of the genusGomontiella. Rev. Algol. N.S.5: 103–111.Google Scholar
  34. —. 1962a. Data on the ecology of the algae of Peace Cave in Hungary. Nova Hedwigia4: 55–80, pl. 34–36.Google Scholar
  35. —. 1962b. Beiträge zur Kenntnis der Algenflora der Abaltigeter Höhle. Hydrobiologia19: 192–222.Google Scholar
  36. —. 1964. Algae and their mode of life in the Baradla Cave at Aggtelek II. Int. J. Speleol.1: 13–17, pls. I, II.Google Scholar
  37. Couté, A. 1982. Ultrastructure d’une cyanophycée aérienne calcifiée cavernicole:Geitleria calcarea Friedmann. Hydrobiologia97: 255–274.Google Scholar
  38. Cox, E. R. &J. Hightower. 1972. Some corticolous algae of McMinn County, Tennessee, U.S.A. J. Phycol.8: 203–205.Google Scholar
  39. Cribb, A. B. 1964. Notes onTrentepohlia from Queensland including one growing on a spider. University of Queensland Dept. Biol. Pap.4: 99–108.Google Scholar
  40. Curl, H., Jr.,J. T. Hardy &R. Ellermeier. 1972. Spectral absorption of solar radiation in alpine snowfields. Ecology53: 1189–1194.Google Scholar
  41. Czygan, F.-C. 1970. Blutregen und Blutschnee: Stickstoffmangel-Zellen vonHaematococ-cus pluvialis undChlamydomonas nivalis. Arch. Microbiol.74: 69–76.Google Scholar
  42. Danin, A. 1983. Weathering of limestone in Jerusalem by cyanobacteria. Z. Geomorphol. N.F.27: 413–421.Google Scholar
  43. —. 1986. Patterns of biogenic weathering as indicators of palaeoclimates in Israel. Proc. Roy. Soc. Edinburgh89B: 243–253.Google Scholar
  44. — &J. Garty 1983. Distribution of cyanobacteria and lichens on hillsides of the Negev Highlands and their impact on biogenic weathering. Z. Geomorphol. N.F.27: 423–444.Google Scholar
  45. Darling, R. B., E. I. Friedmann &P. A. Broady. 1987.Heterococcus endolithicus sp. nov. (Xanthophyceae) and other terrestrialHeterococcus species from Antarctica: Morpho-logical changes during the life history and response to temperature. J. Phycol.23: 598–607.PubMedGoogle Scholar
  46. Davis, J. S. &D. G. Rands. 1981. The genusGeitleria (Cyanophyceae) in a Bahamian cave. Schweiz. Z. Hydrol.43: 63–68.Google Scholar
  47. Diels, L. 1914. Die Algen Vegetation der südtiroler Dolomitriffe. Ein Beitrag zur Ökologie der Lithophyten. Ber. Deutsch. Bot. Ges.32: 502–526, Taf. XI.Google Scholar
  48. Dobat, K. 1966. Die Kryptogamenvegetation der Höhlen und Halbhöhlen im Bereich der Schwäbischen Alb. Abhandl. Karst—u. Höhlenkunde, Reihe E,3: 1–153.Google Scholar
  49. —. 1968. Die Pflanzen- und Tierwelt der Charlottenhöhle. Abhandl. Karst-u. Höh-lenkunde, Reihe A,3: 37–50.Google Scholar
  50. —. 1969a. Die Lampenflora der Bärenhöhle. Pages 29–35in G. Wagner (ed.), Die Bärenhöhle bei Erpfingen. Erpfingen.Google Scholar
  51. —. 1969b. Ein biologischer Lehrgang durch die Schauhöhlen der Schwäbischen Alb. Die Schulwarte22: 439–456.Google Scholar
  52. —. 1970. Considérations sur la végétation cryptogamique des grottes du Jura Souabe (Sud-ouest de l’Allemagne). Ann. Spéléol.25: 871–907.Google Scholar
  53. —. 1977. Zur Oekogenese und Oekologie der Lampenflora deutscher Schauhöhlen. Pages 177–215in W. Frey et al. (eds.), Beiträge zur Biologie der niederen Pflanzen. Gustav Fischer Verlag, Stuttgart, New York.Google Scholar
  54. Doemel, W. N. &T. D. Brock. 1971. The physiological ecology ofCyanidium caldarium. J. Gen. Microbiol.67: 17–32.Google Scholar
  55. Durrell, L. W. &L. M. Shields. 1961. Characteristics of soil algae relating to crust for-mation. Trans. Amer. Microscop. Soc.80: 73–79.Google Scholar
  56. Duvigneaud, P. 1942. Les associations épiphytiques de la Belgique. Bull. Soc. Roy. Bot. Belg.74: 32–53.Google Scholar
  57. Ercegović, A. 1925. Litofitska vegetacija vapnenaca i dolomita u Hrvatskoj. (La végétation des lithophytes sur les calcaires et les dolomites en Croatie). Acta Instituti Bot. R. Univ. Zagrebensis1: 64–114, tab. I–IV.Google Scholar
  58. Felföldy, L. 1941. Die Epiphytenvegetation des Waldes “Nagyerdo” bei Debrecen. Acta Geobot. Hung.4: 35–73.Google Scholar
  59. Fjerdingstad, E. 1965. The algal flora of some “Tintenstriche” in the Alpes-Maritimes (France). Schweiz. Z. Hydrol.27: 167–171.Google Scholar
  60. Foerster, J. W. 1971. The ecology of an elfin forest in Puerto Rico. 14. The algae of Pico del Oeste. J. Arnold Arbor.52: 86–109.Google Scholar
  61. Folk, R. L., H. H. Roberts &C. H. Moore. 1973. Black phytokarst from Hell, Cayman Islands, British West Indies. Bull. Geol. Soc. Amer.84: 2351–2360.Google Scholar
  62. Frémy, P. 1925. Essai sur l’écologie des algues saxicoles, aériennes et subaériennes, en Normandie. Nuova Notarisia, ser.36: 297–304.Google Scholar
  63. —. 1930. Les Myxophycées de l’Afrique Équatoriale Française. Arch. Bot. Mém.3: 1–508.Google Scholar
  64. Friedmann, E. I. 1971. Light and scanning electron microscopy of the endolithic desert algal habitat. Phycologia10: 411–428.Google Scholar
  65. —. 1972. Ecology of lithophytic algal habitats in Middle Eastern and North American deserts. Pages 182–185in L. E. Rodin (ed.), Ecophysiological foundation of ecosystems productivity in arid zones. Nauka, U.S.S.R. Acad. Sci., Leningrad.Google Scholar
  66. —. 1977. Microorganisms in Antarctic desert rocks from dry valleys and Dufek Massif. Antarct. J. U.S.12: 26–30.Google Scholar
  67. —. 1978. Melting snow in the dry valleys is a source of water for endolithic micro-organisms. Antarct. J. U.S.13: 162–163.Google Scholar
  68. —. 1979. The genusGeitleria (Cyanophyceae or Cyanobacteria): Distribution ofG. calcarea andG. floridana n. sp. Pl. Syst. Evol.131: 169–178.Google Scholar
  69. —. 1982. Endolithic microorganisms in the Antarctic cold desert. Science215: 1045–1053.PubMedGoogle Scholar
  70. — &L. J. Borowitzka. 1982. The symposium on taxonomic concepts in blue-green algae: Towards a compromise with the bacteriological code? Taxon31: 673–683.Google Scholar
  71. — &M. Galun. 1974. Desert algae, lichens, and fungi. Pages 165–212in G. W. Brown (ed.), Desert biology 2. Academic Press, Inc., New York.Google Scholar
  72. — &A. P. Kibler. 1980. Nitrogen economy of endolithic microbial communities in hot and cold deserts. Microbial Ecol.6: 95–108.Google Scholar
  73. —,Y. Lipkin &R. O. Paus. 1967. Desert algae of the Negev (Israel). Phycologia6: 185–200.Google Scholar
  74. —,C. P. McKay &J. A. Nienow. 1987. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Satellite-transmitted continuous nanoclimate data, 1984 to 1986. Polar Biol.7: 273–287.PubMedGoogle Scholar
  75. — &R. Ocampo. 1976. Endolithic blue-green algae in the dry valleys: Primary pro-ducers in the Antarctic desert ecosystem. Science193: 1247–1249.PubMedGoogle Scholar
  76. — &R. Ocampo-Friedmann. 1984. Endolithic microorganisms in extreme dry en-vironments: Analysis of a lithobiontic microbial habitat. Pages 177–185in M. J. Klug & C. A. Reddy, Current perspectives in microbial ecology. American Society for Microbiology, Washington, D.C.Google Scholar
  77. Friedmann, I. 1955.Geitleria calcarea n. gen. and n. sp. Bot. Not.108: 439–445.Google Scholar
  78. —. 1956. Beiträge zu Morphologie und Form Wechsel der atmophytischen BangioideePhragmonema sordidum Zopf. Oesterr. Bot. Z.103: 613–633.Google Scholar
  79. —. 1961.Chroococcidiopsis kashaii sp. n. and the genusChroococcidiopsis. (Studies on cave algae from Israel III.) Oesterr. Bot. Z.108: 354–367.Google Scholar
  80. —. 1962. The ecology of the atmophytic nitratealgaChroococcidiopsis kashaii Fried-mann. (Studies on cave algae from Israel IV.) Arch. Mikrobiol.42: 42–45.Google Scholar
  81. —. 1964. Progress in the biological exploration of caves and subterranean waters in Israel. Int. J. Speleol.1: 29–33.Google Scholar
  82. Fritsch, F. E. 1907. A general consideration of the subaerial and freshwater algae of Ceylon. Proc. Roy. Soc. London79: 197–254.Google Scholar
  83. Fukushima, H. 1959. General report on fauna and flora of the Ongul Islands, Antarctica, especially on freshwater algae. J. Yokohama Munic. University, Ser. C,31: 1–10, pls. 1–10.Google Scholar
  84. —. 1963. Studies on cryophytes in Japan. J. Yokohama Munic. University, Ser. C,43: 1–146.Google Scholar
  85. Geitler, L. 1924. Über einige wenig bekannte Süsswasserorganismen mit roten oder blau-grünen Chromatophoren. Rev. Algol.4: 357–375.Google Scholar
  86. —. 1927.Rhodospora sordida, nov. gen. et n. sp., eine neue, “Bangiacee” des Süss-wassers. Oesterr. Bot. Z.76: 25–28Google Scholar
  87. —. 1943a. Eine neue atmophytische Chrysophycee,Ruttnera spectabilis, nov. gen., nova spec. Int. Rev. Gesamten Hydrobiol. Hydrogr.43: 100–109Google Scholar
  88. —. 1943b. Einige selten beobachtete Algen aus Lunz. Int. Rev. Gesamten Hydrobiol. Hydrogr.43: 98–99Google Scholar
  89. —. 1944. Furchungsbildung, simultane Mehrfachteilung, Lokomotion, Plasmotypse und Ökologie der BangiaceePorphyridium cruentum. Flora37: 300–333Google Scholar
  90. —. 1955. Die atmophytische BangioideeRhodospora. Oesterr. Bot. Z.102: 25–29Google Scholar
  91. Gerson, U. 1976. The association of algae with arthropods. Rev. Algol. N.S.11: 18–41 213–234, 235–247.Google Scholar
  92. Glazovskaya, M. A. 1950. “Vyvetrivanie gornykh porod v nival’nom poyase tsentral’nogo Tyan-Shanya.” (Rock weathering in the arable belt of central Tyan-Shan.) Trudy Pochv. Inst., Akad. Nauk SSSR34: 28–48Google Scholar
  93. Gollerbakh, M. M. 1953. “Rol vodoreslei v pochvennykh protessakh.” (The role of algae in soil processes.) Trudy Konf. Vop. Pochv. Mikrobiol.1951: 98–108, 221–222.Google Scholar
  94. — &E. A. Shtina. 1969. “Pochvennye vodorosli.” (Soil algae.) Izdatelystovo “Nauka,” Leningrad. 228 pp.Google Scholar
  95. Golubić, S. 1967a. Algenvegetation der Felsen.In H. J. Elster & W. Ohle (eds.), Die Binnengewässer 23. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart. 183 pp.Google Scholar
  96. —. 1967b. Die Algenvegetation an Sandsteinfelsen Ost-Venezuelas (Cumana). Int. Rev. Gesamten Hydrobiol.52: 693–699.Google Scholar
  97. —,I. Friedmann &J. Schneider. 1981. The lithobiontic ecological niche, with special reference to microorganisms. J. Sediment. Petrol.51: 475–478.Google Scholar
  98. —,R. D. Perkins &K. J. Lukas. 1975. Boring microorganisms and microborings in carbonate substrates. Pages 229–259in R. W. Frey (ed.), The study of trace fossils. Springer-Verlag, New York.Google Scholar
  99. Good, B. H. &R. L. Chapman. 1978. The ultrastructure ofPhycopeltis (Chroolepidaceae: Chlorophyta). I. Sporopollenin in the cell walls. Amer. J. Bot.65: 27–33.Google Scholar
  100. Gracia Alonso, C. A. 1974.Geitleria calcarea Friedmann nueva alga cavernicola para Espana. Speleon21: 133–136.Google Scholar
  101. Gressitt, J. L., G. A. Samuelson &D. H. Vitt. 1968. Moss growing on living papuan moss-forest weevils. Nature217: 765–767.Google Scholar
  102. Gromov, B. V. 1957. The microflora of rock layers and primitive soils of some northern districts of the USSR. Mikrobiologya26: 57–63.Google Scholar
  103. Hajdu, L. 1966. Algological studies in the cave of Matyas Mount, Budapest, Hungary. Int. J. Speleol.2: 137–149.Google Scholar
  104. Handa, S. &T. Nakano. 1988. Some corticolous algae from Miyajunia Island, western Japan. Nova Hedwigia46: 165–186.Google Scholar
  105. Häyrén, E. 1940. Die Algenvegetation der Sickerwasserstreifen auf den Felsen in Süd-finnland. Commentat. Biol.7: 1–19.Google Scholar
  106. Hickman, M. &D. H. Vitt. 1973. The aerial epiphytic diatom flora of moss species from subantarctic Campbell Island. Nova Hedwigia24: 443–458.Google Scholar
  107. Hilitzer, A. 1925. La végétation épiphyte de la Bohême. Publ. Fac. Sci. Univ. Charles, Prague, Cislo41: 1–200.Google Scholar
  108. Hoffman, L. 1986. Algues bleues aériennes et subaériennes du Grand-Duché de Luxem-bourg. Bull. Jard. Bot. Nat. Belg.56: 77–127.Google Scholar
  109. Hoham, R. W. 1973. Pleiomorphism in the snow alga,Raphidonema nivale Lagerh. (Chlo-rophyta) and a revision of the genusRaphidonema Lagerh. Syesis6: 255–263.Google Scholar
  110. —. 1974a.Chlainomonas kolii (Hardy et Curl) comb. nov. (Chlorophyta, Volvocales), a revision of the snow alga,Trachelomonas kolii Hardy et Curl (Euglenophyta, Eu-glenales). J. Phycol.10: 392–396.Google Scholar
  111. —. 1974b. New findings in the life history of the snow alga,Chlainomonas rubra (Stein & Brooke) comb. nov. (Chlorophyta, Volvocales). Syesis7: 239–247.Google Scholar
  112. —. 1975a. Optimum temperatures and temperature ranges for growth of snow algae. Arctic and Alpine Res.7: 13–24.Google Scholar
  113. —. 1975b. The life history and ecology of the snow algaChloromonas pichinchae (Chlorophyta, Volvocales). Phycologia14: 213–226.Google Scholar
  114. —. 1976. The effect of coniferous litter and different snow meltwaters upon the growth of two species of snow algae in axenic culture. Arctic and Alpine Res.8: 377–386.Google Scholar
  115. —. 1980. Unicellular chlorophytes-snow algae. Pages 61–84in E. Cox (ed.), Phyto-flagellates. Elsevier, North Holland, Inc., New York.Google Scholar
  116. — &J. E. Mullet. 1978.Chloromonas nivalis (Chod.) Hoh. & Mull. comb. nov., and additional comments on the snow alga,Scotiella. Phycologia17: 106–107.Google Scholar
  117. —— &S. C. Roemer. 1983. The life history and ecology of the snow algaChloromonas polyptera comb. nov. (Chlorophyta, Volvocales). Canad. J. Bot.61: 2416–2429.Google Scholar
  118. Hunt, C. B. &L. W. Durrell. 1966. Distribution of fungi and algae. U.S. Geol. Surv., Prof. Pap.509: 55–66.Google Scholar
  119. Hustedt, F. 1942. Aerophile Diatomeen in der nordwestdeutschen Flora. Ber. Deutsch. Bot. Ges.60: 55–73.Google Scholar
  120. Jaag, O. 1945. Untersuchungen über die Vegetation und Biologie der Algen des nackten Gesteins in den Alpen, im Jura und im schweizerischen Mittelland. Beitr. Kryptoga-menfl. Schweiz9: 1–560, 20 Taf.Google Scholar
  121. Jalas, J. 1949. Algen von einigen sonnenexponierten Osabhängen. Arch. Soc. Zool. Bot. Fenn. “Vanamo”3: 52–59.Google Scholar
  122. Jeeji-Bai, N. 1962.Trentepohlia monilia de Wildeman from Madras. Phykos1: 79–83.Google Scholar
  123. Johansen, J. R., S. R. Rushforth, R. Orbendorfer, N. Fungladda &J. A. Grimes. 1983. The algal flora of selected wet walls in Zion National Park, Utah, USA. Nova Hedwigia38: 765–808.Google Scholar
  124. Jones, H. J. 1964. Algological investigations in Mammoth Cave, Kentucky. Int. J. Speleol.1: 491–516.Google Scholar
  125. Kamat, N. D. &P. S. Harankhedkar. 1976. Bark algae of Nagpur, Maharashtra. Phykos15: 53–57.Google Scholar
  126. Kers, L. E. 1976. Fönsteralgvegetation i de svenska fjallen. (Vegetation with “stone win-dowed algae” in the high mountains of Sweden.) Svensk Bot. Tidskr.70: 299–300.Google Scholar
  127. Khoja, T. M. &B. A. Whitton. 1975. Heterotrophic growth of filamentous blue-green algae. Br. Phycol. J.10: 139–148.Google Scholar
  128. Klintworth, G.K., B. F. Fetter &H. S. Nielsen, Jr. 1968. Protothecosis, an algal infection: Report of a case in man. J. Med. Microbiol.1: 211–216.PubMedGoogle Scholar
  129. Kol, E. 1966. Algal growth experiments in the Baradla Cave at Aggletek. Int. J. Speleol.2: 457–474.Google Scholar
  130. —. 1968. Kryobiologie.In H. J. Elster & W. Ohle (eds.), Die Binnengewässer 24. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart. 216 pp.Google Scholar
  131. —. 1971. Green snow and ice from the Antarctica. Ann. Hist.-Nat. Mus. Natl. Hung.63: 51–56.Google Scholar
  132. —. 1972. Snow algae from Signy Island (South Orkney Islands), Antarctica. Ann. Hist.-Nat. Mus. Natl. Hung.64: 63–70.Google Scholar
  133. —. 1973. Green snow from Haswell Island (Antarctica). Ann. Hist.-Nat. Nus. Natl. Hung.65: 57–62.Google Scholar
  134. — &S. Eurola. 1973. Red snow in the Kilpisjarvi region, North Finland. Astarte6: 75–86.Google Scholar
  135. — &J. A. Peterson. 1976. Cryobiology. Pages 81–91in G. S. Hope et al. (eds.), The equatorial glaciers of New Guinea, results of the 1971–1973 Australian Universities’ Expeditions to Irian Jaya: Survey, Glaciology, Meteorology, Biology and Palaeoenvironments. Balkema, Rotterdam.Google Scholar
  136. Komárek, J., F. Hindák & P. Javornický. 1973. Ecology of green kryophilic algae from Belanske Tatry Mountains (Czechoslovakia). Arch. Hydrobiol.,Suppl. 41 (Algol. Stud. 9): 427–449.Google Scholar
  137. Komaromy, Z. P. 1977. The algal flora of the Ördöglyuk Cave at Szoplak (Hungary). Ann. Hist.-Natl. Mus. Natl. Hung.69: 29–35.Google Scholar
  138. —,J. Padisák &M. Rajczy. 1985. Flora in the lamp-lit areas of the cave “Anna-barlang” near Lillafüred (Hungary). Ann. Hist.-Nat. Mus. Natl. Hung.77: 103–122.Google Scholar
  139. Koster, J. T. 1939. Notes on Javanese calcicole Cyanophyceae. Blumea3: 243–247.Google Scholar
  140. Krumbein, W. E. 1972. Rôle des microorganismes dans la genèse, la diagenèse et la dégradation des roches en place. Rev. Ecol. Biol. Sol9: 283–319.Google Scholar
  141. —. 1973. Über den Einfluss von Mikroorganismen auf die Bausteinverwitterung-eine ökologische Studie. Kunst-u. Denkmalpfl.31: 54–71.Google Scholar
  142. —— &C. Giele. 1979. Calcification in a coccoid cyanobacterium associated with the formation of desert stromatolites. Sedimentol.26: 593–604.Google Scholar
  143. — &K. Jens. 1981. Biogenic rock varnishes of the Negev Desert (Israel): An ecological study of iron and manganese transformation by cyanobacteria and fungi. Oecologia50: 25–38.Google Scholar
  144. — &M. Potts. 1979. Girvanella-like structures formed byPlectonema gloeophilum (Cyanophyta) from the Borrego desert in Southern California. Geomicrobiol. J.1: 211–213.Google Scholar
  145. Kufferath, H. 1929. Algues et Protistes muscicoles, corticoles et terrestres récoltés sur la montagne de Barba (Costa-Rica). Ann. Cryptog. Exot.2: 23–52.Google Scholar
  146. Lagerheim, G. 1892.Trichophilus neniae Lagerh. n. sp., eine neue epizoische Alge. Ber. Deutsch. Bot. Ges.10: 514–517.Google Scholar
  147. LeBlanc, F. 1963. Quelques sociétés ou unions d’épiphytes du sud du Québec. Canad. J. Bot.41: 591–638.Google Scholar
  148. Leclerq, J. C., A. Couté &P. Dupuy. 1983. Le climat annuel de deux grottes et d’une église du Poitou, où vivent des colonies pures d’algues sciaphiles. Cryptogam., Algol.4: 1–19.Google Scholar
  149. Leedale, G. 1967. Euglenoid flagellates. Prentice-Hall, Englewood Cliffs, New Jersey. 242 pp.Google Scholar
  150. Lewin, J. C. 1953. Heterotrophy in diatoms. J. Gen. Microbiol.9: 305–313.PubMedGoogle Scholar
  151. Lewin, R. A. &P. T. Robinson. 1979. The greening of polar bears in zoos. Nature278: 445–447.PubMedGoogle Scholar
  152. Lipman, C.B. 1941. The successful revivalotNostoc commune from a herbarium specimen eighty-seven years old. Bull. Torrey Bot. Club68: 664–666.Google Scholar
  153. Lund, J. W. G. 1962. Soil algae. Pages 759–770in R. A. Lewin (ed.), Physiology and biochemistry of algae. Academic Press, New York.Google Scholar
  154. —. 1967. Soil algae. Pages 129–147in A. Burger & F. Raw (eds.), Soil biology. Academic Press, New York.Google Scholar
  155. Marathe, K. V. &P. R. Chaudhari. 1975. An example of algae as pioneers in the lithosphere and their role in rock corrosion. J. Ecol.63: 65–70.Google Scholar
  156. Marchant, H. J. 1982. Snow algae from the Australian Snowy Mountains. Phycologia21: 178–184.Google Scholar
  157. Marche-Marchad, J. 1980. Étude écologique des organismes épiphylles et sous-cuticulaires d’Anacardiumoccidentale L. au Sénégal. Rev. Gen. Bot.87: 3–71, 143–202, 209–260.Google Scholar
  158. —. 1981. Quelques données écologiques surCephaleuros virescens Kunze et les lichens dont il est la gonidie. Cryptogam., Algol.2: 289–301.Google Scholar
  159. McKay, C. P. &E. I. Friedmann. 1985. The cryptoendolithic microbial environment in the Antarctic cold desert: Temperature variations in nature. Polar Biol.4: 19–25.PubMedGoogle Scholar
  160. Merola, A., R. Castaldo, P. De Luca, R. Gambardella, A. Musacchio &R. Taddei. 1982. Revision ofCyanidium caldarium. Three species of acidophilic algae. G. Bot. Ital.115: 189–195.Google Scholar
  161. Messikommer, F. 1942. Beitrag zur Kenntnis der Algenflora und Algenvegetation des Hochgebirges im Davos. Beitr. Geobot. Landesaufn. Schweiz24: 1–452.Google Scholar
  162. Metting, B. 1981. The systematics and ecology of soil algae. Bot. Rev.47: 195–312.Google Scholar
  163. Migaki, G., F. M. Garner &G. D. Imes. 1969. Bovine protothecosis. Pathol. Vet.6: 444–453.PubMedGoogle Scholar
  164. Nagy, J. P. 1965. Preliminary notes on the algae of Crystal Cave, Kentucky. Int. J. Speleol.1: 479–490.Google Scholar
  165. Nováček, F. 1934. Epilithické sinice serpentino Mohelenských. Arch. Svazu Ochr. Přír moravskol3: 1–178.Google Scholar
  166. Ochsner, F. 1928. Studien uber die Epiphytenvegetation der Schweiz. Jahrb. St. Gallischen Naturwiss. Ges.63: 1–106.Google Scholar
  167. Odintsova, S. V. 1941. Nitre formation in deserts. Dokl. Akad. Nauk. SSSR32: 578–580.Google Scholar
  168. Oltmanns, F. 1922. Morphologie und Biologie der Algen, Bd. 1. Gustav Fischer Verlag, Jena. 459 pp.Google Scholar
  169. Palik, P. 1938. Adatok a Bukk-Hegység Lithophyta Algavegetátiójához. (Beiträge zur Kenntnis der Lithophyten Algenvegetation des Bükkgebirges.) Index Horti Bot. Univ. Budapest3: 3–10.Google Scholar
  170. —. 1960. A new blue-green alga from the cave Baradla near Aggtelek. Ann. Univ. Sci. Budapest. Rolando Eotvos, Sect. Biol.3: 275–285.Google Scholar
  171. —. 1964. Über die Algenwelt der Höhlen in Ungarn. Int. J. Speleol.1: 35–43.Google Scholar
  172. Parker, B. C., N. Schamem &R. Renner. 1969. Viable soil algae from the herbarium of the Missouri Botanical Garden. Ann. Missouri Bot. Gard.56: 113–119.Google Scholar
  173. Petersen, J. B. 1935. Studies on the biology and taxonomy of soil algae. Dansk. Bot. Ark.8: 1–180.Google Scholar
  174. Pollock, R. 1970. What colors the mountain snow? Sierra Club Bull.55: 18–20.Google Scholar
  175. Potts, M. &E. I. Friedmann. 1981. Effects of water stress on cryptoendolithic cyanobacteria from hot desert rocks. Arch. Microbiol.130: 267–271.Google Scholar
  176. —,R. Ocampo-Friedmann, M. A. Bowman &B. Tozun. 1983.Chroococcus S24 andChroococcus N41 (cyanobacteria): Morphological, biochemical and genetic character-ization and effects of water stress on ultrastructure. Arch. Microbiol.135: 81–90.Google Scholar
  177. Printz, H. 1939. Vorarbeiten zu einer Monographie der Trentepohliaceen. Nyt. Mag. Naturvidensk.80: 137–210.Google Scholar
  178. Ramchandra Rao, Y. 1960. The desert locust in India. Monogr. Indian Council Agr. Res., New Delhi, No. 21 (cited in U. Gerson).Google Scholar
  179. Round, F. E. 1957. The diatom community of some Bryophyta growing on sandstone. J. Linn. Soc., Bot.55: 657–661.Google Scholar
  180. —. 1981. The ecology of algae. Cambridge University Press, Cambridge. 653 pp.Google Scholar
  181. Royzin, M. B. 1960. “Mikroflora skal i primitivnykh pochv vysokogornoi arkticheskoi pustyni.” (Microflora of the rocks and primitive soils in the high mountain arctic desert.) Bot. Zurn. (Leningrad)45: 997–1008.Google Scholar
  182. Sanderson, I. T. 1957. The monkey kingdom: Introduction to the primates. Chilton Books, Philadelphia. 200 pp.Google Scholar
  183. Scannell, M. J. P. 1978.Phycopeltis arundinacea Mont. ten Europe. Rev. Algol. N.S.13: 41–42.Google Scholar
  184. Schade, A. 1923. Die kryptogamischen Pflanzengesellschaften an den Felswänden der Sächsischen Schweiz. Ber. Deutsch. Bot. Ges.41: (49)-(59).Google Scholar
  185. Schlichting, H. E., Jr.,B. J. Speziale &R. M. Zink. 1978. Dispersal of algae and protozoa by antarctic flying birds. Antarct. J. U.S.13: 147–149.Google Scholar
  186. Schmidle, W. 1897a. Vier neue von Professor Lagerheim in Ecuador gesammelte Baum-algen. Ber. Deutsch. Bot. Ges.15: 456–459.Google Scholar
  187. —. 1897b. Epiphylle Algen nebst einerPithophora undDasya aus Neu-Guinea. Flora33: 304.Google Scholar
  188. —. 1898. Über einige von Prof. Lagerheim in Ecuador und Jamaika gesammelte Blattalgen. Hedwigia37: 61–64.Google Scholar
  189. Schorler, B. 1914. Die Algenvegetation an den Felswänden des Eibsandsteingebirges. Abh. Naturw. Ges. “Isis” Dresden1: 3–27.Google Scholar
  190. Schwabe, G. H. 1936. Über einige Blaualgen aus dem mittleren und südlichen Chile. Verh. Deutsch. Wissenschaftl. Ver. Santiago (Chile), N.F.3: 113–174.Google Scholar
  191. —. 1960. Blaualgen aus ariden Böden. Forsch. & Fortschr.34: 194–197.Google Scholar
  192. Serbanescu, M. &V. Decu. 1962. To the knowledge of cavernicolous algae of Oltenia. I. Rev. Biol.7: 201–214.Google Scholar
  193. Shields, L. M. &F. Drouet. 1962. Distribution of terrestrial algae within the Nevada test site. Amer. J. Bot.49: 547–554.Google Scholar
  194. — &L. W. Durrell. 1964. Algae in relation to soil fertility. Bot. Rev.30: 92–128.Google Scholar
  195. Sieminska, J. 1962. The red algaPhragmonema sordidum in the Sibyl Cave nearby Naples. Acta Hydrobiol.4: 225–227.Google Scholar
  196. Skuja, H. 1970. Alghe cavernicole nelle zone illuminate delle grotte di Castellana (Murge di Bari). Le Grotte d’Italia, Ser. 4,2: 193–202.Google Scholar
  197. Smith, D. W. &T. D. Brock. 1973. The water relations of the algaCyanidium caldarium in soil. J. Gen. Microbiol.79: 219–231.Google Scholar
  198. Smith, E. A., C. I. Mayfleld &P. T. S. Wong. 1978. Naturally-occurring apatite as a source of orthophosphate for growth of bacteria and algae. Microbial Ecol.4: 105–118.Google Scholar
  199. Stanier, R. Y. 1973. Autotrophy and heterotrophy in unicellular blue-green algae. Pages 501–518in N. G. Carr & B. A. Whitton (eds.), The biology of blue-green algae. Bot. Monogr. 9. Blackwell Sci. Publ., Oxford.Google Scholar
  200. Stein, J. R. &C. C. Amundsen. 1967. Studies on snow algae and fungi from the Front Range of Colorado. Canad. J. Bot.45: 2033–2045.Google Scholar
  201. Stewart, K. W. &H. E. Schlichting, Jr. 1966. Dispersal of algae and protozoa by selected aquatic insects. J. Ecol.54: 551–562.Google Scholar
  202. Strom, K. M. 1926. Norwegian mountain algae. Skr. Norske Vidensk.-Akad. Oslo, Mat.-Naturvidensk. K1.6: 22–24.Google Scholar
  203. Suba, E. 1957. Die Algen der Palvolgyer Höhle in Ungarn. Verh. Zool.-Bot. Ges. Wien97: 97–109.Google Scholar
  204. Suematu, S. 1957. Notes onCephaleuros andPhycopeltis, parasitic and epiphytic aerial-algae III. Lists of infected plants. Bot. Mag. (Tokyo)70: 276–281.Google Scholar
  205. Tchan, Y. T. &N. C. W. Beadle. 1955. Nitrogen economy in semi-arid plant communities. Proc. Linn. Soc. New South Wales80: 97–104.Google Scholar
  206. — &J. A. Whitehouse. 1953. Study of soil algae. II. The variation of the algal population in sandy soils. Proc. Linn. Soc. New South Wales78: 160–170.Google Scholar
  207. Thompson, R. H. 1972. Algae from the hair of the slothBradypus. J. Phycol.8 (Suppl.): 8.Google Scholar
  208. Trainor, F. R. 1985. Survival of algae in a desiccated soil: A 25 year study. Phycologia24: 79–82.Google Scholar
  209. Treub, M. 1988. Notice sur la nouvelle flore de Krakatau. Ann. Jard. Bot. Buitenzorg7: 221–223.Google Scholar
  210. Tschermak-Woess, E. 1978.Myrmecia reticulata as a phycobiont and free-living—Free-living Trebouxia—The problem ofStenocybe septata. Lichenologist10: 69–79.Google Scholar
  211. — &E. I. Friedmann. 1985.Hemichloris antarctica, gen. et sp. nov. (Chlorococcales, Chlorophyta), a cryptoendolithic alga from Antarctica. Phycologia23: 443–454.Google Scholar
  212. Van Oye, P. 1921. Influence des facteurs climatiques sur la répartition des épiphytes à la surface des troncs d’arbres à Java. Rev. Gen. Bot.33: 161–176.Google Scholar
  213. Vischer, W. 1960. Reproduktion und systematische Stellung einiger Rinden- und Boden-algen. Schweiz. Z. Hydrol.22: 330–349.Google Scholar
  214. Vogel, S. 1955. Niedere “Fensterpflanzen” in der südafrikanischen Wüste. Beitr. Biol. Pflanzen31: 45–135.Google Scholar
  215. Weber van Bosse, A. 1887. Étude sur les algues parasites des Paresseux. Natuurk. Verh. Holl. Maatsch. Wetensch. Haarlem III,5: 1–24, tab. I–III.Google Scholar
  216. Welcker, H. 1864. Haut und des Haares beiBradypus nebst Mittheilungen über eine in Inneren des Faultierhaares lebende Alge. Abh. Naturf. Ges. Halle9: 1–72.Google Scholar
  217. Wujek, D. E. & T. A. Lincoln. (In press). Ultrastructure and taxonomy ofOscillatoria pilicola, a new species of blue-green alga from sloth hair. Brenesia27.Google Scholar
  218. — &P. Timpano. 1986.Rufusia (Porphyridales, Phragmonemataceae), a new red alga from sloth hair. Brenesia25/26: 163–168.Google Scholar
  219. Wylie, P. A. &H. E. Schlichting. 1973. A floristic survey of corticolous subaerial algae in North Carolina. J. Elisha Mitchell Sci. Soc.89: 179–183.Google Scholar
  220. Zehnder, A. 1953. Beitrag zur Kenntnis von Mikroklima und Algen vegetation des nackten Gesteins in den Tropen. Ber. Schweiz. Bot. Ges.63: 5–26.Google Scholar
  221. Zopf, W. 1882. Zur Kenntnis der Spaltalgen (Schizophyceae). Bot. Zentralbl.10: 32–36.Google Scholar

Copyright information

© The New York Botanical Garden 1989

Authors and Affiliations

  • Lucien Hoffmann
    • 1
  1. 1.Department of BotanyUniversity of LiègeLiègeBelgium

Personalised recommendations