The Botanical Review

, Volume 62, Issue 2, pp 186–202 | Cite as

Plant phenolics in allelopathy

Article

Abstract

Phenolics are one of the many secondary metabolites implicated in allelopathy. To establish that allelopathy functions in a natural ecosystem, the allelopathic bioassay must be ecologically realistic so that responses of appropriate bioassay species are determined at relevant concentrations. It is important to isolate, identify, and characterize phenolic compounds from the soil. However, since it is essentially impossible to simulate exact field conditions, experiments must be designed with conditions resembling those found in natural systems. It is argued that allelopathic potential of phenolics can be appreciated only when we have a good understanding of 1) species responses to phenolic allelochemicals, 2) methods for extraction and isolation of phenolic allelochemicals, and 3) how abiotic and biotic factors affect phenolic toxicity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aliotta, G., G. Cafiero, V. D. Feo &R. Sacchi. 1994. Potential allelochemicals fromRuta graveolens L. and their action on radish seeds. J. Chem. Ecol.20: 2761–2775.CrossRefGoogle Scholar
  2. Alsaadawi, I. S. &A. J. Al-Rubeaa. 1985. Allelopathic effects ofCitrus aurantium L. I. Vegetational patterning. J. Chem. Ecol.11: 1515–1525.CrossRefGoogle Scholar
  3. Appel, H. M. 1993. Phenolics in ecological interactions: The importance of oxidation. J. Chem. Ecol.19: 1521–1552.CrossRefGoogle Scholar
  4. Ben-Hammouda, M., R. J. Kremer, H. C. Minor &M. Sarvar. 1995. A chemical basis for differential allelopathic potential ofSorghum hybrids on wheat. J. Chem. Ecol.21: 775–786.CrossRefGoogle Scholar
  5. Blum, U. 1995. The value of model plant-microbe-soil systems for understanding processes associated with allelopathic interaction: One example. Pages 127–131in Inderjit, K. M. M. Dakshini & F. A. Einhellig (eds.), Allelopathy: Organisms, processes, and applications. American Chemical Society, Washington, DC.Google Scholar
  6. — &J. Rebbeck. 1989. Inhibition and recovery of cucumber roots given multiple treatments of ferulic acid in nutrient culture. J. Chem. Ecol.15: 917–928.CrossRefGoogle Scholar
  7. — &S. R. Shafer. 1988. Microbial populations and phenolic acids in soil. Soil Biol. Biochem.20: 793–800.CrossRefGoogle Scholar
  8. —,S. B. Weed &B. R. Dalton. 1987. Influence of various soil factors on the effects of ferulic acid on leaf expansion of cucumber seedlings. Pl. & Soil98: 111–130.CrossRefGoogle Scholar
  9. —,T. R. Wentworth, K. Klein, A. D. Worsham, L. D. King, T. M. Gerig &S. W. Lyu. 1991. Phenolic acid content in soil from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems. J. Chem. Ecol.17: 1045–1067.CrossRefGoogle Scholar
  10. —,T. M. Gerig, A. D. Worsham &L. D. King. 1993. Modification of allelopathic effects of p-coumaric acid on morning glory seedling biomass by glucose, methionine, and nitrate. J. Chem. Ecol.19: 2791–2811.CrossRefGoogle Scholar
  11. —,A. D. Worsham, L. D. King &T. M. Gerig. 1994. Use of water and EDTA extractions to estimate available (free and reversibly bound) phenolic acids in Cecil soils. J. Chem. Ecol.20: 341–359.CrossRefGoogle Scholar
  12. Box, J. D. 1983. Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res.17: 511–525.CrossRefGoogle Scholar
  13. Chapin, F. S. III. 1995. New cog in the nitrogen cycle. Nature377: 199–200.CrossRefGoogle Scholar
  14. Chapman, S. J. &J. M. Lynch. 1983. The relative roles of micro-organisms and their metabolites in the phytotoxicity of decomposing plant residues. Pl. & Soil74: 457–459.CrossRefGoogle Scholar
  15. Cheng, H. H. 1995. Characterization of the mechanisms of allelopathy: Modeling and experimental approaches. Pages 132–141in Inderjit, K. M. M. Dakshini & F. A. Einhellig (eds.), Allelopathy: Organisms, processes, and applications. American Chemical Society, Washington, DC.Google Scholar
  16. Chou, C. H. &Z. A. Patrick. 1976. Identification and phytotoxic activity of compounds produced during decomposition of corn and rye residues in soil. J. Chem. Ecol.2: 369–387.CrossRefGoogle Scholar
  17. — &G. R. Waller. 1983. Allelochemicals and pheromones. Institute of Botany, Academia Sinica Monograph Series 5, Taipei.Google Scholar
  18. Dalton, B. R. 1989. Physiochemical and biological processes affecting the recovery of exogenously applied ferulic acid from tropical forest soils. Pl. & Soil115: 13–22.CrossRefGoogle Scholar
  19. —,U. Blum &S. B. Weed. 1983. Allelopathic substances in ecosystems: Effectiveness of sterile soil components in altering recovery of ferulic acid. J. Chem. Ecol.9: 1185–1201.CrossRefGoogle Scholar
  20. —,S. B. Weed &U. Blum. 1987. Plant phenolic acids in soils: A comparison of extraction procedures. Soil Sci. Soc. Amer. J.51: 1515–1521.CrossRefGoogle Scholar
  21. —,——. 1989a. Plant phenolic acids in soils: Sorption of ferulic acid by soil and soil components sterilized by different techniques. Soil Biol. Biochem.21: 1011–1018.CrossRefGoogle Scholar
  22. —,——. 1989b. Differential sorption of exogenously applied ferulic, p-coumaric, p-hydroxybenzoic, and vanillic acids in soil. Soil Sci. Soc. Amer. J.53: 757–762.CrossRefGoogle Scholar
  23. Dao, T. H. 1987. Sorption and mineralization of plant phenolic acids in soil. Pages 358–370in G. R. Waller (ed.), Allelochemicals: Role in agriculture and forestry. American Chemical Society, Washington, DC.Google Scholar
  24. Del Moral, R. &R. G. Cates. 1971. Allelopathic potential of the dominant vegetation of western Washington. Ecology52: 1030–1037.CrossRefGoogle Scholar
  25. — &C. H. Muller. 1970. Allelopathic effects ofEucalyptus camaldulensis. Amer. Midl. Naturalist83: 254–282.CrossRefGoogle Scholar
  26. De Scisciolo, B., D. J. Leopold &D. C. Walton. 1990. Seasonal patterns of juglone in soil beneathJuglans nigra (black walnut) and influence ofJ. nigra on understory vegetation. J. Chem. Ecol.16: 1111–1130.CrossRefGoogle Scholar
  27. Dornbos, D. L., Jr. &G. F. Spencer. 1990. Natural product phytotoxicity: A bioassay suitable for small quantities of slightly water-soluble compounds. J. Chem. Ecol.16: 339–352.CrossRefGoogle Scholar
  28. Einhellig, F. A. 1995a. Allelopathy: Current status and future goals. Pages 1–24in Inderjit, K. M. M. Dakshini & F. A. Einhellig (eds.), Allelopathy: Organisms, processes, and applications. American Chemical Society, Washington, DC.Google Scholar
  29. —. 1995b. Mechanism of action of allelochemicals in allelopathy. Pages 96–116in Inderjit, K. M. M. Dakshini & F. A. Einhellig (eds.), Allelopathy: Organisms, processes, and applications. American Chemical Society, Washington, DC.Google Scholar
  30. — &I. F. Souza. 1992. Sorgoleone found in grain sorghum root exudates. J. Chem. Ecol.18: 1–12.CrossRefGoogle Scholar
  31. —,M. K. Schon &J. A. Rasmussen. 1982. Synergistic effects of four cinnamic acid compounds on grain sorghum. J. Pl. Growth Regulat.1: 251–258.Google Scholar
  32. —,G. R. Leather &L. L. Hobbs. 1985. Use ofLemna minor L. as a bioassay in allelopathy. J. Chem. Ecol.11: 65–72.CrossRefGoogle Scholar
  33. Evans, L. J. 1980. Podzol development north of lake Huron in relation to geology and vegetation. Canad. J. Soil Sci.60: 527–539.CrossRefGoogle Scholar
  34. Fischer, N. H., G. B. Williamson, J. D. Weidenhamer &D. R. Richardson. 1994. In search of allelopathy in Florida scrub: The role of allelopathy. J. Chem. Ecol.20: 1355–1380.CrossRefGoogle Scholar
  35. Fisher R. F. 1987. Allelopathy: A potential cause of forest regeneration failure. Pages 176–184in G. R. Waller (ed.), Allelochemicals: Role in agriculture and forestry. American Chemical Society, Washington, DC.Google Scholar
  36. Folin, O. &Ciocalteu V. 1927. On tryosine and tryptophane determination in proteins. J. Biol. Chem.73: 627–650.Google Scholar
  37. — &W. Denis. 1912. On phosphotungstic phosphomolybdic compounds as color reagents. J. Biol. Chem.12: 239–243.Google Scholar
  38. Gallet, C. &P. Lebreton. 1995. Evolution of phenolic patterns in plants and associated litters and humus of a mountain forest ecosystem. Soil Biol. Biochem.27: 157–165.CrossRefGoogle Scholar
  39. Grodzinsky, A. M. 1987. Allelopathy in the Soviet Union. Pages 39–43in G. R. Waller (ed.), Allelochemicals: Role in agriculture and forestry. American Chemical Society, Washington, DC.Google Scholar
  40. Hagerman, A. E. &L. G. Butler. 1991. Choosing appropriate methods and standards for assessing tannin. J. Chem. Ecol.15: 1795–1810.CrossRefGoogle Scholar
  41. Haider, K. &J. P. Martin. 1975. Decomposition of specifically carbon-14 labelled benzoic and cinnamic acid derivatives in soil. Soil Sci. Soc. Amer. Proc.39: 657–662.CrossRefGoogle Scholar
  42. Hall, A. B., U. Blum &R. C. Fites. 1982. Stress modification of allelopathy ofHelianthus annuus L. debris on seed germination. Amer. J. Bot.69: 776–783.CrossRefGoogle Scholar
  43. Harborne, J. B., ed. 1989a. Methods in plant biochemistry. I. Plant phenolics. Academic Press, London.Google Scholar
  44. —. 1989b. General procedures and measurements of total phenolics. Pages 1–28in J. B. Harborne (ed.), Methods in plant biochemistry. I. Plant phenolics. Academic Press, London.Google Scholar
  45. Hartley, R. D. &H. Buchan. 1979. High-performance liquid chromatography of phenolic acids and aldehydes derived from plants or from the decomposition of organic matter in soil. J. Chromatogr.180: 139–143.CrossRefGoogle Scholar
  46. Hattori, S. &I. Noguchi. 1959. Microbial degradation of rutin. Nature184: 1145–1146.PubMedCrossRefGoogle Scholar
  47. Heisey, R. M. 1990. Evidence of allelopathy by tree-of-heaven (Ailanthus altissima). J. Chem. Ecol.16: 2039–2055.CrossRefGoogle Scholar
  48. Huang, P. M., T. S. C. Wang, M. K. Wang, M. H. Wu &N. W. Hsu. 1977. Retention of phenolic acids by noncrystalline hydroxy-aluminum and-iron compounds and clay minerals of soil. Soil Sci.123: 213–219.CrossRefGoogle Scholar
  49. Inderjit &K. M. M. Dakshini. 1991a. Investigation on some aspects of chemical ecology of cogon grass,Imperata cylindrica (L.) Beauv. J. Chem. Ecol.17: 343–352.CrossRefGoogle Scholar
  50. ——. 1991b. Hesperetin 7-rutinoside (hesperidin) andtaxifolin 3-arabinoside as germination and growth inhibitors in soils associated with the weedPluchea lanceolata (DC.) C. B. Clarke (Asteraceae). J. Chem. Ecol.17: 1585–1591.CrossRefGoogle Scholar
  51. ——. 1992a. Formononetin 7-O-glucoside (ononin), an additional inhibitor in soils associated with the weedPluchea lanceolata (DC.) C. B. Clarke (Asteraceae). J. Chem. Ecol.18: 713–718.CrossRefGoogle Scholar
  52. ——. 1992b. Interference potential ofPluchea lanceolata (Asteraceae): Growth and physiological responses of asparagus bean,Vigna unguiculata var.sesquipedalis. Amer. J. Bot.79: 977–981.CrossRefGoogle Scholar
  53. ——. 1994a. Allelopathic effect ofPluchea lanceolata (Asteraceae) on characteristics of four soils and tomato and mustard growth. Amer. J. Bot.81: 799–804.CrossRefGoogle Scholar
  54. ——. 1994b. Allelopathic potential of the phenolics from the roots ofPluchea lanceolata. Physiol. Pl.92: 571–576.CrossRefGoogle Scholar
  55. ——. 1994c. Effect of cultivation on allelopathic interference success of the weedPluchea lanceolata. J. Chem. Ecol.20: 1179–1188.CrossRefGoogle Scholar
  56. ——. 1994d. Algal allelopathy. Bot. Rev.60: 182–196.Google Scholar
  57. ——. 1995a. On laboratory bioassays in allelopathy. Bot. Rev.61: 28–44.CrossRefGoogle Scholar
  58. ——. 1995b. Quercetin and quercitrin fromPluchea lanceolata and their effect on growth of asparagus bean. Pages 86–93in Inderjit, K. M. M. Dakshini & F. A. Einhellig (eds.), Allelopathy: Organisms, processes, and applications. American Chemical Society, Washington, DC.Google Scholar
  59. ——. 1995c. Allelopathic potential of an annual weed,Polypogon monspeliensis, in crops in India. Pl. & Soil173: 251–257.CrossRefGoogle Scholar
  60. -& -. 1996. Allelopathic potential ofPluchea lanceolata: A comparative study of cultivated fields. Weed Sci. In press.Google Scholar
  61. — &F. A. Einhellig. 1995. Allelopathy: Organisms, Processes and Applications. ACS Symposium Series 582. American Chemical Society, Washington, DC.Google Scholar
  62. Inoue, M., H. Nishimura, H. H. Li &J. Mizutani. 1992. Allelochemicals fromPolygonum sachalinense Fr. Schm. (Polygonaceae) J. Chem. Ecol.18: 1833–1840.CrossRefGoogle Scholar
  63. Jalal, M. A. F. &D. J. Read. 1983. The organic acid decomposition ofCalluna heathland soil with special reference to phyto-and fungitoxicity. II. Monthly quantitative determination of the organic acid content ofCalluna and spruce-dominated soil. Pl. & Soil70: 273–286.CrossRefGoogle Scholar
  64. —,— &E. Haslam. 1982. Phenolic composition and its seasonal variation inCalluna vulgaris. Phytochemistry21: 1397–1401.CrossRefGoogle Scholar
  65. Kafkafi, U., B. Bar-Yosef, R. Rosenberg &G. Sposito. 1988. Phosphorus adsorption by kaolinite and montmorillonite: II. Organic anion competition. Soil Sci. Soc. Amer. J.52: 1585–1589.CrossRefGoogle Scholar
  66. Kaminsky, R. 1981. The microbial origin of the allelopathic potential ofAdenostoma fasciculatum H. & A. Ecol. Monogr.51: 365–382.CrossRefGoogle Scholar
  67. — &W. H. Mullen 1977. The extraction of soil phytotoxins using a neutral EDTA solution. Soil Sci.124: 205–210.CrossRefGoogle Scholar
  68. ——. 1978. A recommendation against the use of alkaline extraction in study of allelopathy. Pl. & Soil49: 641–645.CrossRefGoogle Scholar
  69. Kimber, R. W. L. 1973. Phytotoxicity from plant residues. II. The effect of time of rotting of straw from some grasses and legumes on growth of wheat seedlings. Pl. & Soil38: 347–361.CrossRefGoogle Scholar
  70. Klein, K. &U. Blum. 1990. Effects of soil nitrogen level on ferulic acid inhibition of cucumber leaf expansion. J. Chem. Ecol.16: 1371–1383.CrossRefGoogle Scholar
  71. Koeppe, D. E., L. M. Southwick &J. E. Bittell. 1976. The relationship of tissue chlorogenic acid concentration and leaching of phenolics from sunflowers grown under varying phosphate nutrient conditions. Canad. J. Bot.54: 593–599.CrossRefGoogle Scholar
  72. Kogel, I. &W. Zech. 1985. The phenolic acid content of cashew leaves (Anacardium occidentale L.) and of the associated humus layer, Senegal. Geoderma35: 119–125.CrossRefGoogle Scholar
  73. Kuiters, A. T. 1990. Role of phenolic substances from decomposing forest litter in plant-soil interactions. Acta Bot. Neerl.39: 329–348.Google Scholar
  74. — &C. A. J. Denneman. 1987. Water-soluble phenolic substances in soils under several coniferous and deciduous tree species. Soil Biol. Biochem.19: 765–769.CrossRefGoogle Scholar
  75. Lawrey, J. D. 1995. Lichen allelopathy: A review. Pages 26–38in Inderjit, K. M. M. Dakshini & F. A. Einhellig (eds.), Allelopathy: Organisms, processes, and applications. American Chemical Society, Washington, DC.Google Scholar
  76. Leather, G. R. &F. A. Einhellig. 1986. Bioassays in the study of allelopathy. Pages 133–145in A. R. Putnam & C. S. Tang (eds.), The science of allelopathy. John Wiley, New York.Google Scholar
  77. Lehman, R. H. &E. L. Rice. 1972. Effects of deficiency of nitrogen, potassium, and sulfur on chlorogenic acid and scopoletin in sunflower. Amer. Midl. Naturalist87: 71–80.CrossRefGoogle Scholar
  78. Levin, D. A. 1971. Plant phenolics: An ecological perspective. Amer. Naturalist105: 157–181.CrossRefGoogle Scholar
  79. Li, H. H., M. Inoue, H. Nishimura, J. Mizutani &E. Tsuzuki. 1993. Interactions of trans-cinnamic acid, its released phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. J. Chem. Ecol.19: 1775–1787.CrossRefGoogle Scholar
  80. Liebl, R. H. &A. D. Worsham. 1983. Inhibition of pitted morning glory (Ipomoea lacunosa L.) and certain other weed species by phytotoxic components of wheat (Triticum aestivum L.) straw. J. Chem. Ecol.9: 1027–1043.CrossRefGoogle Scholar
  81. Lodhi, M. A. K. 1975. Soil plant phytotoxicity and its possible significance in patterning of herbaceous vegetation in a bottomland forest. Amer. J. Bot.62: 618–622.CrossRefGoogle Scholar
  82. —. 1976. Role of allelopathy as expressed by dominating trees in a lowland forest in controlling the productivity and pattern of herbaceous growth. Amer. J. Bot.63: 1–8.CrossRefGoogle Scholar
  83. —. 1978. Allelopathic effects of decaying litter of dominant trees and their associated soil in a lowland forest community. Amer. J. Bot.65: 340–344.CrossRefGoogle Scholar
  84. Lyu, S. W. &U. Blum. 1990. Effect of ferulic acid, an allelopathic compound, on net P, K, and water uptake in cucumber seedling in a split-root system. J. Chem. Ecol.16: 2429–2439.CrossRefGoogle Scholar
  85. Mallik, M. A. B., R. Puchala &F. A. Grosz. 1994. A growth-inhibitory factor from lambsquarters (Chenopodium album). J. Chem. Ecol.20: 957–967.CrossRefGoogle Scholar
  86. McPherson, J. K. &C. H. Muller. 1969. Allelopathic effects ofAdenostoma fasciculatum chamise in the California chaparral. Ecol. Monogr.39: 173–198.CrossRefGoogle Scholar
  87. Mole, S. &P. G. Waterman. 1987. A critical analysis of techniques for measuring tannins in ecological studies. II. Techniques for biochemically defining tannins. Oecologia72: 148–156.CrossRefGoogle Scholar
  88. Muller, C. H. 1966. The role of chemical inhibition (allelopathy) in vegetational composition. Bull. Torrey Bot. Club93: 332–351.CrossRefGoogle Scholar
  89. —. 1969. Allelopathy as a factor in ecological processes. Vegetatio18: 348–357.CrossRefGoogle Scholar
  90. Netzly, D. H., J. L. Riopel, G. Ejeta &L. G. Butler. 1988. Germination stimulants of witchweed (Striga asiatica) from hydrophobic root exudate of sorghum (Sorghum bicolor). Weed Sci.36: 441–446.Google Scholar
  91. Nicollier, G. F., D. F. Pope &A. C. Thompson. 1983. Biological activity of dhurrin and other compounds from Johnson grass (Sorghum halepense). Agric. Food Chem.31: 744–748.CrossRefGoogle Scholar
  92. Northup, R. R., Y. Zengshou, R. A. Dahlgren &K. A. Vogt. 1995. Polyphenol control of nitrogen release from pine litter. Nature377: 227–229.CrossRefGoogle Scholar
  93. Palm, C. A. &P. A. Sanchez. 1991. Nitrogen release from leaves of some tropical legumes as affected by their lignin and polyphenol contents. Soil Biol. Biochem.23: 83–88.CrossRefGoogle Scholar
  94. Perry, D. A. &C. Choquette. 1987. Allelopathic effects on mycorrhizae: Influence on structure and dynamics of forest ecosystems. Pages 185–194in G. R. Waller (ed.), Allelochemicals: Role in agriculture and forestry. American Chemical Society, Washington, DC.Google Scholar
  95. Ponder, F., Jr. 1987. Allelopathic interference of black walnut trees with nitrogen-fixing plants in mixed plantings. Pages 195–204in G. R. Waller (ed.), Allelochemicals: Role in agriculture and forestry. American Chemical Society, Washington, DC.Google Scholar
  96. — &S. H. Tadros. 1985. Juglone concentration in soil beneath black walnut interplanted with nitrogen-fixing species. J. Chem. Ecol.11: 937–942.CrossRefGoogle Scholar
  97. Pue, K. J., U. Blum, T. M. Gerig &S. R. Shafer. 1995. Mechanism by which noninhibitory concentration of glucose increase inhibitory activity of p-coumaric acid on morning-glory seedling biomass accumulation. J. Chem. Ecol.21: 833–847.CrossRefGoogle Scholar
  98. Putnam, A.R. 1985. Weed allelopathy. Pages 132–155in S. O. Duke (ed.), Weed physiology. CRC Press, Boca Raton, FL.Google Scholar
  99. — &C. S. Tang. 1986. Allelopathy: State of the science. Pages 1–19in A. R. Putnam & C. S. Tang (eds.), The science of allelopathy. John Wiley, New York.Google Scholar
  100. Rettenmaier, H., U. Kupas &F. Lingens. 1983. Degradation of juglone byPseudomonas putida J1. FEMS Microbiol. Lett.19: 193–195.CrossRefGoogle Scholar
  101. Rice, E. L. 1979. Allelopathy—An update. Bot Rev.45: 15–109.Google Scholar
  102. —. 1984. Allelopathy. Academic Press, Orlando, FL.Google Scholar
  103. —. 1987. Allelopathy: An overview. Pages 8–22in G. R. Waller (ed.) Allelochemicals: Role in agriculture and forestry. American Chemical Society, Washington, DC.Google Scholar
  104. Schmidt, S. K. 1988. Degradation of juglone by soil bacteria. J. Chem. Ecol.14: 1561–1571.CrossRefGoogle Scholar
  105. —. 1990. Ecological implications of destruction of juglone (5-hydroxy-1, 4-naphthquinone) by soil bacteria. J. Chem. Ecol.16: 3547–3549.CrossRefGoogle Scholar
  106. Shafer, S. R. &U. Blum. 1991. Influence of phenolic acid on microbial population in the rhizosphere of cucumber. J. Chem. Ecol.17: 369–389.CrossRefGoogle Scholar
  107. Shilling, D. G. &F. Yoshikawa. 1987. A rapid seedling bioassay for study of allelopathy. Pages 334–342in G. R. Waller (ed.), Allelochemicals: Role in agriculture and forestry. American Chemical Society, Washington, DC.Google Scholar
  108. Shindo, H. &S. Kuwatsuka. 1975. Behavior of phenolic substances in decaying process of plants. III. Degradation pathway of phenolic acids. Soil Sci. Pl. Nutr.21: 227–238.Google Scholar
  109. Siqueira, J. O., N. G. Nair, R. Hammerchidt &G. R. Safir. 1991. Significance of phenolic compounds in plant-soil-microbial systems. Crit. Rev. Pl. Sci.10: 63–121.Google Scholar
  110. Sparling, G. P., B. G. Ord &D. Vaughan. 1981. Changes in microbial biomass and activity in soils amended with phenolic acids. Soil Biol. Biochem.13: 455–460.CrossRefGoogle Scholar
  111. Stowe, L. G. 1979. Allelopathy and its influence on the distribution of plants in an Illinois old-field. J. Ecol.67: 1065–1085.CrossRefGoogle Scholar
  112. — &A. Osborn. 1980. The influence of nitrogen and phosphorus levels on the phytotoxicity of phenolic compounds. Canad. J. Bot58: 1149–1153.Google Scholar
  113. Swain, T. &W. E. Hillis. 1959. The phenolic constituents ofPrunus domestica. I. The quantitative analysis of phenolic constituents. J. Sci. Food Agric.10: 63–68.CrossRefGoogle Scholar
  114. Tan, K. H. &A. Binger. 1986. Effect of humic acid on aluminum toxicity in corn plants. Soil Sci.141: 20–25.CrossRefGoogle Scholar
  115. Tang, C. S. &C. C. Young. 1982. Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima). Pl. Physiol.69: 155–160.Google Scholar
  116. Tanrisever, N., F. R. Fronczek, N. H. Fischer &G. B. Willemson. 1987. Ceratiolin and other flavonoids fromCeratiola ericoides. Phytochemistry26: 175–179.CrossRefGoogle Scholar
  117. Torti, S. D., M. D. Dearing &T. A. Kursar. 1995. Extraction of phenolic compounds from fresh leaves: A comparison of methods. J. Chem. Ecol.21: 117–125.CrossRefGoogle Scholar
  118. Turner, J. A. &E. L. Rice. 1975. Microbial decomposition of ferulic acid in soil. J. Chem. Ecol.1: 41–58.CrossRefGoogle Scholar
  119. Van Alstyne, K. L. 1995. Comparison of three methods for quantifying brown algal polyphenolic compounds. J. Chem. Ecol.21: 45–58.CrossRefGoogle Scholar
  120. Vance, G. F., D. L. Mokma &S. A. Boyd. 1986. Phenolic compounds in soils of hydrosequences and developmental sequences of sodzols. Soil. Sci. Soc. Amer. J.50: 992–996.CrossRefGoogle Scholar
  121. Waller, G. R. 1987. Allelochemicals: Role in agriculture and forestry. ACS Symposium Series 330. American Chemical Society, Washington, DC.Google Scholar
  122. Wang, T. S. C., S. Y. Cheng &H. Tung. 1967. Extraction and analysis of soil organic acids. Soil Sci.103: 360–366.Google Scholar
  123. —,S. W. Li &Y. L. Ferng. 1978. Catalytic polymerization of phenolic compounds by clay minerals. Soil Sci.126: 15–21.CrossRefGoogle Scholar
  124. Waterman, P. G. &S. Mole. 1994. Methods in ecology: Analysis of phenolic plant metabolites. Blackwell Scientific Publications, Oxford.Google Scholar
  125. Weidenhamer, J. D. &J. T. Romeo. 1989. Allelopathic properties ofPolygonella myriophylla: Field evidence and bioassays. J. Chem. Ecol.15: 1957–1970.CrossRefGoogle Scholar
  126. —,D. C. Hartnett &J. T. Romeo. 1989. Density-dependent phytotoxicity: Distinguishing resource competition and allelopathic interference in plants. J. Appl. Ecol.26: 613–624.CrossRefGoogle Scholar
  127. Weston, L. A., R. Harmon &S. Mueller. 1989. Allelopathic potential of sorghum-sudangrass hybrid (sudex). J. Chem. Ecol.15: 1855–1865.CrossRefGoogle Scholar
  128. Whitehead, D. C., H. Dibb &R. D. Hartley. 1981. Extractant pH and the release of phenolic compounds from soil, plant roots, and leaf litter. Soil Biol. Biochem.13: 343–348.CrossRefGoogle Scholar
  129. —,——. 1982. Phenolic compounds in soil as influenced by the growth of different plant species. J. Appl. Ecol.19: 579–588.CrossRefGoogle Scholar
  130. Whittaker, R. H. &P. P. Feeny. 1971. Allelochemicals: Chemical interactions between plant species. Science171: 757–770.PubMedCrossRefGoogle Scholar
  131. Williams, R. D. &R. E. Hoagland. 1982. The effects of naturally occurring phenolic compounds on seed germination. Weed Sci.30: 206–212.Google Scholar

Copyright information

© The New York Botanical Garden 1996

Authors and Affiliations

  • Inderjit
    • 1
  1. 1.Department of BiologyLakehead UniversityThunder BayCanada

Personalised recommendations