The Botanical Review

, Volume 67, Issue 2, pp 239–254 | Cite as

Senna reticulata, a pioneer tree from Amazonian várzea floodplains

  • Pia Parolin
Article

Abstract

Senna reticulata can be considered one of the most efficient colonizers of open areas in the nutrient-rich Amazonian floodplains. Its main strategies for success are a high tolerance for waterlogging of its roots and stems and extremely high photosynthetic assimilation and rapid growth during the first terrestrial period, when height is important to avoid lethal submergence. The density of the crown is important in outshading competitors. Efficient seed dispersal and a great ability to resprout after a period of unfavorable conditions, after cutting, or after predation add to its effectiveness. These features led local people to considerSenna re-ticulata a noxious woody weed calledmatapasto. In the present article I describe the ecological, physiological, and phenological characteristics ofSenna reticulata, with its extremely high productivity and unique capacity to colonize open areas.

Resumo

Senna reticulata pode ser considerada uma das espécies colonizadoras mais eficientes nas áreas inundáveis da Amazônia. A estratégia para colonizar áreas abertas e impedir o crescimento de outras espécies é uma alta atividade fotossintética e crescimento muito rápido, atingindo até 4 m nos primeiros meses. Este crescimento permite também evadir da submersão total que não é tolerada por esta espécie. A altíssima tolerância a inundação das raizes, e a capacidade de rebroto permitem um estabelecimento muito efetivo, por qual causa é chamada dematapasto. No presente estudo são descritas as caraterísticas ecológicas, fisiológicas, e fenológicas deSenna reticulata.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allen, O. N. &E. K. Allen. 1936. Plants in the subfamily Caesalpinioideae observed to be lacking nodules. Soil Sci. 42(2): 87–91.CrossRefGoogle Scholar
  2. Bolhàr-Nordenkampf, H. R. &M. Götzl. 1992. Chlorophyllfluoreszenz als Indikator der mit Seehöhe zunehmenden Streβbelastung von Fichtennadeln. FBVA Berichte. Schriftenreihe d. Forstl. Bundesveranst. 67: 119–131.Google Scholar
  3. — &G. Öquist. 1993. Chlorophyll fluorescence as a tool in photosynthesis research. Pp. 193–206in D. O. Hall, J. M. O. Scurlock, H. R. Bolhàr-Nordenkampf, R. C. Leegood & S. P. Long (eds.), Photosynthesis and production in a changing environment: A field and laboratory manual. Chapman and Hall, London.Google Scholar
  4. Crawford, R. M. M. 1989. Studies in plant survival: Ecological case histories of plant adaptation to adversity. Studies in ecology, 11. Blackwell Scientific Publs., Oxford.Google Scholar
  5. —. 1992. Oxygen availability as an ecological limit to plant distribution. Advances Ecol. Res. 23: 93–185.Google Scholar
  6. De Menezes,E. M. 1978. Contribuição á morfologia comparativa de espécies daninhas do gêneroCassia L. (Leguminosae-Caesalpinioideae), I. Estudo das plantas jovens. Rev. Brasil. Biol. 38(3): 537–548.Google Scholar
  7. Drury, H. 1873. The useful plants of India. William H. Allen, London.Google Scholar
  8. Ducke, A. 1949. Notas sobre a flora neotrópica, II. As leguminosas da Amazônia brasileira. Ed. 2. Institute Agronomico do Norte, Belém, Brazil.Google Scholar
  9. Ferreira, L. V. 1997. Effects of the duration of flooding on species richness and floristic composition in three hectares in the Jaú National Park in floodplain forests in central Amazonia. Biodiv. & Conserv. 6:1353–1363.CrossRefGoogle Scholar
  10. Hladik, A. &S. Miquel. 1990. Seedling types and plant establishment in an African rain forest. Pp. 261–282in K. S. Bawa & M Hadley (eds.), Reproductive ecology of tropical forest plants. Man and the Biosphere Series, 7. UNESCO, Paris.Google Scholar
  11. Irion, G., J. Adis, W. J. Junk &F. Wunderlich. 1983. Sedimentological studies of the “Ilha de Marchantaria” in the Solimöes/Amazon River near Manaus. Amazoniana 8: 1–18.Google Scholar
  12. Junk, W. J. 1989. Flood tolerance and tree distribution in central Amazonian floodplains. Pp. 47–64in L. B. Holm-Nielsen, I. C. Nielsen & H. Balslev (eds.), Tropical forests: Botanical dynamics, speciation and diversity. Academic Press, London.Google Scholar
  13. —,P. B. Bayley &R. E. Sparks. 1989. The flood pulse concept in river-floodplain systems. Pp. 110–127in D. P. Dodge (ed.), Proceedings of the International Large River Symposium (LARS), Honey Harbour, Ontario, Canada, September 14–21, 1986. Dept. of Fisheries & Oceans, Ottawa.Google Scholar
  14. Kalliola, R., J. Salo, M. Puhakka &M. Rajasilta. 1991. New site formation and colonizing vegetation in primary succession on the western Amazon floodplains. J. Ecol. 79: 877–901.CrossRefGoogle Scholar
  15. Larcher, W. 1994. Ökophysiologie der Pflanzen: Leben, Leistung und Strebewältigung der Pflanzen in ihrer Umwelt. 5. Aufl. Ulmer Stuttgart, UTB für Wissenschaft.Google Scholar
  16. Leeuwen, J. v., J. B. Moreira Gomes &P. F. Viana. 1998. Plantio experimental de árvores na várzea da Amazônia central. Versão melhorada do painel apresentado no II Shift Workshop, Cuiabá, 1995. INPA-CPCA, Manaus.Google Scholar
  17. Lorenzi, H. 1991. Plantas daninhas do Brasil: Terrestres, aquáticas, parasitas, tóxicas e medicinais. Ed. 2. Editera Plantarum, Nova Odessa, Brazil.Google Scholar
  18. Ohly, J. J. &M. Hund. 1996. Pasture fanning on the floodplains of central Amazonia. Anim. Res. Developm. 43/44:53–181.Google Scholar
  19. -Ohly, J. J. & L. A. Oliveira. 1993. Multiple land use of floodplains (várzeas) in the central Amazon region (Amazonas, Brazil) taking account of the natural conditions of the ecosystem. Pp. 79–81in W. J. Junk & H. K. Bianchi (eds.), Proceedings of the First SHIFT Workshop, Belém, 1993.Google Scholar
  20. Parolin, P. 1997. Auswirkungen periodischer Vernässung und Überflutung auf Phänologie, Photosynthese und Blattphysiologie von Baumarten unterschiedlicher Wachstumsstrategie in zentralamazonischen Überschwemmungsgebieten. Herbert Utz Verlag Wissenschaft, Munich.Google Scholar
  21. —. 1998. Floristic composition and structure of two Stands ofSenna reticulata differing in age. Amazoniana 15(1/2): 113–128.Google Scholar
  22. —. 1999. Growth strategiesof Senna reticulata andCecropia latiloba, two pioneer tree species of central Amazonian floodplains. Bielefeld Otol. Bit. 14: 272–277.Google Scholar
  23. —. 2000. Phenology and CO2-assimilation of trees in central Amazonian floodplains. J. Trop. Ecol. 16(3): 465–473.CrossRefGoogle Scholar
  24. —. 2001. Seed germination and early establishment in 12 tree species from nutrient-rich and nutrient-poor central Amazonian floodplains. Aquatic Bot. 70: 89–103.CrossRefGoogle Scholar
  25. -. In press. Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia.Google Scholar
  26. -. In prep. Germination and growth in sun and shade of six tree species from Amazonian floodplains.Google Scholar
  27. —,W. J. Junk &M. T. F. Piedade. 1995. Estratégias de crescimento deCecropia latiloba eSenna reticulata na várzea da Amazônia central. P. 190in W. J. Junk & H. K. Bianchi (eds.), Studies of the human impact on forests of the tropics. 2nd SHIFT Workshop, Cuiabá, 1995. GKSS-Forschungszentrum, Geesthacht, Germany.Google Scholar
  28. —,L. V. Ferreira &W. J. Junk. 1998. Central Amazonian floodplains: Effect of two water types on the wood density of trees. Verh. Internat. Verein. Limnol. 26(3): 1106–1112.Google Scholar
  29. -,N. Armbrüster,F. Wittmann,L. V. Ferreira,M. T. F. Piedade & W. J. Junk. In press. Phenology of trees in central Amazonian floodplains. Acta Amazonica.Google Scholar
  30. Prance, G. T. 1979. Notes on the vegetation of Amazonia, III. Terminology of Amazonian forest types subjected to inundation. Brittonia 31(1): 26–38.CrossRefGoogle Scholar
  31. Scholander, P. F. &M. O. Perez. 1968. Sap tension in flooded trees and bushes of the Amazon. Pl. Physiol. 43: 1870–1873.CrossRefGoogle Scholar
  32. —,H. T. Hammel, E. D. Bradstreet &E. A. Hemmingsen. 1965. Sap pressure in vascular plants. Science 148: 339–346.PubMedCrossRefGoogle Scholar
  33. Sesták, Z. 1985. Photosynthesis during leaf development. W. Junk, Dordrecht.Google Scholar
  34. Sioli, H. 1968. Hydrochemistry and geology in the Brazilian Amazon region. Amazoniana 1(3): 267–277.Google Scholar
  35. Warming, E. 1908. Contribuição para a geografia phytobiológica. Imprensa Oficial do Estado, Belo Horizonte, Brazil.Google Scholar
  36. Worbes, M. 1997. The forest ecosystem of the floodplains. Pp. 223–266in W. J. Junk (ed.), The central Amazon floodplain: Ecology of a pulsing system. Ecological Studies, 126 Springer-Verlag, Berlin.Google Scholar
  37. —,H. Klinge, J. D. Revilla &C. Martius. 1992. On the dynamics, floristic subdivision and geographical distribution of várzea forests in central Amazonia. J. Veg. Sci. 3: 553–564.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2001

Authors and Affiliations

  • Pia Parolin
    • 1
  1. 1.Max-Planck-Institute for Limnology Tropical EcologyPlönGermany

Personalised recommendations