Advertisement

The Botanical Review

, Volume 53, Issue 3, pp 281–300 | Cite as

Resource allocation by plants under air pollution stress: Implications for plant-pest-pathogen interactions

  • Martin J. Lechowicz
Article

Abstract

Plant growth depends on the coordinated acquisition and allocation of carbon, water, and nutrient resources to the major plant organs (root, stem, leaf, flower, and fruit) and to the major classes of metabolic function (vegetative growth, maintenance, defense, and reproduction). Air pollutants like SO2, NO2, and O3 can directly damage plant tissues and disrupt normal patterns of resource acquisition and allocation. These disruptions in turn potentially will influence the plant’s ability to defend itself against pests and pathogens. This review summarizes the quantitative and qualitative changes that have been observed when plants are exposed to low levels of SO2, NO2, and O3; the following generalizations emerge:
  1. 1.

    Root biomass is reduced more than shoot biomass in plants exposed to SO2 or O3, but NO2 does not appear to induce the differential suppression of above-versus below-ground organs.

     
  2. 2.

    Quantitative allocation to leaves increases and to stem decreases under SO2 pollution regimes; too few data are available to generalize about O3 or NO2 effects on leaf: stem ratio.

     
  3. 3.

    Root carbohydrate concentrations sometimes increase and sometimes decrease after SO2 or O3 fumigations. Leaf nitrogen concentrations tend to decrease after exposure to air pollutants, and leaf carbohydrate concentrations can increase or decrease. Too few data on leaf concentrations of lipids and secondary chemicals are available to justify any generalizations on pollutant responses.

     
  4. 4.

    Reproduction is suppressed by O3, SO2, and NO2, with O3 appearing to have the most marked effects. Seed lipid and protein composition can be altered by exposure to pollutants.

    While both quantitative and qualitative changes in plant resource allocation after exposure to pollutants are common, the importance of these diverse changes for plant-pest and plant-pathogen interaction requires more comprehensive study. Ideally, the time course of plant growth and of metabolite pools critical to particular pests or pathogens should be followed in plants exposed to realistic pollutant regimes and related to pest or pathogen performance on the treated plants.

     

Keywords

Ozone Sulfur Dioxide Botanical Review Shoot Biomass Nitrogen Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

La croissance des plantes dépend d’une acquisition et d’une allocation coordonnées du carbone, de l’eau et des éléments nutritifs, à leurs organes majeurs (racines, tiges, feuilles, fleurs et fruits), ainsi qu’aux grandes fonctions métaboliques (croissance végétative, maintien, défense contre les insectes, et reproduction). Les polluants de l’air, comme le dioxyde de soufre, le dioxyde d’azote et l’ozone, peuvent directement endommager les tissus de la plante, et altérer leurs patron normaux d’acquisition et d’allocation des ressources. Ces désordres organiques et métaboliques, à leur tour, peuvent influencer la capacité des plantes à se défendre entre les insectes et les agents pathogènes. Cet article de revue résume les principaux changements quantitatifs et qualitatifs, qui ont été observés suite à l’exposition de plantes à de faibles niveaux de SO2, de NO2 et d’ozone. De ces observations, on peut émettre les généralisations suivantes:
  1. 1.

    Lorsque des plantes sont exposées au SO2 ou à l’ozone, la biomasse racinaire subit des réductions plus importantes que celle des tiges. Le NO2, toutefois, ne semble pas avoir une telle action différentielle sur la biomasse des organes aériens ou souterrains.

     
  2. 2.

    L’exposition des plantes au SO2 entraine une augmentation de l’allocation des ressources aux feuilles, et une diminution de celle aux tiges; trop peu de données sont disponibles, cependant, pour étendre cette généralisation aux effets de l’ozone ou du NO2 sur les rapports feuilles: tiges.

     
  3. 3.

    Dans les racines, les concentrations d’hydrates de carbone peuvent augmenter ou diminuer après des fumigations au SO2 ou à l’ozone. Dans les feuilles, les concentrations d’azote tendent à diminuer après une exposition à des polluants de l’air, et celles d’hydrates de carbone, peuvent augmenter ou diminuer selon les cas. A nouveau, on dispose de trop peu de données sur les concentrations de lipides et de composés secondaires dans les feuilles, san justifier toute généralisation sur leurs réponses aux agents polluants.

     
  4. 4.

    La reproduction de la plante est affectée par le SO2, le NO2 et l’ozone, ce dernier ayant les effets les plus marqués. Dans les graines, la composition en protéines et en lipides peut être en effet altérée par une exposition à des agents polluants.

    Alors qu’on a fréquemment rapporté des changements, tant qualitatifs que quantitatifs, dans l’allocation des ressources des plantes, suite à une exposition à des agents polluants, l’importance de ces changements au niveau des interactions plantes-insectes et plantes-pathogènes suggère que de nouvelles études sont requises. En particuliers, de telles études devraient analyser la croissance des plantes, de même que l’évolution temporelle des réserves de métabolites, influençant les insectes et les pathogènes, chez des plantes exposées à des niveaux de pollution réalistes, et relier ces phénomènes au succès relatif des insectes ou des pathogènes sur les plantes ainsi traitées.

     

Резюме

Рост растения зависет от координированного приобретения и распределения углерода, воды и питательных веществ главным органам растения (корень, стебель, лист, цветок и плод) и главным классам метаболической функции (вегетативный рост, поддержание, защита и размножено). Воздушные загрязняющие вещества так, как двуокись серы, двуокись азота и озон прямым путём повреждают ткани растения и разрушают обычные пути приобретения и распределения ресурсов. Эти разрушения по очереди потенциально будут оказывать влияние на способность растения защититься от вредителей и патох генов. Настоящее обозрение суммирует количественные и качественные изменения наблюдённые при подвержении растений низким уровням SO2, NO2 и О3. Появляются следующие обобщения:
  1. 1.

    Уменьшается биомасса корней больше чем биомасса стеблей у растений подвержённые воздействию SO2 или О3, а покажется, что NO2 не вызывает дифференциальное подавление надземных органов по сравнению с подземными органов.

     
  2. 2.

    Количественное распределение листьям увеличивается и стеблю уменьшается при режимах загрязнения SO2; не имеются достаточных данных для обобщения о влиянии О3 и NO2 на соотношение между листом и стеблём.

     
  3. 3.

    Концентрации углеводов в корнях иногда увеличивается и иногда понижается при окуривании загрязнителя SO2 или О3. Листовые концентрации азота имеют тенденцию уменьшиваться при воздействии на воздушные загрязняющие вещества. Листовые концентрации углеводов или увеличиваются или понижаются. Не имеются достаточных данных о листовых концентрациях липидов и вторичных химикатов для обобщений о ответных реакциях к загрязнителям.

     
  4. 4.

    Размножение подавляют О3, SO2 и NO3; покажется, что O3 имеет самые заметные воздействия. При воздействию на загрязнители может измениться семенной состав липидов и белков.

    Несмотря на то, что часто находятся и количественные и качественные изменения в распределение ресурсов растения при воздействию на загрязнители, значительность этих разных изменений в взаимоотношения растения и вредителя и растения и патогена требует более обстоятельного исследования. Идеально, необходимо изучать временной ход роста растения и метаболических фондов, критических особенным вредителям или патогенам, у растений подверженные реалистическим режимам загрязнителей и определить соотношение между этими факторами и успехам вредителя или патогена на обработанных растениях.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adedipe, N. O., R. E. Barrett &D. P. Ormrod. 1972. Phytotoxicity and growth responses of ornamental bedding plants to ozone and sulfur dioxide. J. Amer. Soc. Hort. Sci.97: 341–345.Google Scholar
  2. — &D. P. Ormrod. 1974. Ozone-induced growth suppression in radish plants in relation to pre- and post-fumigation temperatures. Z. Pflanzenphysiol.71:281–287.Google Scholar
  3. Amundson, R. G. 1983. Yield reduction of soybean due to exposure to sulfur dioxide and nitrogen oxide in combination. J. Environ. Quality12:454–459.Google Scholar
  4. Ashenden, T. W. 1978. Growth reduction in cocksfoot (Dactylis glomerata L.) as a result of SO2 pollution. Environ. Poll.15:161–166.Google Scholar
  5. —. 1979. The effects of long-term exposures to SO2 and NO2 pollution on the growth ofDactylis glomerata L. andPoa pratensis L. Environ. Pollut.180:249–258.Google Scholar
  6. — &T. A. Mansfield. 1977. Influence of wind speed on the sensitivity of ryegrass to SO2. J. Exp. Bot.28:729–735.Google Scholar
  7. — &A. D. Williams. 1980. Growth reductions inLolium multiflorum Lam. andPhleum pratense L. as a result of SO2 and NO2 pollution. Environ. Poll.21:131–139.Google Scholar
  8. Ayazloo, M. &J. N. B. Bell. 1981. Studies on the tolerance to sulphur dioxide of grass populations in polluted areas. I. Identification of tolerant populations. New Phytol.88: 203–222.Google Scholar
  9. —— &S. G. Garsed. 1980. Modification of chronic sulphur dioxide injury toLolium perenne L. by different sulphur and nitrogen nutrient treatments. Environ. Pollut.22A:295–307.Google Scholar
  10. Beckerson, D. W. &G. Hofstra. 1979. Effect of sulphur dioxide and ozone singly or in combination on leaf chlorophyll, RNA, and protein in white bean. Canad. J. Bot.57: 1940–1945.Google Scholar
  11. Bell, J. N. B., A. J. Rutter &J. Relton. 1979. Studies on the effects of low levels of sulphur dioxide on the growthof Lolium perenne L. New Phytol.83:627–643.Google Scholar
  12. Bennett, J. P. &R. J. Oshima. 1976. Carrot injury and yield response to ozone. J. Amer. Soc. Hort. Sci.101:638–639Google Scholar
  13. —— &L. F. Lippert. 1979. Effects of ozone on injury and dry matter partitioning in pepper plants. Environ. Exp. Bot.19:33–39Google Scholar
  14. Bloom, A. J., F. S. Chapin III, &H. A. Mooney. 1985. Resource limitation in plants—An economic analogy. Annual Rev. Ecol. Syst.16:363–392.Google Scholar
  15. Bonté, J. 1982. Effects of air pollutants on flowering and fruiting. Pages 207–223in M. H. Unsworth & D. P. Ormrod (eds.), Effects of gaseous air pollution in agriculture and horticulture. Butterworths, London.Google Scholar
  16. Bytnerowicz, A. &O. T. Taylor. 1983. Influence of ozone, sulfur dioxide, and salinity on leaf injury, stomatal resistance, growth, and chemical composition of bean plants. J. Environ. Quality12:397–405.Google Scholar
  17. Coley, P. D., J. P. Bryant &F. S. Chapin, III. 1985. Resource availability and plant antiherbivore defense. Science230:895–899.PubMedGoogle Scholar
  18. Constantinidou, H. A. &T. T. Kozlowski. 1979. Effects of sulfur dioxide and ozone onUlmus americana seedlings. II. Carbohydrates, proteins, and lipids. Canad. J. Bot.57: 176–184.Google Scholar
  19. Cowling, D. W. &M. J. Koziol. 1982. Mineral nutrition and plant response to air pollution. Pages 349–375in M. W. Unsworth & D. P. Ormrod (eds.), Effects of gaseous air pollutants in agriculture and horticulture. Butterworths, London.Google Scholar
  20. Craker, L. E. &J. S. Starbuck. 1972. Metabolic changes associated with ozone injury of bean leaves. Canad. J. Pl. Sci.52:589–597.Google Scholar
  21. Crittenden, P. D. &D. J. Read. 1978. The effects of air pollution on plant growth with special reference to sulphur dioxide. II. Growth studies withLolium perenne L. New Phytol.80:49–62.Google Scholar
  22. Davies, T. 1980. Grasses more sensitive to SO2 pollution in conditions of low irradiance and short days. Nature284:483–485.Google Scholar
  23. Davis, C. R. 1972. Sulfur dioxide fumigation of soybeans: Effect on yield. J. Air Poll. Control Assoc.22:964–966.Google Scholar
  24. DuBay, D. T. &W. H. Murdy. 1983. The impact of SO2 on plant sexual reproduction: In vivo and in vitro effects compared. J. Environ. Quality12:147–149.Google Scholar
  25. Farrar, J. F., J. Relton &A. J. Rutter. 1977. Sulphur dioxide and the growth ofPinus sylvestris. J. Appl. Ecol.14:861–875.Google Scholar
  26. Foster, K. W., H. Timm, C. K. Labanauskas &R. J. Oshima. 1983. Effects of ozone and sulfur dioxide on tuber yield and quality of potatoes. J. Environ. Quality12:75–80.Google Scholar
  27. Freer-Smith, P. H. 1984. The responses of six broadleaved trees during long-term exposure to SO2 and NO2. New Phytol.97:49–61.Google Scholar
  28. —. 1985. The influence of SO2 and NO2 on the growth, development and gas exchangeof Betula pedula Roth. New Phytol.99:417–430.Google Scholar
  29. Garsed, S. G., J. F. Farrar &A. J. Rutter. 1979. The effects of low concentrations of sulphur dioxide on the growth of four broadleaved tree species. J. Appl. Ecol.10:217–226.Google Scholar
  30. — &A. J. Rutter. 1984. The effects of fluctuating concentrations of sulphur dioxide on the growth ofPinus sylvestris L. andPicea sitchensis (Bong.) Carr. New Phytol.97: 175–195.Google Scholar
  31. —— &J. Relton. 1981. The effects of sulphur dioxide on the growth ofPinus sylvestris in two soils. Environ. Poll.24A:219–232.Google Scholar
  32. Gifford, R. M. &L. T. Evans. 1981. Photosynthesis, carbon partitioning, and yield. Annual Rev. Pl. Physiol.32:485–509.Google Scholar
  33. Godzik, S. &H. F. Linskens. 1974. Concentration changes of free amino acid in primary bean leaves after continuous and interrupted SO2 fumigation and recovery. Environ. Poll.7:25–38.Google Scholar
  34. Heagle, A. S. 1982. Interactions between air pollutants and parasitic plant diseases. Pages 333–348in M. H. Unsworth & D. P. Ormrod (eds.), Effects of gaseous air pollutants in agriculture and horticulture. Butterworths, London.Google Scholar
  35. —,D. E. Body &G. E. Neely. 1974. Injury and yield responses of soybean to chronic doses of ozone and sulfur dioxide in the field. Phytopathology64:132–136.Google Scholar
  36. —— &E. K. Pounds. 1972. Effect of ozone on yield of sweet corn. Phytopathology62:683–687.Google Scholar
  37. —,R. B. Philbeck &W. M. Knott. 1979. Thresholds for injury, growth, and yield loss caused by ozone on field corn hybrids. Phytopathology69:21–26.Google Scholar
  38. —,S. Spencer &M. B. Letchworth. 1979. Yield response of winter wheat to chronic doses of ozone. Canad. J. Bot.57:1999–2005.Google Scholar
  39. Heath, R. L. 1984. Air pollutant effects on biochemicals derived from metabolism:Organic, fatty, and amino acids. Pages 275–290in M. J. Koziol & F. R. Whatley (eds), Gaseous air pollutants and plant metabolism. Butterworths, London.Google Scholar
  40. Heggestad, H. E., A. S. Heagle, J. H. Bennett &E. J. Koch. 1980. The effects of photochemical oxidants on the yield of snap beans. Atmos. Environ.14:317–326.Google Scholar
  41. Henderson, W. R. &R. A. Reinert. 1979. Yield response of four fresh market tomato cultivars after acute ozone exposure in the seedling stage. J. Amer. Hort. Sci. Soc.104: 754–759.Google Scholar
  42. Horsman, D. C., A. O. Nicholls &D. M. Calder. 1980. Growth responses ofDactylis glomerata, Lolium perenne andPhalaris aquatica to chronic ozone exposure. Austral. J. Pl. Physiol.7:511–517.Google Scholar
  43. Howell, R. K. &L. P. Rose,Jr. 1980. Residual air pollution effects on soybean seed quality. Pl. Disease64:385–386.Google Scholar
  44. Hughes, P. R. &J. A. Laurence. 1984. Relationship of biochemical effects of air pollutants on plants to environmental problems: Insect and microbial interactions. Pages 361–377in M. J. Koziol & F. R. Whatley (eds.), Gaseous air pollutants and plant metabolism. Butterworths, London.Google Scholar
  45. —,L. H. Weinstein, J. A. Laurence, R. F. Sacher, A. I. Dickie &L. M. Johnson. 1982. Modification of insect-plant relations by plant stress. Proc. 5th Int. Symp. Insect-plant Relationships, Wageningen, 1982. PUDOC, Wageningen.Google Scholar
  46. Huttunen, S. 1984. Interactions of disease and other stress factors with atmospheric pollution. Pages 321–356in M. Treshow (ed.), Air pollution and plant life. Wiley, New York.Google Scholar
  47. Irving, P. M. &J. E. Miller. 1981. Productivity of field-grown soybeans exposed to acid rain and sulfur dioxide alone and in combination. J. Environ. Quality10:473–478.Google Scholar
  48. Jensen, K. F. 1981. Ozone fumigation decreased the root carbohydrate content and dry weight of green ash seedlings. Environ. Poll.26A:147–152.Google Scholar
  49. Jones, T. &T. A. Mansfield. 1982a. The effect of SO2 on growth and development of seedlings ofPhleum pratense under different light and temperature environments. Environ. Poll.27A:57–71.Google Scholar
  50. ——. 1982b. Studies of dry matter partitioning and distribution of14C-labelled assimilates in plantsof Phleum pratense exposed to SO2 pollution. Environ. Poll.28A: 199–207.Google Scholar
  51. Kohut, R. &J. A. Laurence. 1983. Yield response of red kidney beanPhaseolus vulgaris to incremental ozone concentrations in the field. Environ. Poll.32A:233–240.Google Scholar
  52. Koziol, M. J. 1984. Interactions of gaseous pollutants with carbohydrate metabolism. Pages 251–273in M. J. Koziol & F. R. Whatley (eds.), Gaseous air pollutants and plant metabolism. Butterworths, London.Google Scholar
  53. — &C. F. Jordan. 1978. Changes in carbohydrate levels in red kidney bean (Phaseolus vulgaris L.) exposed to sulphur dioxide. J. Exp. Bot.29:1037–1045.Google Scholar
  54. — &F. R. Whatley (eds.). 1984. Gaseous air pollutants and plant metabolism. Butterworths, London.Google Scholar
  55. Kress, L. W. &J. E. Miller. 1983. Impact of ozone on soybean yield. J. Environ. Quality12:276–281.Google Scholar
  56. — &J. M. Skelly. 1982. Responses of several eastern forest tree species to chronic doses of ozone and nitrogen dioxide. Pl. Disease66:1149–1152.Google Scholar
  57. Laurence, J. A., P. R. Hughes, L. H. Weinstein, G. T. Geballe &W. H. Smith. 1983. Impact of air pollution on plant-pest interactions:Implications of current research and strategies for future studies. ERC Report No. 20. Ecosystems Research Center, Cornell University, Ithaca, New York.Google Scholar
  58. Levitt, J. 1980. Responses of plants to environmental stresses. Vol. I. Chilling, freezing, and high temperature stresses; Vol. II. Water, radiation, salt, and other stresses, 2ndbc ed. Academic Press, New York.Google Scholar
  59. Malhotra, S. S. &A. A. Khan. 1984. Biochemical and physiological impact of major pollutants. Pages 113–157in M. Treshow (ed.), Air pollution and plant life, J.Wiley & Sons, New York.Google Scholar
  60. — &S. K. Sarkar. 1979. Effects of sulfur dioxide on sugar and free amino acid content of pine seedlings. Physiol. Pl.47:223–228.Google Scholar
  61. Manning, W. J., W. A. Feder, P. M. Papia &I. Perkins. 1971. Influence of foliar ozone injury on root development and root surface fungi of pinto bean plants. Environ. Poll.1:305–312.Google Scholar
  62. Marshall, P. E. &G. R. Furnier. 1981. Growth responses ofAilanthus altissima seedlings to SO2. Environ. Poll.25:149–153.Google Scholar
  63. Mattson, W. J., Jr. 1980. Herbivory in relation to plant nitrogen content. Annual Rev. Ecol. Syst.11:119–161.Google Scholar
  64. McLaughlin, S. B. &R. K. McConathy. 1983. Effects of SO2 and O3 on allocation of14C-labelled photosynthate inPhaseolus vulgaris. Pl. Physiol.73:630–635.Google Scholar
  65. Mejstrik, V. 1980. The influence of low SO2 concentrations on growth reduction ofNicotiana tabacum L. cv. Samsun andCucumis sativus L. cv. Unikat. Environ. Poll.21: 73–76.Google Scholar
  66. Murdy, W. H. 1979. Effect of SO2 on sexual reproduction inLepidium virginicum L. originating from regions with different SO2 concentrations. Bot. Gaz.140:299–303.Google Scholar
  67. Norby, R. J. &T. T. Kozlowski. 1981. Interactions of SO2 concentration and post-fumi-gation temperature on growth of five species of woody plants. Environ. Poll.25:27–39.Google Scholar
  68. Ogata, G. &E. V. Maas. 1973. Interactive effects of salinity and ozone on growth and yield of garden beets. J. Environ. Quality2:518–520.Google Scholar
  69. Oshima, R. J., J. P. Bennett &P. K. Braegelmann. 1978. Effect of ozone on growth and assimilate partitioning in parsley. J. Amer. Soc. Hort. Sci.103:348–350.Google Scholar
  70. —,P. K. Braegelmann, D. W. Baldwin, V. Van Way &O. C. Taylor. 1977. Reduction of tomato fruit size and yield by ozone. J. Amer. Soc. Hort. Sci. 102:289–293.Google Scholar
  71. ——,R. B. Flagler &R. R. Teso. 1979. The effects of ozone on the growth, yield and partitioning of dry matter in cotton. J. Environ. Quality8:474–479.Google Scholar
  72. —,O. C. Taylor, P. K. Braegelmann &D. W. Baldwin. 1975. Effect of ozone on the yield and plant biomass of a commercial variety of tomato. J. Environ. Quality4:463–464.Google Scholar
  73. Pell, E. J., W. C. Weissberger &J. J. Speroni. 1980 Impact of ozone on quantity and quality of greenhouse-grown potato plants. Environ. Sci. Tech.14:568–571.Google Scholar
  74. Pippen, E. L., A. L. Potter, V. G. Randall, K. Ng, F. W. Reuter, III, A. G. Morgan, Jr. &R. J. Oshima. 1975. Effect of ozone fumigation on crop composition. J. Food Sci.40: 672–676.Google Scholar
  75. Prasad, B. J. &D. N. Rao. 1981. Effects of SO2 exposure on carbohydrate contents, phytomass and caloric values of wheat plants. Water Air Soil Poll.16:257–262.Google Scholar
  76. Reich, P. B., R. G. Amundson &J. P. Lassoie. 1982. Reduction in soybean yield after exposure to ozone and sulfur dioxide using a linear gradient exposure technique. Water Air Soil Poll.17:29–36.Google Scholar
  77. Reinert, R. A. &T. N. Gray. 1981. The response of radish to nitrogen dioxide, sulfur dioxide, and ozone, alone and in combination. J. Environ. Quality10:240–243.Google Scholar
  78. — &P. V. Nelson. 1980. Sensitivity and growth of five Elatior begonia cultivars to SO2 and O3, alone and in combination. J. Amer. Soc. Hort. Sci.105:721–723.Google Scholar
  79. — &J. J. Sanders. 1982. Growth of radish and marigold following repeated exposure to nitrogen dioxide, sulfur dioxide, and ozone. Pl. Disease66:122–124.Google Scholar
  80. —,D. S. Shriner &J. O. Rawlings. 1982. Responses of radish to all combinations of three concentrations of nitrogen dioxide, sulfur dioxide, and ozone. J. Environ. Quality11:52–57.Google Scholar
  81. — &D. E. Weber. 1980. Ozone and sulfur dioxide-induced changes in soybean growth. Phytopathology70:914–916.Google Scholar
  82. Roberts, B. R. 1975. The influence of sulfur dioxide concentration on growth of potted white birch and pin oak seedlings in the field. J. Amer. Soc. Hort. Sci.100:640–642.Google Scholar
  83. Sardi, K. 1981. Changes in the soluble protein content of soybeanGlycine max L. and peaPisum sativum L. under continuous SO2 and soot pollution. Environ. Poll.25A: 181–186.Google Scholar
  84. Shanklin, J. &T. T. Kozlowski. 1984. Effect of temperature preconditioning on responses ofFraxinus pennsylvanica seedlings to SO2. Environ. Poll.36A:311–326.Google Scholar
  85. Skärby, L. 1984. Changes in the nutritional quality of crops. Pages 351–359in M. J. Koziol & F. R. Whatley (eds.), Gaseous air pollutants and plant metabolism. Butterworths, London.Google Scholar
  86. Sprugel, D. G., J. E. Miller, R. N. Muller, H. J. Smith &P. B. Xerikos. 1980. Sulfur dioxide effects on yield and seed quality in field-grown soybeans. Phytopathology70: 1129–1133.Google Scholar
  87. Stewart, G. R. &F. Larker. 1980. Accumulation of amino acids and related compounds in relation to environmental stress. Pages 609–635in Miflin, B. J. (ed.), Biochemistry of plants, a comprehensive treatise. Vol. 5. Amino acids and derivatives, Academic Press, New York.Google Scholar
  88. Taylor, O. C. &F. M. Eaton. 1966. Suppression of plant growth by nitrogen dioxide. Pl. Physiol.41:132–135.Google Scholar
  89. Thompson, C. R., G. Kats &J. W. Cameron. 1976. Effects of ambient photochemical air pollutants on growth, yield, and ear characters of two sweet corn hybrids. J. Environ. Quality5:410–412.Google Scholar
  90. Tingey, D. T. &U. Blum. 1973. Effects of ozone on soybean nodules. J. Environ. Quality2:341–342.Google Scholar
  91. —,W. W. Heck &R. A. Reinert. 1971. Effect of low concentrations of ozone and sulfur dioxide on foliage, growth and yield of radish. J. Amer. Soc. Hort. Sci.96:369–371.Google Scholar
  92. — &R. A. Reinert. 1975. The effect of ozone and sulfur dioxide singly and in combination on plant growth. Environ. Poll.9:117–125.Google Scholar
  93. ——,C. Wickliff &W. W. Heck. 1973. Chronic ozone or sulfur dioxide exposures, or both, affect the early vegetative growth of soybean. Canad. J. Pl. Sci.53: 875–879.Google Scholar
  94. —,R. G. Wilhour &C. Standley. 1976. The effect of chronic ozone exposures on the metabolite content of ponderosa pine seedlings. Forest Sci.22:234–241.Google Scholar
  95. Tomlinson, H. &S. Rich. 1967. Metabolic changes in free amino acids of bean leaves exposed to ozone. Phytopathology57:972–974.PubMedGoogle Scholar
  96. Treshow, M. (ed.). 1984. Air pollution and plant life. J. Wiley & Sons, New York.Google Scholar
  97. Troiano, J. J. &I. A. Leone. 1977. Changes in growth rate and nitrogen content of tomato plants after exposure to NO2. Phytopathology67:1130–1133.Google Scholar
  98. Tukey, J. W. 1977. Exploratory data analysis. Addison-Wesley, Reading, Massachusetts.Google Scholar
  99. Unsworth, M. H. &D. P. Ormrod (eds.). 1983. Effects of gaseous air pollution in agriculture and horticulture. Butterworth, Woburn, Massachusetts.Google Scholar
  100. Vanderplank, J. E. 1984. Disease resistance in plants, 2nd ed. Academic Press, New York.Google Scholar
  101. Walmsley, L., M. R. Ashmore &J. N. B. Bell. 1980. Adaptation of radishRaphanus sativus L. in response to continuous exposure to ozone. Environ. Poll.23A:165–177.Google Scholar
  102. Watson, M. A. &B. B. Casper. 1984. Morphogenetic constraints on patterns of carbon distribution in plants. Annual Rev. Ecol. Syst.15:233–258.Google Scholar
  103. White, J. 1984. Plant metamerism. Pages 15–47in R. Dirzo & J. Sarukham (eds.), Perspectives on plant population ecology. Sinauer, Cambridge, Massachusetts.Google Scholar
  104. White, T. C. R. 1984. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia63:90–105.Google Scholar
  105. Whitmore, M. E. &T. A. Mansfield. 1983. Effects of long-term exposures to SO2 and NO2 onPoa pratensis and other grasses. Environ. Poll.31A:217–235.Google Scholar
  106. Winner, W. E., H. A. Mooney &R. A. Goldstein (eds.). 1985. Sulfur dioxide and vegetation: Physiology, ecology, and policy issues. Stanford University Press, Stanford, California.Google Scholar
  107. ——,K. Williams &S. von Caemmerer. 1985. Measuring and assessing the effects of SO2 on photosynthesis and plant growth. Pages 118–132in W. E. Winner, H. A. Mooney & R. A. Goldstein (eds.), Sulfur dioxide and vegetation:Physiology, ecology, and policy issues. Stanford University Press, Stanford, California.Google Scholar

Copyright information

© The New York Botanical Garden 1987

Authors and Affiliations

  • Martin J. Lechowicz
    • 1
  1. 1.Department of BiologyMcGill UniversityMontréalCanada

Personalised recommendations