Advertisement

The Botanical Review

, Volume 67, Issue 2, pp 121–140 | Cite as

Sprouting in temperate trees: A morphological and ecological review

  • Peter Del Tredici
Article

Abstract

Sprouting in trees, which results in the production of secondary trunks, is an induced response to injury or to a dramatic change in surrounding environmental conditions. This article reviews the forestry and ecology literature to produce an integrated view of the role of sprouting in both disturbed habitats and closed-canopy forests. Sprouting is a universal attribute of temperate angiosperm trees through the sapling stage of development but is much less common among gymnosperms. Four basic types of sprout morphologies are described: collar sprouts from the base of the trunk, sprouts from specialized underground stems (lignotubers and rhizomes), sprouts from roots, and opportunistic sprouts from layered branches. In a survey of 68 species of trees native to northeastern North America, 41% were found to retain the ability to sprout from the collar into adulthood; 26% sprout from branch layers under natural conditions; and 25% have the capacity to form root suckers.

Sprouting in seedlings promotes their survival under a variety of stressful conditions, including suppression by canopy trees, herbivory, site exposure, and desiccation. In contrast, sprouting in mature trees extends the life span of the individual following damage and, in the case of root-suckering species, promotes the colonization of new ground. Although the sprouting of mature trees is more conspicuous than the sprouting of seedlings, its ecological significance is not as great.

As a broad generalization, species that grow in stressful sites or sites with frequent disturbances are likely to sprout more vigorously and to retain the sprouting ability longer than are species that grow in less stressful sites or sites with less frequent disturbance. Near the limits of a species’ altitudinal or latitudinal range, the production of basal sprouts, root suckers, rhizomes, and/or branch layers allows trees to spread into adjacent areas, thereby circumventing the difficulties associated with seedling establishment.

Keywords

Botanical Review Adventitious Root Mature Tree Cotyledonary Node Root Sucker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Auclair, A. N. 1975. Sprouting response inPrunus serotina Erhr.: Multivariate analysis of site, forest structure and growth rate relationships. Amer. Midl. Naturalist 94: 72–87.CrossRefGoogle Scholar
  2. — &G. Cottatn. 1971. Dynamics of black cherry (Prunus serotina Erhr.) in southern Wisconsin oak forests. Ecol. Monogr. 41: 153–177.CrossRefGoogle Scholar
  3. Barnes, B. V., D. R. Zak, S. R. Denton &S. H. Spurr. 1998. Forest ecology. 4th ed. John Wiley & Sons, New York.Google Scholar
  4. Bellingham, P. J. &A. D. Sparrow. 2000. Resprouting as a life history strategy in woody plant communities. Oikos 89: 409–416.CrossRefGoogle Scholar
  5. Bond, W. J. &J. J. Midgley. 2001. Ecology of sprouting in woody plants: The persistence niche. Trends Ecol. Evol. 16:45–51.PubMedCrossRefGoogle Scholar
  6. Borchert, R. 1976. The concept of juvenility in woody plants. Acta Hort. 56: 21–36.Google Scholar
  7. Bosela, M. J. &F. W. Ewers. 1997. The mode of origin of root buds and root sprouts in the clonal treeSassafras albidum (Lauraceae). Amer. J. Bot. 84: 1466–1481.CrossRefGoogle Scholar
  8. Brown, C. L., R. G. McAlpine &P. P. Kormanik. 1967. Apical dominance and form in woody plants: A reappraisal. Amer. J. Bot. 54: 153–162.CrossRefGoogle Scholar
  9. Brown, J. H. 1960. The role of fire in altering the species composition of forests in Rhode Island. Ecology 41: 310–316.CrossRefGoogle Scholar
  10. Burns, R. M. & B. H. Honkala (eds.). 1990. Silvics of North America. 2 vols. U.S. Forest Serv. Handb. 654.Google Scholar
  11. Burrows, G. E. 1990. Anatomical aspects of root bud development in hop pine (Araucaria cunninghamii). Austral. J. Bot. 38: 73–78.CrossRefGoogle Scholar
  12. Butts, D. &J. T. Buchholz. 1940. Cotyledon numbers in conifers. Illinois State Acad. Sci. Trans. 1940: 58–62.Google Scholar
  13. Canadell, J. &P. H. Zedler. 1994. Underground structures of woody plants in Mediterranean ecosystems of Australia, California, and Chile. Pp. 177–210in M. T. Kalin Arroya, P. H. Zedler & M. D. Fox (eds.), Ecology and biogeography of Mediterranean ecosystems in Chile, California, and Australia. Springer-Verlag, New York.Google Scholar
  14. Carr, D. J., R. Jahnke &S. G. M. Carr. 1984. Initiation, development, and anatomy of lignotubers in some speciesof Eucalyptus. Austral. J. Bot. 32: 415–437.CrossRefGoogle Scholar
  15. Christensen, N. L. 1985. Shrubland fire regimens and the evolutionary consequences. Pp. 86–100in S. T. A. Pickett & P. S. White (eds.), The ecology of natural disturbance and patch dynamics. Academic Press, New York.Google Scholar
  16. Church, T. W. &R. M. Godman. 1966. The formation and development of dormant buds in sugar maple. Forest Sci. 12: 301–306.Google Scholar
  17. Cook, J. E. &T. L. Sharik. 1998. Oak regeneration in the southern Appalachians: Potential, problems, and possible solutions. Southern J. Appl. Forest. 22: 11–18.Google Scholar
  18. Cooper-Ellis, S., D. R. Foster, G. Carlton &A. Lezberg. 1999. Forest response to catastrophic wind: Results from an experimental hurricane. Ecology 80: 2683–2696.Google Scholar
  19. Crow, T. R. 1988. Reproductive mode and mechanisms for self-replacement of northern red oak (Quercus rubra)—A review. Forest Sci. 34: 19–40.Google Scholar
  20. —. 1992. Population dynamics and growth patterns for a cohort of northern red oak (Quercus rubra) seedlings. Oecologia 91:192–200.CrossRefGoogle Scholar
  21. Curtis, J. D. 1946. Preliminary observations on northern white cedar in Maine. Ecology 27: 23–36.CrossRefGoogle Scholar
  22. DeByle, N. V. 1964. Detection of functional intraclonal aspen root connections by tracers and excavation. Forest Sci. 10: 386–396.Google Scholar
  23. De Kroon, H. &J. van Groenendael (eds.). 1997. The ecology and evolution of clonal plants. Backhuys Publ., Leiden.Google Scholar
  24. Del Tredici, P. 1992. Natural regeneration ofGinkgo biloba from downward growing cotyledonary buds (basal chichi). Amer. J. Bot. 79: 522–530.CrossRefGoogle Scholar
  25. —. 1995. Shoots from roots: A horticultural review. Amoldia 55(3): 11–19.Google Scholar
  26. —. 1998a. Aging, rejuvenation, and propagation in trees. Comb. Proc. Int. Pl. Propogag. Soc. 48: 637–642.Google Scholar
  27. —. 1998b. Lignotubers inSequoia sempervirens: Development and ecological significance. Madroño 45: 255–260.Google Scholar
  28. —,H. Ling &G. Yang. 1992. TheGinkgos of Tian Mu Shan. Conservation Biol. 6: 202–209.CrossRefGoogle Scholar
  29. Diller, O. D. &E. D. Marshall. 1937. The relation of stump height to the sprouting ofOstrya virginiana in northern Indiana. J. Forest. 35:1116–1119.Google Scholar
  30. Everham, E. M., III &N. V. L. Brokaw. 1996. Forest damage and recovery from catastrophic wind. Bot. Rev. (Lancaster) 62: 113–185.CrossRefGoogle Scholar
  31. Farmer, R. E. 1962. Aspen root sucker formation and apical dominance. Forest Sci. 8: 403–410.Google Scholar
  32. Fontanier, E. J. &H. Jonkers. 1976. Juvenility and maturity of plants as influenced by their ontogenetical and physiological aging. Acta Hort. 56: 37–44.Google Scholar
  33. Gilbert, E. F. 1966. Structure and development of sumac clones. Amer. Midl. Naturalist 75: 432–445.CrossRefGoogle Scholar
  34. Groff, P. A. &D. R. Kaplan. 1988. The relation of root systems to shoot systems in vascular plants. Bot. Rev. (Lancaster) 54: 387–422.Google Scholar
  35. Hallé, F. 1999. Ecology of reiteration in tropical trees. Pp. 93–107in M. H. Kurmann & A. R. Hemsley (eds.), The evolution of plant architecture. Roy. Bot. Gard., Kew, London.Google Scholar
  36. —,R. A. A. Oldeman &P. B. Tomlinson. 1978. Tropical trees and forests. Springer-Verlag, New York.Google Scholar
  37. Hara, M. 1987. Analysis of seedling banks of a climax beech forest: Ecological importance of seedling sprouts. Vegetatio 71: 67–74.Google Scholar
  38. Harcombe, P. A. &P. L. Marks. 1983. Five years of tree death in aFagus-Magnolia forest, southeast Texas (USA). Oecologia 57: 49–54.CrossRefGoogle Scholar
  39. Harper, J. L. 1977. Population biology of plants. Academic Press, London.Google Scholar
  40. Henry, J. D. &J. M. A. Swan. 1974. Reconstructing forest history from live and dead plant material—An approach to the study of forest succession in southwest New Hampshire. Ecology 55:772–783.CrossRefGoogle Scholar
  41. Hibbs, D. E. &B. C. Fischer 1979. Sexual and vegetative reproduction of striped maple (Acer pensylvanicum L.). Bull. Torrey Bot. Club 106: 222–227.CrossRefGoogle Scholar
  42. Hough, A. F. 1937. A study of natural tree reproduction in the beech-birch-maple-hemlock type. J. Forest. 35: 376–378.Google Scholar
  43. James, S. 1984. Lignotubers and burls—Their structure, function, and ecological significance in Mediterranean ecosystems. Bot. Rev. (Lancaster) 50: 225–266.Google Scholar
  44. Jenik, J. 1994. Clonal growth in woody plants: A review. Folia Geobot. Phytotax. 29: 291–306.CrossRefGoogle Scholar
  45. Johnson, P. S. 1975. Growth and structural development of red oak sprout clumps. Forest Sci. 21: 413–418.Google Scholar
  46. -. 1978. Predicting oak stump sprouting and sprout development in the Missouri Ozarks. U.S. Forest Serv. Res. Pap. NC-149.Google Scholar
  47. Jones, R. H. &D. J. Raynal. 1986. Spatial distribution and development of root sprouts inFagus grandifolia (Fagaceae). Amer. J. Bot. 73: 1723–1731.CrossRefGoogle Scholar
  48. Kajimoto, T. 1992. Dynamics and dry matter production of below ground woody organs ofPinus pumila trees growing on the Kiso mountain range in central Japan. Ecol. Research 7: 333–339.CrossRefGoogle Scholar
  49. Kays, J. S. &C. D. Canham. 1991. Effects of time and frequency of cutting on hardwood root reserves and sprout growth. Forest Sci. 37: 524–539.Google Scholar
  50. Keeley, J. E. &P. H. Zedler. 1998. Evolution of life histories inPinus. Pp. 219–249in D. M. Richardson (ed.), Ecology and biogeography ofPinus. Cambridge Univ. Press, Cambridge.Google Scholar
  51. Kemperman, J. A. &B. V. Barnes. 1976. Clone size in American aspens. Canad. J. Bot. 54: 2603–2607.Google Scholar
  52. Koop, H. 1987. Vegetative reproduction of trees in some European natural forests. Vegetatio 72: 103–110.Google Scholar
  53. Kormanik, P. P. &C. L. Brown. 1967. Root buds and the development of root suckers in sweetgum. Forest Sci. 13:338–345.Google Scholar
  54. Kozlowski, T. T. 1971. Growth and development of trees. Academic Press, New York.Google Scholar
  55. Kruger, E. L. &P. B. Reich. 1993a. Coppicing alters ecophysiology ofQuercus rubra saplings in Wisconsin forest opening. Physiol. Pl. (Copenhagen) 89: 741–750.CrossRefGoogle Scholar
  56. ——. 1993b. Coppicing affects growth, root:shoot relations and ecophysiology of pottedQuercus rubra seedlings. Physiol. Pl. (Copenhagen) 89: 751–760.CrossRefGoogle Scholar
  57. Larson, D. W., U. Matthes &P. E. Kelley. 2000. Cliff ecology: Pattern and process in cliff ecosystems. Cambridge Univ. Press, Cambridge.Google Scholar
  58. Leffelman,L. J. & R. C. Hawley. 1925. Studies of Connecticut hardwoods: The treatment of advance growth arising as a result of thinnings and shelterwood cuttings. Yale Univ. School Forest. Bull. 15.Google Scholar
  59. Liming, F. G. &J. P. Johnson. 1944. Reproduction in oak-hickory forest stands of the Missouri Ozarks. J. Forest. 42: 175–180.Google Scholar
  60. Little, S. 1937. Relationships between vigor or resprouting and intensity of cutting in coppice stands. J. Forest. 36: 1216–1223.Google Scholar
  61. — &F. Mergen. 1966. External and internal changes associated with basal-crook formation in pitch and shortleaf pines. Forest Sci. 12: 268–275.Google Scholar
  62. Loehle, C. 2000. Strategy space and the disturbance spectrum: A life history model for tree species coexistence. Amer. Naturalist 156: 14–33.CrossRefGoogle Scholar
  63. Luken, J. O. 1990. Gradual and episodic changes in the structure ofRhus typhina clones. Bull. Torrey Bot. Club 117: 221–225.CrossRefGoogle Scholar
  64. MacDonald, J. E. &G. R. Powell 1983. Relationship between stump sprouting and parent-tree diameter in sugar maple in the first year following clear-cutting. Canad. J. Forest Res. 13: 390–394.CrossRefGoogle Scholar
  65. Marr, J. W. 1977. The development and movement of tree islands near the upper limit of tree growth in the southern Rocky Mountains. Ecology 58: 1159–1164.CrossRefGoogle Scholar
  66. Matoon, F. E. 1909. The origin and early development of chestnut sprouts. Forest. Quart. 7: 34–47.Google Scholar
  67. McIntyre, A. C. 1936. Sprout groups and their relations to the oak forests of Pennsylvania. J. Forest. 34: 1054–1058.Google Scholar
  68. Merz, R. W. &S. G. Boyce. 1956. Age of oak “seedlings.” J. Forest. 54: 774–775.Google Scholar
  69. Mesleard, F. &J. Lepart. 1989. Continuous basal sprouting from a lignotuber:Arbutus unedo L. andErica arborea L., as woody Mediterranean examples. Oecologia 80: 127–131.CrossRefGoogle Scholar
  70. Mitton, J. B. &M. C. Grant. 1996. Genetic variation and the natural history of quaking aspen. BioScience 46(1): 25–31.CrossRefGoogle Scholar
  71. Molinas, M. L. &D. Verdaguer. 1993. Lignotuber ontogeny in the cork-oak (Quercus suber; Fagaceae), II. Germination and young seedling. Amer. J. Bot. 80: 182–191.CrossRefGoogle Scholar
  72. Muller, C. H. 1951. The significance of vegetative reproduction inQuercus. Madroño 11: 129–137.Google Scholar
  73. Ng, F. S. P. 1999. The development of the tree trunk in relation to apical dominance and other shoot organizational concepts. J. Trop. Forest Sci. 11: 270–285.Google Scholar
  74. O’Dea, M. E., J. C. Zasada &J. C. Tappeiner. 1995. Vine maple clone growth and reproduction in managed and unmanaged coastal Oregon Douglas-fir forests. Ecol. App. 5: 63–73.CrossRefGoogle Scholar
  75. Ohkubo, T. 1992. Structure and dynamics of Japanese beech (Fagus japonica Maxim.) stools and sprouts in the regeneration of the natural forests. Vegetatio 101: 65–80.CrossRefGoogle Scholar
  76. —,T. Tanimoto &R. Peters. 1996. Response of Japanese beech (Fagus japonica Maxim.) sprouts to canopy gaps. Vegetatio 124: 1–8.CrossRefGoogle Scholar
  77. Paillet, F. L. 1984. Growth-form and ecology of American chestnut sprout clones in northeastern Massachusetts. Bull. Torrey Bot. Club 111: 316–328.CrossRefGoogle Scholar
  78. —. 1988. Character and distribution of American chestnut sprouts in southern New England woodlands. Bull. Torrey Bot. Club 115: 32–44.CrossRefGoogle Scholar
  79. Pate, J. S., R. H. Froend, B. J. Bowen, A. Hansen &J. Kuo. 1990. Seedling growth and storage characteristics of seeder and resprouter species of mediterranean-type ecosystems of S.W. Australia. Ann. Bot. (London) 65: 585–601.Google Scholar
  80. Perala, D. A. 1974. Growth and survival of northern hardwood sprouts after burning. U.S. Forest Serv. Res.Note NC-176.Google Scholar
  81. Peterken, G. F. 1996. Natural woodland. Cambridge Univ. Press, Cambridge.Google Scholar
  82. Peterson, C. J. &R. H. Jones. 1997. Clonality in woody plants: A review and comparison with clonal herbs. Pp. 263–289in H. de Kroon & J. van Groenendael (eds.), The ecology and evolution of clonal plants. Backhuys Publ., Leiden.Google Scholar
  83. — &S. T. A. Pickett. 1995. Forest reorganization: A case study in an old-growth forest catastrophic blowdown. Ecology 76: 763–774.CrossRefGoogle Scholar
  84. Powell, D. S. &E. H. Tryon. 1979. Sprouting ability of advance growth in undisturbed hardwood stands. Canad. J. Forest Res. 9: 116–120.CrossRefGoogle Scholar
  85. Putz, F. E. &R. R. Sharitz. 1991. Hurricane damage to old-growth forest in Congaree Swamp National Monument, South Carolina, U.S.A. Canad. J. Forest Res. 21:1765–1770.CrossRefGoogle Scholar
  86. Rackham, O. 1986. The history of the countryside. J. M. Dent, London.Google Scholar
  87. Reinartz, J. A. &J. W. Popp. 1987. Structure of clones of northern prickly ash (Xanthoxylum americanum). Amer. J. Bot. 74: 415–428.CrossRefGoogle Scholar
  88. Ross, M. S., T. L. Sharik &D. W. Smith. 1986. Oak regeneration after clear felling in southwest Virginia. Forest Sci. 32: 157–169.Google Scholar
  89. Roth, E. R. &G. H. Hepting. 1943. Origin and development of oak stump sprouts as affecting their likelihood to decay. J. Forest. 41: 27–36.Google Scholar
  90. ——. 1969. Prediction of butt rot in newly regenerated sprout oak stands. J. Forest. 67:756–760.Google Scholar
  91. Runkle, J. R. 1985. Disturbance regimens in temperate forests. Pp. 17–33in S. T. A. Pickett & P. S. White (eds.), The ecology of natural disturbance and patch dynamics. Academic Press, New York.Google Scholar
  92. Sakai, A. &S. Sakai. 1998. A test for the resource remobilization hypothesis: Tree sprouting using carbohydrates from above-ground parts. Ann. Bot. (London) 82: 213–216.CrossRefGoogle Scholar
  93. —,T. Ohsawa &M. Ohsawa. 1995. Adaptive significance of sprouting ofEuptelea polyandra, a deciduous tree growing on steep slopes with shallow soil. J. Pl. Res. 108: 377–386.CrossRefGoogle Scholar
  94. —,S. Sakai &F. Akiyama. 1997. Do sprouting tree species on erosion-prone sites carry large reserves of resources? Ann. Bot. (London) 79: 625–630.CrossRefGoogle Scholar
  95. Sander, I. L. 1971. Height growth of new oak sprouts depends on size of advance reproduction. J. Forest. 69: 809–811.Google Scholar
  96. Schier, G. A. 1983. Vegetative regeneration of Gamble oak and chokecherry from excised rhizomes. Forest Sci. 29:499–502.Google Scholar
  97. Sealy, J. R. 1949. The swollen stem-base inArbutus unedo. Kew Bull. 4: 241–251.Google Scholar
  98. Smith, D. M., B. C. Larson, M. J. Kelty &P. M. S. Ashton. 1997. The practice of silviculture: Applied forest ecology. 9th ed. John Wiley & Sons, New York.Google Scholar
  99. Solomon,D. S. & B. M. Blum. 1967. Stump sprouting of four northern hardwoods. U.S. Forest Serv. Res. Pap. NE-59.Google Scholar
  100. Sonoyama, N., N. Watanabe, O. Watanabe, S. Niwa &Y. Kubota. 1997. Ecological significance of sprouting traits of cool-temperate tree species in a northern mixed forest. Jap. J. Ecol. 47:21–29 (in Japanese).Google Scholar
  101. Stone, E. L. &S. M. Cornwell. 1968. Basal bud burls inBetula populifolia. Forest Sci. 14: 64–65.Google Scholar
  102. — &M. H. Stone. 1954. Root collar sprouts in pine. J. Forest. 52: 487–491.Google Scholar
  103. Sutton, R. F. & R. W. Tinus. 1983. Root and root system terminology. Forest Sci. Monogr. 24.Google Scholar
  104. Swan, F. R. 1970. Post-fire response of four plant communities in south-central New York state. Ecology 51: 1074–1082.CrossRefGoogle Scholar
  105. Tiedemann, A. R., W. P. Clary &R. J. Barbour. 1987. Underground systems of Gambel oak (Quercus gambelii) in central Utah. Amer. J. Bot. 74:1065–1071.CrossRefGoogle Scholar
  106. Timell, T. T. 1986. Compression wood in gymnosperms. Springer-Verlag, New York.Google Scholar
  107. Van Groenendael,J. M., L. Klimes, J. Klimesova &R. J. J. Hendriks. 1997. Comparative ecology of clonal plants. Pp. 191–209in J. Silvertown, M. Franco& J. L. Harper (eds.), Plant life histories. Cambridge Univ. Press, Cambridge.Google Scholar
  108. Ward, W. W. 1966. Oak-hardwood reproduction in central Pennsylvania. J. Forest. 64: 744–749.Google Scholar
  109. Wendel,G. W. 1975. Stump sprout growth and quality of several Appalachian hardwood species after clearcutting. U.S. Forest Serv. Res. Pap. NE-329.Google Scholar
  110. White, P. S. &S. T. A. Pickett. 1985. Natural disturbance and patch dynamics: an introduction. Pp. 3–13in S. T. A. Pickett & P. S. White (eds.) The ecology of natural disturbance and patch dynamics. Academic Press, New York.Google Scholar
  111. Whitney, G. G. 1994. From coastal wilderness to fruited plain. Cambridge Univ. Press, Cambridge.Google Scholar
  112. Wilson,B. F. 1968. Red maple stump sprouts: Development the first year. Harvard Forest Pap. 18.Google Scholar
  113. Wong, K. M. 1994. A note on root sucker production in the coniferDacrydium xanthandrum (Podocarpaceae) on Mount Kinabalu, Sabah. Sandakania 4: 87–89.Google Scholar
  114. Zahner, R. &N. V. DeByle. 1965. Effect of pruning the parent root on growth of aspen suckers. Ecology 46: 373–375.CrossRefGoogle Scholar
  115. Zimmermann,M. H. & C. L. Brown. 1974. Trees: Structure and function. Springer-Verlag, New York.Google Scholar
  116. Zon, R. 1904. Chestnut in southern Maryland. U.S.D.A. Bur. Forest. Bull. 53.Google Scholar

Copyright information

© The New York Botanical Garden 2001

Authors and Affiliations

  • Peter Del Tredici
    • 1
  1. 1.Arnold Arboretum of Harvard UniversityJamaica PlainUSA

Personalised recommendations