The Botanical Review

, Volume 63, Issue 3, pp 273–299 | Cite as

Mineral nutrition of carnivorous plants: A review

  • Lubomír Adamec


Plant carnivory is one of many possible adaptation strategies to unfavorable conditions, mostly low nutrient availability in wet, acid soils. The following issues concerning the mineral nutrition of carnivorous plants are reviewed: the relative importance of carnivory and root nutrition for growth; which nutrients (elements) from prey are of principal importance for growth; the relationship between mineral and organic nutrition based on carnivory; the interactions between carnivory and root mineral nutrition; and the importance of carnivory under natural conditions. Special attention is paid to aquatic carnivorous plants. Studies on mineral nutrition carried out in laboratory and/or greenhouse conditions are discussed separately from those carried out in field conditions. The emphasis of this review is on recapitulation of original data and conclusions of results from a variety of studies that approach carnivorous plants from an ecophysiological point of view.


Botanical Review Mineral Nutrition Insect Feeding Carnivorous Plant Soil Nutrient Supply 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Die Karnivorie der Pflanzen ist eine von mehreren Adaptationsstrategien zu ungünstigen Bedingungen, meist zu niedrigem Nährstoffangebot in feuchten, sauren Böden. Es wird eine Übersicht präsentiert über folgende Fragen der Mineralernährung von karnivoren Pflanzen: die entsprechende Bedeutung der Karnivorie und der Wurzelernährung für das Wachstum; welche Nährstoffe (Elemente) von der Beute prinzipielle Bedeutung für das Wachstum haben; welche Beziehung ist zwischen der anorganischen und organischen Ernährung, die auf der Karnivorie beruht; welche Zwischenbeziehung besteht zwischen der Karnivorie und der Mineralernährung durch Wurzeln; und welche Bedeutung hat die Karnivorie unter natürlichen Bedingungen. Eine besondere Aufmerksamkeit ist den aquatischen karnivoren Pflanzen gewidmet. Untersuchungen über Mineralernährung in Labor- und/oder Gewächshausbedingungen werden gesondert von Ergebnissen diskutiert, die unter Feldbedingungen gewonnen wurden. In dieser Übersicht werden nachdrücklich Originaldaten und Schlussfolgerungen aus Ergebnissen verschiedener Studien rekapituliert, die sich mit karnivoren Pflanzen vom ökophysiologischen Standpunkt befassen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adamec, L. 1995a. Photosynthetic inorganic carbon use by aquatic carnivorous plants. Carniv. Pl. Newslett.24: 50–53.Google Scholar
  2. —. 1995b. Ecological requirements ofAldrovanda vesiculosa L. Testing of its new potential sites in the Czech Republic. Acta Bot. Gallica142: 673–680.Google Scholar
  3. -. 1997. Photosynthetic characteristic of the aquatic carnivorous plantAldrovanda vesiculosa. Aquatic Bot. (in press).Google Scholar
  4. —,K. Dušáková &M. Jonáčková. 1992. Growth effects of mineral nutrients applied to the substrate or onto the leaves in four carnivorous plant species. Carniv. Pl. Newslett.21:18–24.Google Scholar
  5. Akeret, B. 1993. Ein neuer Fundort vonAldrovanda vesiculosa L. in der Nordschweiz und einige Bemerkungen zuStratiotes aloides L. Bot. Helv.103: 193–199.Google Scholar
  6. Aldenius, J., B. Carlsson &S. Karlsson. 1983. Effects of insect trapping on growth and nutrient content ofPinguicula vulgaris L. in relation to the nutrient content of the substrate. New Phytol.93: 53–59.CrossRefGoogle Scholar
  7. Arts, G. H. P. &R. S. E. W. Leuven. 1988. Floristic changes in shallow soft waters in relation to underlying environmental factors. Freshwater Biol.20: 97–111.CrossRefGoogle Scholar
  8. Ashida, J. 1937. Studies on the leaf movement ofAldrovanda vesiculosa L. III. Reaction time in relation to temperature. Bot. Mag. (Tokyo)51: 505–513.Google Scholar
  9. Ashley, T. &J. F. Gennaro. 1971. Fly in the sundew. Nat. Hist.80: 80–85.Google Scholar
  10. Chandler, G. E. &J. W. Anderson. 1976a. Studies on the nutrition and growth ofDrosera species with reference to the carnivorous habit. New Phytol.76:129–141.CrossRefGoogle Scholar
  11. —. 1976b. Uptake and metabolism of insect metabolites by leaves and tentaclesof Drosera species. New Phytol.77: 625–634.CrossRefGoogle Scholar
  12. Chapin, C. T. &J. Pastor. 1995. Nutrient limitations in the northern pitcher plantSarracenia purpurea. Canad. J. Bot.73: 728–734.Google Scholar
  13. Christensen, N. L. 1976. The role of carnivory inSarracenia flava L. with regard to specific nutrient deficiencies. J. Elisha Mitchell Sci. Soc.92:144–147.Google Scholar
  14. Crawford, R. M. M. 1989. Studies in plant survival. Vol. 11in Studies in ecology. Blackwell Scientific, Oxford.Google Scholar
  15. Darwin, C. 1875. Insectivorous plants. Murray, London.Google Scholar
  16. Dixon, K. W., J. S. Pate &W. J. Bailey. 1980. Nitrogen nutrition of the tuberous sundewDrosera erythrorhiza Lindl. with special reference to catch of arthropod fauna by its glandular leaves. Austral. J. Bot.28: 283–297.CrossRefGoogle Scholar
  17. Dykyjová, D. 1979. Selective uptake of mineral ions and their concentration factors in aquatic higher plants. Folia Geobot. Phytotax.14: 267–325.Google Scholar
  18. Eleuterius, L. N. &S. B. Jones Jr. 1969. A floristic and ecological study of pitcher plant bogs in south Mississippi. Rhodora71:29–34.Google Scholar
  19. Fabian-Galan, G. &N. Salageanu. 1968. Considerations on the nutrition of certain carnivorous plants (Drosera capensis andAldrovanda vesiculosa). Rev. Roumaine Biol. Sér. Bot.13: 275–280.Google Scholar
  20. Fraser, D., J. K. Morton &P. Y. Jui. 1986. Aquatic vascular plants in Sibley Provincial Park in relation to water chemistry and other factors. Canad. Field Naturalist100:15–21.Google Scholar
  21. Friday, L. E. 1989. Rapid turnover of traps inUtricularia vulgaris L. Oecologia80: 272–277.Google Scholar
  22. — &C. Quarmby. 1994. Uptake and translocation of prey-derived15N and32P inUtricularia vulgaris L. New Phytol.126: 273–281.CrossRefGoogle Scholar
  23. Gibson, T. C. 1983. Competition, disturbance and the carnivorous plant community in the southeastern United States. Ph.D. thesis, University of Utah.Google Scholar
  24. Givnish, T. J., E. L. Burkhardt, R. E. Happel &J. D. Weintraub. 1984. Carnivory in the bromeliadBrocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. Amer. Naturalist124: 479–497.CrossRefGoogle Scholar
  25. Harder, R. 1963. Blütenbildung durch tierische Zusatznahrung und andere Faktoren beiUtricularia exoleta R. Braun. Planta59: 459–471.CrossRefGoogle Scholar
  26. —. 1970.Utricularia als Objekt für Heterotrophieuntersuchungen (Wechselwirkung von Saccharose und Acetat). Z. Pflanzenphysiol. Untersuch.63:181–184.Google Scholar
  27. — &I. Zemlin. 1967. Förderung der Entwicklung und des Blühens vonPinguicula lusitanica durch Fütterung in axenischer Kultur. Planta73:181–193.CrossRefGoogle Scholar
  28. ——. 1968. Blütenbildung vonPinguicula lusitanica in vitro durch Fütterung mit Pollen. Planta78: 72–78.CrossRefGoogle Scholar
  29. Hough, R. A. &M. D. Fornwall. 1988. Interactions of inorganic carbon and light availability as controlling factors in aquatic macrophyte distribution and productivity. Limnol. & Oceanogr.33: 1202–1208.CrossRefGoogle Scholar
  30. Jaffe, K., F. Michelangeli, J. M. Gonzalez, B. Miras &M. C. Ruiz. 1992. Carnivory in pitcher plants of the genusHeliamphora (Sarraceniaceae). New Phytol.122: 733–744.CrossRefGoogle Scholar
  31. Juniper, B. R., R. J. Robins &D. M. Joel. 1989. Carnivorous plants. Academic Press, London.Google Scholar
  32. Kadono, Y. 1982. Occurrence of aquatic macrophytes in relation to pH, alkalinity, Ca++, Cl and conductivity. Jap. J. Ecol.32: 39–44.Google Scholar
  33. Kamiński, R. 1987a. Studies on the ecology ofAldrovanda vesiculosa L. I. Ecological differentiation ofA. vesiculosa population under the influence of chemical factors in the habitat. Ekol. Polska35: 559–590.Google Scholar
  34. —. 1987b. Studies on the ecology ofAldrovanda vesiculosa L. II. Organic substances, physical and biotic factors and the growth and development ofA. vesiculosa. Ekol. Pol.35: 591–609.Google Scholar
  35. Karlsson, P. S. 1988. Seasonal patterns of nitrogen, phosphorus and potassium utilization by threePinguicula species. Fund. Ecol.2: 203–209.CrossRefGoogle Scholar
  36. — &J. S. Pate. 1992a. Contrasting effects of supplementary feeding of insects or mineral nutrients on the growth and nitrogen and phosphorus economy of pygmy species ofDrosera. Oecologia92: 8–13.CrossRefGoogle Scholar
  37. ——. 1992b. Resource allocation to asexual gemma production and sexual reproduction in south-western Australian pygmy and micro stilt-form species of sundew (Drosera spp., Droseraceae). Austral. J. Bot.40: 353–364.CrossRefGoogle Scholar
  38. — &B. Carlsson. 1984. Why doesPinguicula vulgaris L. trap insects? New Phytol.97: 25–30.CrossRefGoogle Scholar
  39. —,K. O. Nordell, B. Carlsson &B. M. Svensson. 1991. The effect of soil nutrient status on prey utilization in four carnivorous plants. Oecologia86: 1–7.CrossRefGoogle Scholar
  40. ——,S. Eirefelt &A. Svensson. 1987. Trapping efficiency of three carnivorousPinguicula species. Oecologia73: 518–521.CrossRefGoogle Scholar
  41. —,L. M. Thorén &H. M. Hanslin. 1994. Prey capture by threePinguicula species in a subarctic environment. Oecologia99: 188–193.CrossRefGoogle Scholar
  42. Knight, S. E. 1988. The ecophysiological significance of carnivory inUtricularia vulgaris. Ph.D. thesis, University of Wisconsin.Google Scholar
  43. —. 1992. Costs of carnivory in the common bladderwort,Utricularia macrorhiza. Oecologia89: 348–355.Google Scholar
  44. — &T. M. Frost. 1991. Bladder control inUtricularia macrorhiza: lake specific variation in plant investment in carnivory. Ecology72: 728–734.CrossRefGoogle Scholar
  45. Komiya, S. 1966. A report on the natural habitat ofAldrovanda vesiculosa found in Hanyu City. Amatores Herb. (Kobe, Japan)27: 5–13.Google Scholar
  46. Kosiba, P. 1992a. Studies on the ecology ofUtricularia vulgaris L. I. Ecological differentiation ofUtricularia vulgaris L. population affected by chemical factors of the habitat. Ekol. Polska40: 147–192.Google Scholar
  47. —. 1992b. Studies on the ecology ofUtricularia vulgaris L. II. Physical, chemical and biotic factors and the growth ofUtricularia vulgaris L. in culturesin vitro. Ekol. Polska40: 193–212.Google Scholar
  48. —. 1993. [Ecological characteristic of the population ofUtricularia ochroleuca Hartmann andUtricularia neglecta Lehmann as well as their conditions of occurrence in Wegliniec] Acta Univ. Wratislav, Prace Bot.52: 25–32. [In Polish.]Google Scholar
  49. — &J. Sarosiek. 1989. [The site ofUtricularia intermedia Hayne andUtricularia minor L. in Strzybnica near Tarnowskie Góry.] Acta Univ. Wratislav, Prace Bot.39: 71–78. [In Polish.]Google Scholar
  50. Krafft, C. C. &S. N. Handel. 1991. The role of carnivory in the growth and reproduction ofDrosera filiformis andD. rotundifolia. Bull. Torrey Bot. Club118: 12–19.CrossRefGoogle Scholar
  51. Lloyd F. E. 1942. The carnivorous plants. Chronica Botanica, Vol. 9. Waltham, Massachusetts.Google Scholar
  52. Lollar, A. Q., D. C. Coleman &C. E. Boyd. 1971. Carnivorous pathway of phosphorus uptake byUtricularia inflata. Arch. Hydrobiol.69: 400–404.Google Scholar
  53. Lüttge, U. 1964. Untersuchungen zur Physiologie der Carnivoren-Drüsen. III. Der Stoffwechsel der resorbierten Substanzen. Flora155: 228–236.Google Scholar
  54. —. 1965. Untersuchungen zur Physiologie der Carnivoren-Drüsen. II. Mittteilung. Über die Resorption verschiedener Substanzen. Planta66: 331–334.CrossRefGoogle Scholar
  55. —. 1983. Ecophysiology of carnivorous plants. Pp. 489–517in O. L. Lange et al. (eds.), Encyclopedia of plant physiology. New ser. Vol. 12C. Springer-Verlag, Berlin.Google Scholar
  56. Maberly, S. C. &D. H. N. Spence. 1983. Photosynthetic inorganic carbon use by freshwater plants. J. Ecol.71: 705–724.CrossRefGoogle Scholar
  57. Moeller, R. E. 1978. Carbon-uptake by the submerged hydrophyteUtricularia purpurea. Aquatic Bot.5: 209–216.CrossRefGoogle Scholar
  58. —. 1980. The temperature-determined growing season of a submerged hydrophyte: tissue chemistry and biomass turnover ofUtricularia purpurea. Freshwater Biol.10: 391–400.CrossRefGoogle Scholar
  59. Oosterhuis, J. 1927. [On the influence of insect feeding onDrosera.] Ph.D. thesis, University of Groningen, The Netherlands. [In Dutch.]Google Scholar
  60. Pate, J. S. &K. W. Dixon. 1978. Mineral nutrition ofDrosera erythrorhiza Lindl. with special reference to its tuberous habit. Austral. J. Bot.26: 455–464.CrossRefGoogle Scholar
  61. Plummer, G. L. &J. B. Kethley. 1964. Foliar absorption of amino-acids, peptides and other nutrients by the pitcher-plantSarracenia flava. Bot. Gaz.125: 245–260.CrossRefGoogle Scholar
  62. Pringsheim, E. G. &O. Pringsheim. 1967. Small contributions to the physiology ofUtricularia. Z. Pflanzenphysiol. Untersuch.57: 1–10.Google Scholar
  63. Reichte, D. E., M. H. Shanks &D. A. Crossley. 1969. Calcium, potassium and sodium content of forest floor arthropods. Ann. Entomol. Soc. Amer.62: 57–62.Google Scholar
  64. Roberts, P. R. &H. J. Oosting. 1958. Responses of Venus fly trap (Dionaea muscipula) to factors involved in its endemism. Ecol. Monogr.28: 193–218.CrossRefGoogle Scholar
  65. Rychnovská-Soudková, M. 1953. [Study on mineral nutritionof Drosera rotundifolia L. I. Influence of calcium as an important physiological and ecological factor.] Preslia (Prague)25: 51–66. [In Czech.]Google Scholar
  66. —. 1954. [Study on mineral nutrition ofDrosera rotundifolia L. II. Root sorption of inorganic nitrogen.] Preslia (Prague)26: 55–66. [In Czech.]Google Scholar
  67. Schulze, E.-D., G. Gebauer, W. Schulze &J. S. Pate. 1991. The utilization of nitrogen from insect capture by different growth forms ofDrosera from Southwest Australia. Oecologia87: 240–246.CrossRefGoogle Scholar
  68. Schulze, W. &E.-D. Schulze. 1990. Insect capture and growth of the insectivorousDrosera rotundifolia L. Oecologia82: 427–429.CrossRefGoogle Scholar
  69. Schwintzer, C. R. 1978. Vegetation and nutrient status of northern Michigan fens. Canad. J. Bot.56: 3044–3051.CrossRefGoogle Scholar
  70. Shibata, C. &S. Komiya. 1972. Increase of nitrogen content in the leavesof Drosera rotundifolia fed with protein. Jap. Bull. Nippon Dental Coll., Gen. Educ.1: 55–75.Google Scholar
  71. ——. 1973. Changes of nitrogen content in the leaves ofDrosera rotundifolia during feeding with protein. Jap. Bull. Nippon Dental Coll., Gen. Educ2: 89–100.Google Scholar
  72. Simola, L. K. 1978. The effect of several amino acids and some inorganic nitrogen sources on the growth ofDrosera rotundifolia in long- and short-day conditions. Z. Pflanzenphysiol. Untersuch.90: 61–68.Google Scholar
  73. Slater, F. M. 1981. The mineral contents of both peat and plants and their interrelationships at Borth Bog, Wales. Irish National Peat Communications. Proc. 7th Intl. Peat Congr.1: 450–467.Google Scholar
  74. Small, J. G. C., A. Onraet, D. S. Grierson &G. Reynolds. 1977. Studies on insect-free growth, development and nitrate-assimilating enzymes ofDrosera aliciae Hamet. New Phytol.79: 127–133.CrossRefGoogle Scholar
  75. Sorenson, D. R. &W. T. Jackson. 1968. The utilization of paramecia by the carnivorous plantUtricularia gibba. Planta83: 166–170.CrossRefGoogle Scholar
  76. Stewart, C. N., Jr. &E. T. Nilsen. 1992.Drosera rotundifolia growth and nutrition in a natural population with special reference to the significance of insectivory. Canad. J. Bot.70: 1409–1416.Google Scholar
  77. Studnička, M. 1991. Interesting succulent features in thePinguicula species from the Mexican evolutionary centre. Folia Geobot. Phytotax.26: 459–462.Google Scholar
  78. Svensson, B. M. 1995. Competition betweenSphagnum fuscum andDrosera rotundifolia: a case of ecosystem engineering. Oikos74: 205–212.CrossRefGoogle Scholar
  79. Thum, M. 1988. The significance of carnivory for the fitness ofDrosera in its natural habitat. 1. The reactions ofDrosera intermedia andD. rotundifolia to supplementary feeding. Oecologia75: 472–480.CrossRefGoogle Scholar
  80. —. 1989a. The significance of opportunistic predators for the sympatric carnivorous plant speciesDrosera intermedia andDrosera rotundifolia. Oecologia81: 397–400.Google Scholar
  81. —. 1989b. The significance of carnivory for the fitness ofDrosera in its natural habitat. 2. The amount of captured prey and its effect onDrosera intermedia andDrosera rotundifolia. Oecologia81: 401–411.Google Scholar
  82. Watson, A. P., J. N. Matthiessen &B. P. Springett. 1982. Arthropod associates and macronutrient status of the red-ink sundew (Drosera erythrorhiza Lindl.). Austral. J. Ecol.7: 13–22.CrossRefGoogle Scholar
  83. Wilson, S. D. 1985. The growth ofDrosera intermedia in nutrient-rich habitats: the role of insectivory and interspecific competition. Canad. J. Bot.63: 2468–2469.CrossRefGoogle Scholar
  84. Wolfe, L. M. 1981. Feeding behavior of a plant: differential prey capture in old and new leaves of the pitcher plant (Sarracenia purpurea). Amer. Midl. Naturalist106: 352–359.CrossRefGoogle Scholar
  85. Zamora, R. 1990. Observational and experimental study of a carnivorous plant-ant kleptobiotic interaction. Oikos59: 368–372.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1997

Authors and Affiliations

  • Lubomír Adamec
    • 1
  1. 1.Institute of BotanyAcademy of Sciences of the Czech Republic Section of Plant EcologyTřeboňCzech Republic

Personalised recommendations