The Botanical Review

, Volume 60, Issue 4, pp 426–439 | Cite as

The role of seed coats in seed viability

  • Yasseen Mohamed-Yasseen
  • Sheryl A. Barringer
  • Walter E. Splittstoesser
  • Suzanne Costanza


The seed coat is the seed’s primary defense against adverse environmental conditions. A hard seed coat protects the seed not only from mechanical stress but also from microorganism invasion and from temperature and humidity fluctuations during storage. Phenolic compounds in the seed coat contribute to seed hardness and inhibition of microorganism growth. During germination, the seed coat protects the seed from hydration stress and electrolyte leakage.


Seed Coat Botanical Review Electrolyte Leakage Seed Viability Seed Coat Color 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


La cubierta de la semilla es la defensa primaria contra el medio ambiente adversa. Una cubierta dura proteja la semilla no solo de tensión mecanica sino también de ana invasion de microorganismos y de cambios en temperatura y humedad durante almacenaje. Los phenolics en la cubierta de la semilla contribuyan a la dureza de la semilla y la inhibitión de crecimiento de microorganismos. Durante la germinatión, la cubierta proteja la semilla de la tension de hidratación y del escape de electrolytes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abdul-Baki, A. A. 1980. Biochemical aspects of seed vigor. Hort. Sci.15: 765–771.Google Scholar
  2. — &J. D. Anderson. 1970. Viability and leaching of sugars from germinating barley. Crop Sci.10: 31–34.Google Scholar
  3. Adamova, O. P. 1964. Longevity of legume seeds under natural conditions. Sborn. Tr. Vres. Inst. Rast. Im. N. I. Vavilova (Leningr.)8: 3–12.Google Scholar
  4. Almedia, L. D. &S. M. P. Falivene. 1982. Efeito da trlihagem e do armazenamento sobre a conservacaode sementes de feijoeiro. Rev. Bras. Sementes4: 59–67.Google Scholar
  5. Anderson, J. D. &J. E. Baker. 1983. Deterioration of seeds during aging. Phytopathology73: 321–325.Google Scholar
  6. —, &E. K. Worthington. 1970. Ultrastructural changes of embryo in wheat infected with storage fungi. Pl. Physiol.46: 857–859.Google Scholar
  7. Angelo, A. J. &R. L. Ory 1983. Lipid degradation during seed deterioration. Phytopathology73: 315–317.Google Scholar
  8. Arnold, R. E. 1963. Effects of harvest damage on the rate of fall in viability of wheat stored at a range of moisture levels. J. Agric. Eng. Res.8: 7–16.Google Scholar
  9. Bachthaler, E. 1983. Pelargonine: skarifiziert saat. Gb. Gw.83: 1103.Google Scholar
  10. Bahattacharyya, S., A. K. Hazra &S. Sen-Mendi. 1985. Accelerated aging of seeds in hot water: Germination characteristics of aged wheat seeds. Seed Sci. Techn.13: 683–690.Google Scholar
  11. Barner, H. &F. Dalskov. 1954. Experience with the storage of Douglas fir seed. Dansk Skovforen. Tidsskr.39: 570–575.Google Scholar
  12. Bass, L. N. 1980. Seed viability during long-term storage. Hort. Rev.2: 117–141.Google Scholar
  13. Battle, W. R. 1948. Effect of scarification on longevity of alfalfa seed. Agron. J.40: 758–759.Google Scholar
  14. Becquerel, P. 1906. Sur la longevite des graines. C. R. Hebd. Acad. Sci. Paris142: 1549–1551.Google Scholar
  15. Bennett, H. W. 1958. The effectiveness of selection for the hard-seeded character in crimson clover. Agron.J.51: 15–16.Google Scholar
  16. Bird, L. S. 1982. The MAR (Multi-Adversity Resistance) system for genetic improvement of cotton. Pl. Disease66: 172–176.Google Scholar
  17. Bourland, F. M. & R. A. Welch. 1985. Deterioration of cottonseed with hot water. Proceedings of the Beltwide Production Research Conference, 89.Google Scholar
  18. Brant, R. R., G. W. McKee &R. W. Cleveland. 1971. Effect of chemical and physical treatment on hard seed ofPenngift crownvetch. Crop Sci.11: 1–6.Google Scholar
  19. Burns, R. E., J. L. Weimer &P. R. Henson. 1958. Factors affecting the longevity of blue lupine seeds. U.S.D.A. Res. Serv. Ser. ARS34: 1–5.Google Scholar
  20. Cal, J. P. &R. L. Obendorf. 1972. Imbibitional chilling injury inZea mays L. altered by initial kernel moisture and maternal parent. Crop Sci.12: 369–373.Google Scholar
  21. Cherry, J. P. 1983. Protein degradation during seed deterioration. Phytopathology73: 317–321.Google Scholar
  22. Christensen, C. M. 1967. Germinability of seeds free of and invaded by storage fungi. Assoc. Off. Seed Anal. Proc.57: 141–143.Google Scholar
  23. —. 1972. Microflora and seed deterioration. Pages 59–149in E. H. Roberts (ed.), Viability of seeds. Syracuse University Press, Syracuse, New York.Google Scholar
  24. —. 1973. Loss of viability in storage: Microflora. Seed Sci. Techn.1: 547–562.Google Scholar
  25. — &H. H. Kaufman. 1969. Grain storage: the role of fungi in quality loss. University of Minnesota Press, Minneapolis.Google Scholar
  26. — &L. C. Lopez. 1963. Pathology of stored seeds. Proc. Int. Seed Testing Assoc.28: 701–711.Google Scholar
  27. Christiansen, M. N. &N. Justus. 1963. Prevention of field deterioration of cottonseed by an impermeable seed coat. Crop Sci.3: 439–440.Google Scholar
  28. —,R. P. Moore &C. L. Rhyne. 1960. Cotton seed quality preservation by a hard seed coat characteristic which restrict internal water uptake. Agron. J.52: 81–84.Google Scholar
  29. Clauss, E. 1961. The phenolic constituents of the testas of peas and their importance for resistance to the agents of root rot. Naturwissenschaften61: 106.Google Scholar
  30. Corner, E. J. H. 1976. The seeds of dicotyledons. Vol. 1. Cambridge University Press, New York.Google Scholar
  31. Dikson, M. H. 1971. Breeding beans,Phaseolus vulgaris L. for improved germination under unfavorable low temperature conditions. Crop Sci.11: 848–850.Google Scholar
  32. — &M. A. Boettger. 1976. Factors associated with resistance in snap beans (P. vulgaris L.). J. Amer. Soc. Hort. Sci.101: 541–544.Google Scholar
  33. Duffus, C. M. &J. C. Slaughter. 1980. Seeds and their uses. John Wiley & Sons, New York.Google Scholar
  34. Duke, S. H. &G. Kakefuda. 1981. Role of the testa in preventing cellular rupture during imbibition of legume seeds. Pl. Physiol.67:449–456.Google Scholar
  35. —,— &T. M. Harvey. 1983. Differential leakage of intercellular substances from imbibing soybean seeds. Pl. Physiol.72: 919–924.Google Scholar
  36. —,—,C. A. Henson, N. L. Loeffler &N. M. van Hulle. 1986. Role of the testa epidermis in the leakage of intercellular substances from imbibing soybean seeds and its implication for seedling survival. Physiol. Pl.68: 625–631.Google Scholar
  37. Ellis, R. H. &E. H. Roberts. 1981. The quantification of aging and survival in orthodox seeds. Seed Sci. Techn.9: 373–409.Google Scholar
  38. Esbo, H. 1954. Preservation of viability of unhulled and hulled timothy seeds during prolonged storage under normal conditions in a seed repository. K. Skogs. Lantbruksakad. Tidskr.93: 123–148.Google Scholar
  39. —. 1960. Vitality of timothy seed during long storage. Proc. Int. Seed Testing Assoc.25: 580–589.Google Scholar
  40. Flores, F. B. 1938. Viability of seeds of cotton as affected by moisture and age under different methods of storing. Philipp. J. Agric.9: 347–356.Google Scholar
  41. Furbeck, S. M., F. M. Bourland &E. R. Cabrera. 1989. Comparison of the hot water and accelerated aging technique for deterioration of cottonseed. Seed Sci. Techn.17: 255–261.Google Scholar
  42. Gillikin, J. W. &J. S. Graham. 1991. Purification and developmental analysis of the major anionic peroxidase from the seed coat ofGlycine max. Pl. Physiol.96: 214–220.Google Scholar
  43. Graber, L. F. 1922. Scarification as it affects seed longevity of alfalfa seed. Agron. J.14 298–302.Google Scholar
  44. Gvozdeva, Z. V. &N. V. Zhukova. 1971. Influence of storage conditions on longevity of seeds of bean, chickpea and soybean. Trudy Prikl. Bot.45: 161–168.Google Scholar
  45. Haferkamp, M. E., L. Smith &R. A. Nilan. 1953. Studies on aged seeds. I. Relation of age of seed to germination and longevity. Agron. J.45: 434–437.Google Scholar
  46. Halloin, J. M. 1983. Deterioration resistance mechanisms in seeds. Phytopathology73: 335–339.Google Scholar
  47. —. 1986a. Microorganisms and seed deterioration. Pages 89–99in M. B. McDonald & C. J. Nelson (eds.), Physiology of seed deterioration. Crop Science Society of America, Madison, Wisconsin.Google Scholar
  48. —. 1986b. Seed improvement through genetic resistance to pathogensis.In M. B. McDonald & C. J. Nelson (eds.), Physiological-pathological interactions affecting seed deterioration. Crop Science Society of America, Madison, Wisconsin.Google Scholar
  49. Herman, G. E. 1983. Mechanisms of seed infection and pathogenesis. Phytopathology73: 326–329.Google Scholar
  50. Huss, E. 1956. On the quality of forest tree seed and other factors affecting sowing. Meddel. Statens. Skogsforskningsinst.46: 1–59.Google Scholar
  51. Kalashink, M. F. &A. I. Naumenko. 1979. Sowing and yield characteristics of sorghum seed as a function of length of storage. Kukuruza.3: 1–27.Google Scholar
  52. Kamara, S. K. 1967. Studies on storage of mechanically damaged seed of scots pine (Pinus silvestris L.). Stud. Forest. Suec.42: 1–19.Google Scholar
  53. Kannenberg, L. W. &R. W. Allard. 1964. An association between pigment and lignin formation in the seed coat of the lima bean. Crop Sci.4: 621–622.Google Scholar
  54. Khoroshailov, N. G. &N. V. Zhukova. 1973. Prolonged storage of collected seed samples. Trudy Prikl. Bot.49: 269–279.Google Scholar
  55. King, M. W. &E. H. Roberts. 1979. The storage of recalcitrant seeds: Achievements and possible approaches. International Board for Plant Genetic Resources, Rome.Google Scholar
  56. Kraft, J. M. 1977. The role of delphinidin and sugars in the resistance of pea seedlings ofFusarium root rot. Phytomorphology67: 1057–1061.Google Scholar
  57. Kueneman, E. A. 1983. Genetic control of seed longevity in soybeans. Crop Sci.23: 5–8.Google Scholar
  58. Leopold, A. C. 1975. Aging and senescence in plant development. Pages 1–11in E. J. Masora (ed.), Physiology of aging. CRC Press, Boca Raton, Florida.Google Scholar
  59. MacKay, D. B., J. H. B. Tonkin &R. J. Flood. 1970. Experiments in crop seed storage at Cambridge. Landw. Forsch. Sonderheft.24: 189–196.Google Scholar
  60. Mamicpic, N. G. &W. P. Caldwell. 1963. Effects of mechanical damage and moisture content upon viability of soybean in sealed storage. Proc. Assoc. Off. Seed Anal.53: 215–220.Google Scholar
  61. Maude, R. B. 1972. Seed-borne diseases and their control. Pages 325–335in W. Heydecker (ed.), Seed ecology. Butterworth, London.Google Scholar
  62. Mauseth, J. D. 1988. Plant anatomy. Benjamin/Cummings, Menlo Park, California.Google Scholar
  63. Mayer, A. M. &A. Poljakoff-Mayber. 1989. The germination of seeds. Pergamon Press, New York.Google Scholar
  64. Mayne, R. Y., G. A. Harper, A. O. Franz, Jr.,L. S. Lee &L. A. Goldblatt. 1969. Retardation of the elaboration of aflatoxin in cottonseed by impermeability of the seedcoats. Crop Sci.9: 147–150.Google Scholar
  65. McGee, D. C. 1983. Symposium: Deterioration mechanisms in seeds. Introduction. Phytopathology73: 314–315.Google Scholar
  66. Metzer, R. B. 1961. Effects of the pneumatic conveyor on seed viability. Texas Agric. Exp. Sta. Misc. Pub.508: 1–10.Google Scholar
  67. Mills, J. T. 1983. Insect-fungus associations influencing seed deterioration. Phytopathology73: 330–335.Google Scholar
  68. —. 1986. Postharvest insect-fungus associations affecting seed deterioration. Pages 39–51in J. B. McDonald and C. J. Nelson (eds.), Physiological-pathological interactions affecting seed deterioration. Crop Science Society of America, Madison, Wisconsin.Google Scholar
  69. Minor, H. C. &E. H. Paschal. 1982. Variation in storability of soybeans under simulated tropical conditions. Seed Sci. Techn.10: 131–139.Google Scholar
  70. Mixon, A. C. &A. K. Rogers. 1973. Peanut accessions resistant to seed infection byAsperigillus flavus. Agron. J.65: 560–562.Google Scholar
  71. Mohamed-Yasseen, Y. 1991. Onion seed aging and plant regeneration in vitro. Ph.D. diss., University of Illinois, Urbana.Google Scholar
  72. — &W. E. Splittstoesser. 1990a. Scanning electron microscopy for the study of onion seed quality. Proc. Illinois State Hort. Soc.124: 103–104.Google Scholar
  73. —. 1990b. The roleof the onion (Allium cepa L.) seed coat in aging and ultrastructural changes in root tips of low-vigor seedlings. Proc. Pl. Growth Regulator Soc.17: 10–15.Google Scholar
  74. —,T. L. Davenport &W. E. Splittstoesser. 1993. Seed coat and fungal infection associated with onion seed aging. Proc. Pl. Growth Regulator Soc.20: 129–133.Google Scholar
  75. —,B. Jakstys &W. E. Splittstoesser. 1991. Methods of onion seed preparation for scanning electron microscope studies of the seed coat. J. Electron Microscopy Techn.18: 207–208.Google Scholar
  76. Moore, R. P. 1972. Effects of mechanical injury on seed viability. Pages 94–113in E. H. Roberts (ed.), Viability of seeds. Syracuse University Press, Syracuse, New York.Google Scholar
  77. Moreno-Martinez, E. &L. Mandugano. 1985. Use of fungicide for corn seed viability preservation. Seed Sci. Techn.13: 235–241.Google Scholar
  78. Neergard, P. 1977. Seed pathology. Vols. 1 & 2. John Wiley, New York.Google Scholar
  79. Nooden, L. D. 1988. The phenomena of senescence and aging. Pages 1–50in L. D. Nooden & A.C. Leopold (eds.), Senescence and aging in plants. Academic Press, New York.Google Scholar
  80. — &A. C. Leopold. 1978. Phytohormones and the endogenous regulation of senescence and abscission. Vol. 2. Pages 329–369in D.S. Letham, P. B. Goodwin & T. V. Higgins (eds.), Phytohormones and related compounds. A comprehensive treatise. Elsevier, Amsterdam.Google Scholar
  81. Oliveria, M. D. A., S. Matthews &A. A. Powell. 1984. The role of split seed coats in determing seed vigor in commercial seed lots of soybean as measured by electrical conductivity test. Seed Sci. Techn.12: 659–668.Google Scholar
  82. Parrish, D. J., A. C. Leopold &M. A. Hanna. 1982. Turgor changes with accelerated aging of soybeans. Crop Sci.22: 666–669.Google Scholar
  83. Petruzzelli, L., L. Lioi, G. Carello, S. Morgutti &S. Cocucci. 1982. The effect of fusicoccin and monovalent cations on the viability of wheat seeds. J. Exp. Bot.33: 118–124.Google Scholar
  84. Pollock, B. M. &V. K. Toole. 1966. Imbibition period as the critical temperature-sensitive stage in germination of lima bean seeds. Pl. Physiol.41: 221–229.Google Scholar
  85. Potts, H. C. 1978. Hard seed soybeans. Proc. 8th Soybean Res. Conf.8: 33–42.Google Scholar
  86. —,J. Daungparta, W. G. Hairston &J. C. Delouche. 1978. Some influences of hardseededness of soybean seed quality. Crop Sci.18: 221–224.Google Scholar
  87. Powell, A. A. &S. Matthews. 1978. The damaging effect of water on dry pea embryos during inhibition. J. Exp. Bot.29: 1215–1229.Google Scholar
  88. —,M. D. A. Oliveria &S. Matthews. 1986. The role of imbibition damage in determining the vigor of white and colored seed lots of dwarf Frech bean (Phaseolus vulgaris). J. Exp. Bot.37: 716–722.Google Scholar
  89. Prasad, K. &J. L. Weigle. 1976. Association of seed coat factors with resistance toRhizoctonia soalni inPhaseolus vulgaris. Phytopathology6: 342–345.Google Scholar
  90. Priestley, D. A. 1986. Seed aging. Cornell University Press, Ithaca, New York.Google Scholar
  91. — &A. C. Leopold. 1986. Alleviation of imbibitional chilling injury by the use of lanolin. Crop Sci.16: 1252–1254.Google Scholar
  92. Roberts, E. H. 1972. Loss of viability and crop yields. Pages 307–359in E. H. Roberts (ed.), Viability of seeds. Chapman and Hall, London.Google Scholar
  93. —. 1973. Loss of viability: Ultrastructural and physiology aspects. Seed Sci. Techn.1: 529–545.Google Scholar
  94. Roos, E. E. 1984. Genetic shifts in mixed bean populations. I. Storage effects. Crop Sci.24: 40–244.Google Scholar
  95. —. 1988. Genetic changes in a collection over time. Hort. Sci.23: 86–90.Google Scholar
  96. Schmidt, D. H. &W. E. Tracy. 1988. Endosperm type, inbred background and leakage of seed electrolytes during inhibition in sweet corn. J. Amer. Soc. Hort. Sci.113: 269–272.Google Scholar
  97. Scott, G. 1981. Improvement for accelerated aging response of seed in maize population. Crop Sci.21: 41–43.Google Scholar
  98. Shahi, J. P. &M. P. Pandey. 1982. Inheritance of seed permeability in soybean. Indian J. Genet. Pl. Breed.42: 196–199.Google Scholar
  99. Simpson, D. M. 1946. The longevity of cottonseed as affected by climate and seed treatment. Agron. J.38: 32–345.Google Scholar
  100. Singh, J. N. &R. K. Setia. 1974. The germination of different qualities of soybean seeds under varying storage conditions. Bull. Grain Techn.12: 3–10.Google Scholar
  101. Splittstoesser, W E. &Y. Mohamed-Yasseen. 1991. Scanning electron microscopic studies on onion seeds in relation to seed storability. Interamer. Soc. Trop. Hort.35: 127–132.Google Scholar
  102. -,-& R. M. Skirvin. 1994. Screening for onion seeds with hard seed coats and propagation in vitro. Proc. Pl. Growth Regulator Soc.21: in press.Google Scholar
  103. Starzinger, E. K., S. H. West &K. Hinson. 1982. An observation on the relationship of soybean seed coat color to viability maintenance. Seed Sci. Techn.10: 301–305.Google Scholar
  104. Styer, R. C., D. J. Cantliffe &C. B. Hall. 1980. The relationship of ATP concentration to germination and seedling vigor of vegetable seeds stored under various conditions. J. Amer. Soc. Hort. Sci.105: 298–303.Google Scholar
  105. Taber, R. A., R. E. Petit, C. R. Benedict, J. W. Dieckert &D. L. Ketring. 1973. Comparison ofAsperigillus flavus tolerant and susceptible peanut lines. I. Light microscope investigation. J. Amer. Peanut Res. Ed. Assoc.5: 206–207.Google Scholar
  106. Tully, R. E., M. E. Musgrave &A. C. Leopold. 1981. The seed coat as a control of imbibitional chilling injury. Crop Sci.21: 312–317.Google Scholar
  107. Van der Maesen, L. J. G. 1984. Seed storage, viability and rejuvenation. Pages 13–22in J. R. Witcombe & W. Erskine (eds.), Genetic resources and their exploitation: Chickpeas, fava beans and lentils. Nyhoff-Junk, The Hague.Google Scholar
  108. Ventura, A. R. &D. P. Garrity. 1987. Effect of hot water treatments on the quality of rice seed destined for international exchange. Crop Sci.27: 278–283.Google Scholar
  109. Wyatt, J. E. 1977. Seed coat and water absorption properties of seed of near-isogenetic snap bean lines differing in seed coat color. J. Amer. Soc. Hort. Sci.102: 478–480.Google Scholar
  110. Yarchuk, T. A. 1966. Longevity of maize seed of differing consistency. Trudy Prikl. Bot.38: 157–159.Google Scholar
  111. — &I. V. Leizerson. 1972. Viability of maize seed as a function of their period of storage. Trudy Prikl. Bot.44: 215–219.Google Scholar
  112. Yasue, T. &N. Kinomura. 1984. Studies on the mechanism of seedcoat cracking and its prevention in soybeans. Jap. J. Crop Sci.53: 87–93.Google Scholar
  113. York, D., M. H. Dickson &G. S. Abawi. 1977. Inheritance of resistance to seed decay and pre-emergence damping off caused byPythium ultimum trow in snap beans. Pl. Disease Rep.61: 285–289.Google Scholar

Copyright information

© The New York Botanical Garden 1994

Authors and Affiliations

  • Yasseen Mohamed-Yasseen
    • 1
  • Sheryl A. Barringer
    • 2
  • Walter E. Splittstoesser
    • 1
  • Suzanne Costanza
    • 3
  1. 1.Department of HorticultureUniversity of IllinoisUrbanaUSA
  2. 2.Department of Food Sciences & TechnologyOhio State UniversityColumbusUSA
  3. 3.Department of Natural ScienceSt. John’s UniversityStaten IslandUSA

Personalised recommendations