The Botanical Review

, 63:240 | Cite as

Dynamics of leaf litter accumulation and its effects on riparian vegetation: A review

  • Shaojun Xiong
  • Christer Nilsson


The total production of plant litter and the proportion of leaf litter are higher in riparian corridors than in upland ecosystems throughout the world. Periodical water-level fluctuation is believed to be the major cause of these differences. During flood periods, much plant litter is redistributed locally and between regions, following erosion, transport, and deposition of litter. The importance of litter redistribution varies with factors such as flood regime, topography, and vegetation. Litter from the riparian corridor is usually a major constituent of the litter transported by the river. The decomposition of litter is faster in riparian corridors than in upland systems due to a higher rate of leaching and a higher decomposer activity. Relative warmth and soil fertility may also enhance litter decomposition in riparian corridors. In general, accumulated litter affects plants physically by burying them, chemically by adding nutrients and phytotoxins, and biologically by adding diaspores. The physical impact of a certain amount of litter may be weaker in riparian corridors than in uplands because the rapid decomposition reduces the time that litter is present. In other words, higher amounts of litter are needed to affect riparian vegetation than are needed to affect other types of vegetation. The nutrient content of riverborne litter is reduced by leaching, but dissolved nutrients from litter might still reach the riparian vegetation, e.g., by adsorbing to inorganic particles. Phytotoxins are probably unimportant in riparian systems. The input to the riparian corridor of plant diaspores, borne by litter packs in the river, may be large. Indirect biological effects of litter, including its diaspores, are the attracting of animals and microbes that may influence the plant community, and the creation of bare soil for plant colonization.


Leaf Litter Botanical Review Litter Decomposition Riparian Zone Riparian Vegetation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


La production totale de litière et la proportion de litières de feuilles sont plus importantes dans les ripisylves que dans les autres écosystèmes terrestres de par le monde. Les fluctuations périodiques du niveau de l’eau sont supposées être la cause majeure de ces différences. Durant les périodes de crue, la majeure partie des litières végétales est redistribuée, soit localement, soit régionalement par le biais de processus d’érosion, de transport et de dépôts de crue. L’importance de la redistribution de la litière est variable; elle est fonction du régime des crues, de la topographie et de la végétation. La litière provenant de la végétation riveraine est généralement le constituant majeur de la litière transportée par les cours d’eau. La décomposition des litières est plus rapide dans les ripisylves que dans les écosystèmes terrestres. Ceci est dû à un plus fort taux de lessivage et à une activité de décomposition plus importante dans les sols des ripisylves. La fertilité des sols alluviaux relativement supérieure à celle des sols des autres écosystèmes terrestres ainsi que leur température relativement plus élevée peuvent aussi augmenter la vitesse de décomposition des litières dans les corridors riverains. En général, l’accumulation de litières affecte le développement de la végétation, et ce de plusieurs manières: physiquement par enfouissement, chimiquement par l’ajout de substances nutritives et de phyto-toxines, et biologiquement par l’apport de diaspores. L’impact physique d’un apport de litières peut être moindre dans les corridors riverains que dans les autres écosystèmes terrestres à cause de la rapide décomposition de la litière qui réduit son temps de présence sur le site. En d’autres termes, dans les ripisylves, des quantités de litières plus importantes que dans les autres écosystèmes terrestres sont nécessaires pour affecter le développement de la végétation. La teneur en nutriments des litières de ripisylves est réduite par l’effet du lessivage; cependant des substances nutritives peuvent néanmoins être fournies à la végétation riveraine, par le biais d’adsorption sur des dépôts de sédiments de crue par exemple. Les phyto-toxines sont probablement peu importantes dans les systèmes riverains. Par contre l’apport de diaspores de plantes véhiculés avec la litière dans les cours d’eau peut être très importante. L’effet biologique indirect des litières comprenant ces diaspores concerne leur capacité d’attraction des animaux et des micro-organismes qui peuvent en retour affecter les communautés végétales et créer des trouées de sols nus permettant une nouvelle colonisation végétale.

Literature Cited

  1. Abbott, D. T. &D. A. Crossley. 1982. Woody litter decomposition following clear-cutting. Ecology63: 35–42.CrossRefGoogle Scholar
  2. Aber, J. D. &J. M. Melillo. 1980. Litter decomposition: measuring relative contributions of organic matter and nitrogen to forest soils. Canad. J. Bot.58: 416–421.Google Scholar
  3. Adis, J., K. Furch &U. Irmler. 1979. Litter production of a Central-Amazonian black water inundation forest. Trop. Ecol.20: 236–245.Google Scholar
  4. Alvarez-Lopez, M. 1990. Ecology ofPterocarpus officinalis forested wetlands in Puerto Rico. Pages 251–265in A. E. Lugo, M. M. Brinson & S. Brown (eds.), Forested wetlands. Ecosystems of the World 15. Elsevier, Amsterdam.Google Scholar
  5. Anderson, N. H. &J. R. Sedell. 1979. Detritus processing by macroinvertebrates in stream ecosystems. Ann. Rev. Entomol.24: 351–377.CrossRefGoogle Scholar
  6. Barrett, L. I. 1931. Influence of forest litter on the germination and early survival of chestnut oak,Quercus montana. Ecology12: 476–487.CrossRefGoogle Scholar
  7. Beatty, S. W. &O. D. V. Sholes. 1988. Leaf litter effects on plant species composition of deciduous forest treefall pits. Canad. J. Forest Res.18: 553–559.CrossRefGoogle Scholar
  8. Bell, D. T., F. L. Johnson &A. R. Gilmore. 1978. Dynamics of litterfall, decomposition, and incorporation in the streamside forest ecosystem. Oikos30: 76–82.CrossRefGoogle Scholar
  9. Berendse, F. 1994. Litter decomposability—a neglected component of plant fitness. J. Ecol.82: 187–190.CrossRefGoogle Scholar
  10. Berg, B., M. P. Berg, P. Bottner, E. Box, A. Breymeyer, R. Calvo de Anta, M. Couteaux, A. Escudero, A. Gallardo, W. Kratz, M. Madeira, E. Mälkönen, C. McClaugherty, V. Meentemeyer, F. Muñoz, P. Piussi, J. Remacle &A. Virzo de Santo. 1993. Litter mass loss rates in pine forests of Europe and eastern United States: some relationships with climate and litter quality. Biogeochemistry20:127–159.CrossRefGoogle Scholar
  11. Bird, G. A. &N. K. Kaushik. 1981. Coarse paniculate organic matter in streams. Pages 41–68in M. A. Lock & D. D. Williams (eds.), Perspectives in running water ecology. Plenum, New York.Google Scholar
  12. Blackburn, W. M. &T. Petr. 1979. Forest litter decomposition and benthos in a mountain stream in Victoria Australia. Arch. Hydrobiol.86:453–498.Google Scholar
  13. Boling, R. H., E. D. Goodman, J. A. Van Sickle, J. O. Zimmer, K. W. Cummins, R. C. Petersen &S. R. Reice. 1975. Towards a model of detritus processing in a woodland stream. Ecology56: 141–151.CrossRefGoogle Scholar
  14. Bray, J. R. &E. Gorham. 1964. Litter production in forests of the world. Adv. Ecol. Res.2: 101–158.Google Scholar
  15. Brinson, M. M. 1990. Riverine forests. Pages 87–141in A. E. Lugo, M. M. Brinson & S. Brown (eds.), Forested wetlands. Ecosystems of the World 15. Elsevier, Amsterdam.Google Scholar
  16. —,H. D. Bradshaw, R. N. Holmes &J. B. Elkins. 1980. Litterfall, stemflow, and throughfall nutrient fluxes in an alluvial swamp forest. Ecology61: 827–835.CrossRefGoogle Scholar
  17. Brown, S. 1981. A comparison of structure, primary productivity, and transpiration of cypress ecosystems in Florida. Ecol. Monogr.51: 403–427.CrossRefGoogle Scholar
  18. — &D. L. Peterson. 1983. Structural characteristics and biomass production of two Illinois bottomland forests. Amer. Midl. Naturalist110: 107–117.CrossRefGoogle Scholar
  19. Carson, W. P. &C. J. Peterson. 1990. The role of litter in an oldfield community: impact of litter quantity in different seasons on plant species richness and abundance. Oecologia85: 8–13.CrossRefGoogle Scholar
  20. Chauvet, E. 1988. Influence of the environment on willow leaf litter decomposition in the alluvial corridor of the Garonne River. Arch. Hydrobiol.112: 371–386.Google Scholar
  21. — &A. M. Jean-Louis. 1988. Production de litière de la ripisylve de la Garonne et apport au fleuve. Oecol. Gener.9: 265–279.Google Scholar
  22. — &H. Décamps. 1989. Lateral interactions in a fluvial landscape: the river Garonne, France. J. N. Amer. Benthol. Soc.8: 9–17.CrossRefGoogle Scholar
  23. Cheplick, G. P. &J. A. Quinn. 1987. The role of seed depth, litter, and fire in the seedling establishment of amphicarpic peanut-grass (Amphicarpum purshii). Oecologia73: 459–463.CrossRefGoogle Scholar
  24. Collins, S. L. &R. E. Good. 1987. The seedling regeneration niche: habitat structure of tree seedlings in an oak-pine forest. Oikos48: 89–98.CrossRefGoogle Scholar
  25. Conner, W. H. &J. W. Day. 1976. Productivity and composition of a baldcypress-water tupelo site and a bottomland hardwood site in a Louisiana swamp. Amer. J. Bot.63: 1354–1364.CrossRefGoogle Scholar
  26. —,J. G. Gosselink &R. T. Parrondo. 1981. Comparison of the vegetation of three Louisiana swamp sites with different flooding regimes. Amer. J. Bot.68: 320–331.CrossRefGoogle Scholar
  27. Conners, M. E. &R. J. Naiman. 1984. Particulate allochthonous input: relationship with stream size in an undisturbed watershed. Canad. J. Fish. Aquatic Sci.41: 1473–1484.Google Scholar
  28. Cowan, C. A. &M. W. Oswood. 1983. Input and storage of benthic detritus in an Alaskan subarctic stream. Polar Biol.2: 35–40.CrossRefGoogle Scholar
  29. Cromack, K. &C. D. Monk. 1975. Litter production, decomposition and nutrient cycling in a mixed hardwood watershed and a white pine watershed. Pages 609–624in F. G. Howell, J. B. Gentry & M. H. Smith (eds.), Mineral cycling in south-eastern ecosystems. Energy Research and Development Administration Symposium Series, CONF-470513, Washington, DC.Google Scholar
  30. Cuffney, T. F. 1988. Input, movement and exchange of organic matter within a subtropical coastal black-water river-floodplain system. Freshwat. Biol.19: 305–320.CrossRefGoogle Scholar
  31. Cummins, K. W., J. R. Sedell, F. J. Swanson, G. W. Minshall, S. G. Fisher, C. E. Cushing, R. C. Petersen &R. L. Vannote. 1983. Organic matter budgets for stream ecosystems: problems in their evaluation. Pages 299–353in J. R. Barnes & G. W. Minshall (eds.), Stream ecology: application and testing of general ecological theory. Plenum Press, New York.Google Scholar
  32. Dance, K. W. 1981. Seasonal aspects of transport of organic and inorganic matter in streams. Pages 69–95in M. A. Lock & D. D. Williams (eds.), Perspectives in running water ecology. Plenum Press, New York.Google Scholar
  33. Davis, C. B. &A. G. van der Valk. 1978. Litter decomposition in prairie glacial marshes. Pages 99–113in R. E. Good, D. F. Whighham & R. L. Simpson (eds.), Freshwater wetlands. Academic Press, New York.Google Scholar
  34. Dawson, F. H. 1976. Organic contribution of stream edge forest litter fall to the chalk stream ecosystem. Oikos27: 13–18.CrossRefGoogle Scholar
  35. Day, F. P. 1982. Litter decomposition rates in the seasonally flooded Great Dismal Swamp. Ecology63: 670–678.CrossRefGoogle Scholar
  36. —. 1983. Effects of flooding on litter decomposition in microcosms. Oecologia56:180–184.CrossRefGoogle Scholar
  37. de Jong, T. J. &P. G. L. Klinkhamer. 1985. The negative effect of litter of parent plants ofCirsium vulgare to their offsprings: autotoxicity or immobilization? Oecologia65: 153–160.CrossRefGoogle Scholar
  38. de la Cruz, A. A. &H. A. Post. 1977. Production and transport of organic matter in a woodland stream. Arch. Hydrobiol.80: 227–238.Google Scholar
  39. Dolph, J., D. Marks &G. A. King. 1992. Sensitivity of the regional water balance in the Columbia River basin to climate variability: application of a spatially distributed water balance model. Pages 233–265in R. J. Naiman (ed.), Watershed management. Springer-Verlag, New York.Google Scholar
  40. Dynesius, M. &C. Nilsson. 1994. Fragmentation and flow regulation of river systems in the northern third of the world. Science266: 753–762.PubMedCrossRefGoogle Scholar
  41. Elder, J. F. &D. J. Cairns. 1982. Production and decomposition of forest litter fall on the Apalachicola river flood plain, Florida. U.S. Geol. Surv. Water-Supply Paper 2196-B. Government Printing Office, Washington, DC.Google Scholar
  42. Facelli, J. M. 1994. Multiple indirect effects of plant litter affect the establishment of woody seedlings in oldfields. Ecology75: 1727–1735.CrossRefGoogle Scholar
  43. — &W. P. Carson. 1991. Heterogeneity of litter accumulation in oldfields. Bull. Torrey Bot. Club118: 62–66.CrossRefGoogle Scholar
  44. — &E. Facelli. 1993. Interactions after death: plant litter controls priority effects in a successional plant community. Oecologia95: 277–282.CrossRefGoogle Scholar
  45. — &S. T. A. Pickett. 1991a. Plant litter: its dynamics and effects on plant community structure. Bot. Rev. (Lancaster)57: 1–32.Google Scholar
  46. ——. 1991b. Plant litter: light interception and effects on an oldfield plant community. Ecology72:1024–1031.CrossRefGoogle Scholar
  47. ——. 1991c. Indirect effects of litter on woody seedlings subject to herb competition. Oikos62:129–138.CrossRefGoogle Scholar
  48. —,C. M. Montero &R. J. C. León. 1988. Effect of different disturbance regimen on seminatural grasslands from the subhumid Pampa. Flora180: 241–249.Google Scholar
  49. Fisher, S. G. 1977. Organic matter processing by a stream-segment ecosystem: Fort River, Massachusetts, U.S.A. Intl. Rev. Ges. Hydrobiol.62: 701–727.Google Scholar
  50. — &G. W. Likens. 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol. Monogr.43: 421–439.CrossRefGoogle Scholar
  51. Fowler, N. L. 1986. Microsite requirements for germination and establishment of three grass species. Amer. Midl. Naturalist115:131–145.CrossRefGoogle Scholar
  52. — 1988. What is a safe site?: neighbor, litter, germination date, and patch effects. Ecology69: 947–961.CrossRefGoogle Scholar
  53. Frangi, J. L. &A. E. Lugo. 1985. Ecosystem dynamics of a subtropical floodplain forest. Ecol. Monogr.55: 351–369.CrossRefGoogle Scholar
  54. Franken, M., V. Irmler &H. Klinge. 1979. Litterfall in inundation, riverine, and terra firma forests of central Amazonia. Trop. Ecol.20: 225–235.Google Scholar
  55. Gessner, M. O. &E. Chauvet. 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology75:1807–1817.CrossRefGoogle Scholar
  56. —,M. Thomas, A. Jean-Louis &E. Chauvet. 1993. Stable successional patterns of aquatic hyphomycetes on leaves decaying in a summer cool stream. Mycol. Res.97: 163–172.Google Scholar
  57. Goldberg, D. E. &P. A. Werner. 1983. The effects of size of opening in vegetation and litter cover on seedling establishment of goldenrods (Solidago spp.). Oecologia60:149–155.CrossRefGoogle Scholar
  58. Gomez, M. M. &F. P. Day. 1982. Litter nutrient content and production in the Great Dismal Swamp. Amer. J. Bot.69: 1314–1321.CrossRefGoogle Scholar
  59. Gosz, J. F., G. E. Likens &F. H. Bormann. 1972. Nutrient content of litter fall on the Hubbard Brook Experimental Forest, New Hampshire. Ecology53: 769–784.CrossRefGoogle Scholar
  60. Grime, J. P. 1979. Plant strategies and vegetation processes. John Wiley & Sons, New York.Google Scholar
  61. Gurtz, M. E., G. R. Marzolf, K. T. Killingbeck, D. L. Smith &J. V. McArthur. 1988. Hydrologic and riparian influences on the import and storage of coarse paniculate organic matter in a prairie stream. Canad. J. Fish. Aquatic Sci.45: 655–665.CrossRefGoogle Scholar
  62. Hamrick, J. L. &J. M. Lee. 1987. Effects of soil surface topography and litter cover on germination, survival and growth of musk thistle (Carduus nutans). Amer. J. Bot.74: 451–457.CrossRefGoogle Scholar
  63. Hardin, E. D. &W. A. Wistendahl. 1983. The effects of floodplain trees on herbaceous vegetation patterns, microtopography and litter. Bull. Torrey Bot. Club110: 23–30.CrossRefGoogle Scholar
  64. Haslam, S. M. 1971a. Community regulation inPhragmites communis Trin. I. Monodominant stands. J. Ecol.59: 65–73.CrossRefGoogle Scholar
  65. —. 1971b. Community regulation inPhragmites communis Trin. II. Mixed stands. J. Ecol.59: 75–88.Google Scholar
  66. Heady, H. F. 1956. Changes in the central California annual plant community induced by the manipulation of natural mulch. Ecology37: 798–811.CrossRefGoogle Scholar
  67. Holland, E. A. &D. C. Coleman. 1987. Litter placement effects on microbial and organic matter dynamics in an agroecosystem. Ecology68:425–433.CrossRefGoogle Scholar
  68. Hughes, M. 1971. Tree biocontent, net production and litter fall in a deciduous woodland. Oikos22: 62–73.CrossRefGoogle Scholar
  69. Iversen, T. M., J. Thorup &J. Skriver. 1982. Inputs and transformation of allochthonous particulate organic matter in a headwater stream. Holarct. Ecol.5:10–19.Google Scholar
  70. Johansson, M. E. &C. Nilsson. 1993. Hydrochory, population dynamics and distribution of the clonal aquatic plantRanunculus lingua. J. Ecol.81: 81–91.CrossRefGoogle Scholar
  71. Jordan, C. F. 1971. A world pattern in plant energetics. Amer. Sci.59: 426–433.Google Scholar
  72. Jordan, T. E., D. F. Whigham &D. L. Correll. 1989. The role of litter in nutrient cycling in a brackish tidal marsh. Ecology70:1906–1915.CrossRefGoogle Scholar
  73. Junk, W. J., P. R. Bayley &R. E. Spark. 1989. The flood pulse concept in river floodplain systems. Canad. Spec. Publ. Fish. Aquatic Sci.106:110–127.Google Scholar
  74. Keller, E. A. &F. J. Swanson. 1979. Effects of large organic material on channel form and fluvial processes. Earth Surf. Proc.4: 361–380.CrossRefGoogle Scholar
  75. Kellman, M. 1979. Soil enrichment by neotropical savanna trees. J. Ecol.67: 565–577.CrossRefGoogle Scholar
  76. Killingbeck, K. T. 1986. Litterfall dynamics and element use efficiency in a Kansas gallery forest. Amer. Midl. Naturalist116:180–189.CrossRefGoogle Scholar
  77. —&M. K. Wali. 1978. Analysis of aNorth Dakota gallery forest: nutrient, trace element and productivity relations. Oikos30: 29–60.CrossRefGoogle Scholar
  78. Knapp, A. K. &T. R. Seastedt. 1986. Detritus accumulation limits productivity of tallgrass prairie. BioScience36: 622–668.CrossRefGoogle Scholar
  79. Leishman, M. R. &M. Westoby. 1994. The role of large seed size in shaded conditions: experimental evidence. Fund. Ecol.8: 205–214.CrossRefGoogle Scholar
  80. Malanson, G. P. 1993. Riparian landscapes. Cambridge University Press, Cambridge.Google Scholar
  81. Mayack, D. T., J. H. Thorp &M. Cothran. 1989. Effects of burial and floodplain retention on stream processing of allochthonous litter. Oikos54: 378–388.CrossRefGoogle Scholar
  82. Meentemeyer, V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology59: 465–472.CrossRefGoogle Scholar
  83. —,E. O. Box &R. Thompson. 1982. World patterns and amounts of terrestrial plant litter production. BioScience32:125–128.CrossRefGoogle Scholar
  84. Merritt, R. W. &D. L. Lawson. 1980. Leaf litter processing in floodplain and stream communities. U.S.D.A. Forest Serv. Gen. Techn. Rep. WO-12: 93–105.Google Scholar
  85. Molofsky, J. &C. K. Augspurger. 1992. The effects of leaf litter on early seedling establishment in a tropical forest. Ecology73: 68–77.CrossRefGoogle Scholar
  86. Monk, C. D. &F. C. Gabrielson. 1985. Effects of shade, litter and root competition on old-field vegetation in South Carolina. Bull. Torrey Bot. Club112: 383–392.CrossRefGoogle Scholar
  87. Mulholland, P. J. 1981. Organic carbon flow in a swamp-stream ecosystem. Ecol. Monogr.51: 307–322.CrossRefGoogle Scholar
  88. Muzika, R. M., J. B. Gladden &J. D. Haddock. 1987. Structural and functional aspects of succession in south-eastern floodplain forests following a major disturbance. Amer. Midl. Naturalist117:1–9.CrossRefGoogle Scholar
  89. Myster, R. W. &S. T. A. Pickett. 1993. Effects of litter, distance, density and vegetation patch type on postdispersal tree seed predation in old fields. Oikos66: 381–388.CrossRefGoogle Scholar
  90. Naiman, R. J., H. Décamps &M. Pollock. 1993. The role of riparian corridors in maintaining regional biodiversity. Ecol. Appl.3: 209–212.CrossRefGoogle Scholar
  91. Neiff, J. J. &A. Poi de Neiff. 1990. Litterfall, leaf decomposition and litter colonisationof Tessaria integrifolia (Compositae) in the Parana river floodplain. Hydrobiologia203: 45–52.CrossRefGoogle Scholar
  92. Nilsson, C. &G. Grelsson. 1990. The effects of litter displacement on riverbank vegetation. Canad. J. Bot.68: 735–741.Google Scholar
  93. —,G. Grelsson, M. Dynesius, M. E. Johansson &U. Sperens. 1991a. Small rivers behave like large rivers: effects of postglacial history on plant species richness along riverbanks. J. Biogeogr.18: 533–541.CrossRefGoogle Scholar
  94. —,M. Gardfjell &G. Grelsson. 1991b. Importance of hydrochory in structuring plant communities along rivers. Canad. J. Bot.69: 2631–2633.CrossRefGoogle Scholar
  95. —,E. Nilsson, M. E. Johansson, M. Dynesius, G. Grelsson, S. Xiong, R. Jansson &M. Danvind. 1993. Processes structuring riparian vegetation. Pages 419–431in J. Menon (ed.), Current topics in botanical research. Council of Scientific Research Integration, Trivandrum.Google Scholar
  96. Odum, E. P. 1960. Organic production and turnover in old field succession. Ecology41: 34–49.CrossRefGoogle Scholar
  97. Otto, C. 1975. Energetic relationships of the larval population ofPotamophylax cingulatus (Trichoptera) in a south Swedish stream. Oikos26: 159–169.CrossRefGoogle Scholar
  98. Pastor, J., M. A. Stillwell &D. Tilman. 1987. Little bluestem litter dynamics in Minnesota oldfields. Oecologia72: 327–330.CrossRefGoogle Scholar
  99. Petersen, R. C. &K. W. Cummins. 1974. Leaf processing in a woodland stream ecosystem. Freshwat. Biol.4: 343–368.CrossRefGoogle Scholar
  100. —— &G. M. Ward. 1989. Microbial and animal processing of detritus in a woodland stream. Ecol. Monogr.59: 21–39.CrossRefGoogle Scholar
  101. Peterson, D. L. &G. L. Rolfe. 1982. Nutrient dynamics and decomposition of litterfall in floodplain and upland forests of central Illinois. Forest Sci.28: 667–681.Google Scholar
  102. Polunin, N. V. C. 1982. Processes contributing to the decay of reed (Phragmites australis) litter in fresh water. Arch. Hydrobiol.94:182–209.Google Scholar
  103. —. 1984. The decomposition of emergent macrophytes in fresh water. Adv. Ecol. Res.14: 115–166.Google Scholar
  104. Reice, S. R. 1974. Environmental patchiness and the breakdown of leaf litter in a woodland stream. Ecology55: 1271–1282.CrossRefGoogle Scholar
  105. Reiners, W. A. 1972. Structure and energetics of three Minnesota forests. Ecol. Monogr.42: 71–94.CrossRefGoogle Scholar
  106. Rice, E. L. 1979. Allelopathy: an update. Bot. Rev. (Lancaster)45:15–109.Google Scholar
  107. Schlesinger, W. H. 1978. Community structure, dynamics and nutrient cycling in the Okefenokee cypress swamp-forest. Ecol. Monogr.48: 43–65.CrossRefGoogle Scholar
  108. Shaw, M. W. 1968. Factors affecting the regeneration of sessile oak (Quercus petraea) in North Wales. II. Acorn losses and germination under field condition. J. Ecol.56:647–660.CrossRefGoogle Scholar
  109. Shure, D. J. &M. R. Gottschalk. 1985. Litter-fall patterns within a floodplain forest. Amer. Midl. Naturalist114: 98–111.CrossRefGoogle Scholar
  110. —— &K. A. Parsons. 1986. Litter decomposition processes in a floodplain forest. Amer. Midl. Naturalist115: 314–327.CrossRefGoogle Scholar
  111. Staaf, H. 1987. Foliage litter turnover and earthworm populations in three beech forests of contrasting soil and vegetation types. Oecologia72: 58–64.CrossRefGoogle Scholar
  112. Sydes, C. L. &J. P. Grime. 1981a. Effects of tree leaf litter on herbaceous vegetation in the deciduous woodlands. I. Field investigations. J. Ecol.69: 237–248.CrossRefGoogle Scholar
  113. —. 1981b. Effects of tree leaf litter on herbaceous vegetation in the deciduous woodlands. II. An experimental investigation. J. Ecol.69: 249–262.CrossRefGoogle Scholar
  114. Szczeponska, W. 1977. The effect of remains of helophytes on the growth ofPhragmites communis Trin. andTypha latifolia L. Ekol. Polska25: 437–445.Google Scholar
  115. Tao, D. L., Z. B. Xu &X. Li. 1987. Effect of litter layer on natural regeneration of companion tree species in the Korean pine forest. Environm. Exp. Bot.27: 53–65.CrossRefGoogle Scholar
  116. Tilman, D. 1987. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol. Monogr.57: 189–214.CrossRefGoogle Scholar
  117. — &M. L. Cowan. 1989. Growth of old field herbs on a nitrogen gradient. Funct. Ecol.3: 425–438.CrossRefGoogle Scholar
  118. van der Valk, A. G. 1986. The impact of litter and annual plants on recruitment from the seed bank of a lacustrine wetland. Aquatic Bot.24: 13–26.CrossRefGoogle Scholar
  119. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Shedell &C. E. Cushing. 1980. The river continuum concept. Canad. J. Fish. Aquatic Sci.37: 130–137.CrossRefGoogle Scholar
  120. Vasicek, F. 1985. Natural conditions of floodplain forests. Pages 13–29in M. Penka et al. (eds.), Floodplain forest ecosystem. I. Before water management measures. Elsevier, Amsterdam.Google Scholar
  121. Vitousek, P. M. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology65: 285–298.CrossRefGoogle Scholar
  122. Vogt, K. A., C. C. Grier &D. J. Vogt. 1986. Production, turnover, and nutrient dynamics of above- and below-ground detritus of world forests. Adv. Ecol. Res.15: 303–377.Google Scholar
  123. Ward, J. V. 1989. Riverine-wetland interactions. Pp. 385–400in R. R. Sharitz & J. W. Gibbons (eds.), Freshwater wetlands and wildlife. Office of Scientific and Technical Information, U.S. Dept. of Energy, Oak Ridge.Google Scholar
  124. Ward, H. A. &L. H. McCormick. 1982. Eastern hemlock allelopathy. Forest Sci.28: 681–686.Google Scholar
  125. Watt, A. S. 1974. Senescence and rejuvenation in ungrazed chalk grassland (grassland B) in Breckland: the significance of litter and moles. J. Appl. Ecol.11:1157–1171.CrossRefGoogle Scholar
  126. Weaver, J. E. &N. W. Rowland. 1952. Effect of excessive natural mulch on the development, yield, and structure of native grassland. Bot. Gaz.114:1–19.CrossRefGoogle Scholar
  127. Webster, J. R. 1975. Analysis of potassium and calcium dynamics in stream ecosystems on three southern Appalachian watersheds of contrasting vegetation. Ph.D. dissertation, University of Georgia, Athens.Google Scholar
  128. — &B. C. Patten. 1979. Effects of watershed perturbation on stream potassium and calcium dynamics. Ecol. Monogr.49: 51–72.CrossRefGoogle Scholar
  129. Werner, P. A. 1975. The effect of plant litter on germination in teasel,Dipsacus sylvestris Huds. Amer. Midl. Naturalist94: 470–476.CrossRefGoogle Scholar
  130. West, N. E. 1979. Formation, distribution, and function of plant litter in desert ecosystems. Pp. 647–659in J. A. Perry & D. W. Goodall (eds.), Arid land ecosystems: structure, function, and management. Cambridge University Press, Cambridge.Google Scholar
  131. Whittaker, R. H. &G. M. Woodwell. 1969. Structure, production, and diversity of the oak-pine forest at Brookhaven, New York. J. Ecol.57: 155–174.CrossRefGoogle Scholar
  132. Williams, R. J. &D. H. Ashton. 1987. Effect of disturbance and grazing by cattle on the dynamics of heathland and grassland communities on the Bogong High Plains, Victoria. Austral. J. Bot.35: 413–431.CrossRefGoogle Scholar
  133. Wilson, S. D. &C. A. Zammit. 1992. Tree litter and the lower limits of subalpine herbs and grasses in the Brindabella Range, ACT. Austral. J. Ecol.17: 321–327.CrossRefGoogle Scholar
  134. Winterbourn, M. J. 1976. Fluxes of litter falling into a small beech forest stream. New Zealand J. Marsh Freshwat. Res.10: 399–416.Google Scholar

Copyright information

© The New York Botanical Garden 1997

Authors and Affiliations

  • Shaojun Xiong
    • 1
  • Christer Nilsson
    • 1
  1. 1.Riparian Ecology Group Department of Ecological BotanyUmeå UniversityUmeåSweden

Personalised recommendations