The Botanical Review

, Volume 63, Issue 1, pp 65–92

Sexual specialization and inbreeding avoidance in the evolution of dioecy

  • D. Carl Freeman
  • Jon Lovett Doust
  • Ali El-Keblawy
  • Kathleen J. Miglia
  • E. Durant McArthur
Article

Abstract

Dioecy has evolved independently, many times, among unrelated taxa. It also appears to have evolved along two contrasting pathways: (1) from hermaphroditism via monoecy to dioecy and (2) from hermaphroditism via gynodioecy to dioecy. Most dioecious plants have close cosexual relatives with some means of promoting outcrossing (e.g., herkogamy, dichogamy, self-incompatibility, or monoecy). To the extent that these devices prevent inbreeding, the evolution of dioecy in these species cannot logically be attributed to selection for outcrossing. In these cases, the evolution of dioecy is, we believe, due to selection for sexual specialization. However, in other species, that lack outbreeding close relatives, dioecy may have evolved from gynodioecy (males and hermaphrodites) as an outbreeding device. Subsequent disruptive selection and selection for sexual specialization may have also shaped the evolution of dioecy from gynodioecy in these species, resulting in two genetically determined, constant sex morphs.

Both pathways for the evolution of dioecy require the operation of disruptive selection, though the gynodioecy route involves more restrictive disruptive selection and a genetic designation of gender. In contrast, the monoecy route is not dependent on the genetic designation of two sex morphs, but, rather, allows the possibility of sexual intermediates and sexual lability. Both pathways produce one morph in which maleness is suppressed and another in which the female function is negligible or nonexistent—the reproductive mode recognized as dioecy.

Evidence is presented here to support the thesis that instances of sexual lability, the presence of an array of sexual intermediates, sex-switching, and sexual niche segregation can be explained in terms of the pathway that was taken in the evolution of a particular dioecious species. In addition, the degree of sexual dimorphism seen in dioecious species is correlated with mode of pollination (insector wind-pollinated) and other ecological factors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Agren, J. 1988. Sexual differences in biomass and nutrient allocation in the dioecious shrubRubus chamaemorus. Ecology69:962–973.Google Scholar
  2. Allen, G. A. &J. A. Antos. 1988. Relative reproductive effort in males and females of the dioecious shrubOemleria cerasiformis. Oecologia76:111–118.Google Scholar
  3. Anderson, G. J. 1989. Functional dioecy and andromonoecy inSolarium. Evolution43:204–219.Google Scholar
  4. Antos, J. A. &G. A. Allen. 1990. A comparison of reproductive effort in the dioecious shrubOemleria cerasiformis using nitrogen, energy and biomass as currencies. Amer. Midl. Naturalist124:254–262.Google Scholar
  5. Arnold, S. J. 1994a. Is there a unifying concept of sexual selection that applies to both plants and animals? Amer. Naturalist144(Suppl.):S1-S12.Google Scholar
  6. — 1994b. Bateman’s principles and the measurement of sexual selection in plants and animals. Amer. Naturalist144(Suppl.):S126-S149.Google Scholar
  7. Ashman, T. L. 1994. Reproductive allocation in hermaphrodite and female plants ofSidalcea oregana ssp.spicata (Malvaceae) using four currencies. Amer. J. Bot.81:433–438.Google Scholar
  8. — &I. Baker. 1992. Variation in floral sex allocation with time of season and currency. Ecology73:1237–1243.Google Scholar
  9. — &M. Stanton. 1991. Seasonal variation in pollination dynamics of sexually dimorphicSidalcea oregana ssp.spicata (Malvaceae). Ecology72:993–1003.Google Scholar
  10. Baker, H. G. 1959. Reproductive methods as factors in speciation in flowering plants. Cold Spring Harbor Symp. Quant. Biol.24:177–191.PubMedGoogle Scholar
  11. — &P. D. Hurd. 1968. Intrafloral ecology. Ann. Rev. Entomol.13:385–414.Google Scholar
  12. Barrow, J. R. 1986. Effects of chromosome number on sex expression inAtriplex canescens. Bot. Gaz.148:379–385.Google Scholar
  13. Bawa, K. S. 1980. Evolution of dioecy in flowering plants. Ann. Rev. Ecol. Syst.11:15–39.Google Scholar
  14. —. 1982. Outcrossing and the incidence of dioecism in island floras. Amer. Naturalist119:866–871.Google Scholar
  15. — &P. A. Opler. 1975. Dioecism in tropical forest trees. Evolution29:167–179.Google Scholar
  16. Bell, C. R. 1976. Inflorescence shape and pollinator activity inDaucus carota L. (Apiaceae). ASB Bull23:42 (abstract).Google Scholar
  17. Bertin, R. I. 1993a. Incidence of monoecy and dichogamy in relation to self-fertilization in angiosperms. Amer. J. Bot.80:557–560.Google Scholar
  18. —. 1993b. Dichogamy in angiosperms. Bot. Rev. (Lancaster)59:112–152.Google Scholar
  19. Bickel, A. M. &D. C. Freeman. 1993. Effects of pollen vector and plant geometry on floral sex ratio in monoecious plants. Amer. Midl. Naturalist130:239–247.Google Scholar
  20. Bierzchudek, P. 1984. Determinants of gender in jack-in-the-pulpit: The influence of plant size and reproductive history. Oecologia65:14–18.Google Scholar
  21. — &V. Eckhart. 1988. Spatial segregation of the sexes in dioecious plants. Amer. Naturalist132:34–43.Google Scholar
  22. Boecklen, W. J. &T. M. Hoffman. 1993. Sex biased herbivory inEphedra trifurca: The importance of sex-by-environment interactions. Oecologia96:49–55.Google Scholar
  23. Bond, W. &J. Midgley. 1988. Allometry and sexual differences in leaf size. Amer. Naturalist131:901–910.Google Scholar
  24. Breese, E. L. 1959. Selection for differing degrees of out-breeding inNicotiana rustica. Ann. Bot.23:331–344.Google Scholar
  25. Burd, M. &G. Head. 1992. Phenological aspects of male and female function in hermaphroditic plants. Amer. Naturalist140:305–324.Google Scholar
  26. Charlesworth, B. &D. Charlesworth. 1978. A model for the evolution of dioecy and gynodioecy. Amer. Naturalist112:975–997.Google Scholar
  27. Charlesworth, D. 1985. Distribution of dioecy and self-incompatibility in angiosperms. Pages 237–268in P. J. Greenwood, P. H. Harvey & M. Slatkin (eds.), Evolution: Essays in honour of John Maynard Smith. Cambridge University Press, Cambridge.Google Scholar
  28. — 1993. Why are unisexual flowers associated with wind-pollination and unspecialized pollinators? Amer. Naturalist141:481–490.Google Scholar
  29. — &B. Charlesworth. 1978. Population genetics of partial male-sterility and the evolution of monoecy and dioecy. Heredity41:137–153.Google Scholar
  30. ——. 1987. The effect of investment in attractive structures and allocation to male and female functions in plants. Evolution41:948–968.Google Scholar
  31. Charnov, E. L. 1982. The theory of sex allocation. Monographs in population biology. Princeton University Press, Princeton.Google Scholar
  32. Cipollini, M. L. &D. F. Whigham. 1994. Sexual dimorphism and cost of reproduction in the dioecious shrubLindera benzoin (Lauraceae) Amer. J. Bot.81:65–75.Google Scholar
  33. Clarke, A. E. &E. Newbigin. 1993. Molecular aspects of self-incompatibility in flowering plants. Annual Rev. Genet.27:257–279.Google Scholar
  34. Condon, M. A. &L. E. Gilbert. 1988. Sex expression ofGurania psiguria (Cucurbitaceae): Neotropical vines that change sex. Amer. J. Bot.75:875–884.Google Scholar
  35. Cox, P. A. 1982. Vertebrate pollination and the maintenance of dioecism inFreycinetia. Amer. Naturalism120:65–80.Google Scholar
  36. —. 1988. Monomorphic and dimorphic sexual strategies: A modular approach. Pages 80–97in J. Lovett Doust & L. Lovett Doust (eds.), Plant reproductive ecology: Patterns and strategies. Oxford University Press, Oxford.Google Scholar
  37. Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York.Google Scholar
  38. Cruden, R. W. 1988. Temporal dioecism: Systematic breadth, associated traits and temporal patterns. Bot. Gaz.149:1–15.Google Scholar
  39. — &S. Hermann-Parker. 1977. Temporal dioecism: An alternative to dioecism? Evolution31:863–866.Google Scholar
  40. — &D. L. Lyon. 1985. Patterns of biomass allocation to male and female functions in plants with different mating systems. Oecologia66:299–306.Google Scholar
  41. Darwin, C. 1877. The different forms of flowers on plants of the same species. Murray, London.Google Scholar
  42. Dawson, T. E. &L. C. Bliss. 1989. Patterns of water use and the tissue-water relations in the dioecious shrub,Salix artica: The physiological basis for habitat partitioning between the sexes. Oecologia79:332–343.Google Scholar
  43. —. 1993. Gender-specific physiology, carbon isotope discrimination, and habitat distribution in box elder,Acer negundo. Ecology74:798–815.Google Scholar
  44. De Jong, T. J. &P. G. L. Klinkhamer. 1994. Plant size and reproductive success through female and male function. J. Ecol.82:399–402.Google Scholar
  45. Delph, L. F. 1990. Sex-differential resource allocation patterns in the subdioecious shrubHebe subalpina. Ecology71:1342–1351.Google Scholar
  46. De Nettancourt, D. 1977. Incompatibility in angiosperms. Springer-Verlag, New York.Google Scholar
  47. Dommee, B., L. Bompar &N. Denelle. 1990. Sexual tetramorphism inThymelaea hirsuta (Thymelaeaceae): Evidence of the pathway from heterodichogamy to dioecy at the interspecific level. Amer. J. Bot.77:1449–1462.Google Scholar
  48. Dulberger, R. &A. Horowitz. 1984. Gender polymorphism in flowers ofSilene vulgaris (Moench) Garcke (Caryophyllaceae). J. Linn. Soc., Bot.89:101–117.Google Scholar
  49. Eckart, V. M. 1992. Resource compensation and the evolution of gynodioecy inPhacelia linearis (Hydrophyllaceae). Evolution46:1313–1328.Google Scholar
  50. El-Keblawy, A., J. Lovett Doust, L. Lovett Doust &K. H. Shaltout. 1995. Labile sex expression and dynamics of gender inThymelaea hirsuta. Ecoscience2:55–66.Google Scholar
  51. ———. 1996. Gender variation and the evolution of dioecy inThymelaea hirsuta (Thymelaeaceae). Canad. J. Bot.74:1596–1601.Google Scholar
  52. Faegri, K. &L. van der Pijl. 1971. The principles of pollination ecology. Pergamon Press, New York.Google Scholar
  53. Fisher, R. A. 1930. The genetical theory of natural selection. Oxford University Press, Oxford.Google Scholar
  54. Flemming, T. H., S. Maurice, S. L. Buchmann &M. D. Tuttle. 1994. Reproductive biology and relative male and female fitness in a trioecious cactus,Pachycereus pringlei (Cactaceae). Amer. J. Bot.81:858–867.Google Scholar
  55. Flores, S. &D. Schemske. 1984. Dioecy and monoecy in the flora of Puerto Rico and the Virgin Islands: Ecological correlates. Biotropica16:132–139.Google Scholar
  56. Fox, J. F. 1985. Incidence of dioecy in relation to growth form, pollination and dispersal. Oecologia67:244–249.Google Scholar
  57. —. 1991. Costs of reproduction in a willow: Experimental responses vs. natural variation. Ecology72:1013–1023.Google Scholar
  58. —. 1993. Size and sex allocation in monoecious woody plants. Oecologia94:110–113.Google Scholar
  59. — &G. C. Stevens. 1993. Costs of reproduction in a willow: Experimental responses vs. natural variation. Ecology72:1013–1023.Google Scholar
  60. Frankel, R. &E. Galun. 1977. Pollination mechanisms, reproduction and plant breeding. Springer-Verlag, New York.Google Scholar
  61. Freeman, D. C. &E. D. McArthur. 1982. A comparison of water stress between males & females of four species of desert shrubs. Forest Sci.28:304–308.Google Scholar
  62. ——. 1984. The relative influence of mortality, nonflowering and sex change. Bot. Gaz.145:385–394.Google Scholar
  63. ——. 1989.Atriplex canescens. Pages 75–86in A. Halvey (ed.), The handbook of flowering. Vol. 6. CRC Press, London.Google Scholar
  64. — &J. J. Vitale. 1985. The influence of environment on the sex ratio of spinach. Bot. Gaz.146:137–142.Google Scholar
  65. —,K. T. Harper &E. L. Charnov. 1980a. Sex change in plants: Old and new observations and new hypotheses. Oecologia47:222–232.Google Scholar
  66. —— &W. K. Ostler. 1980b. Ecology of plant dioecy in the intermountain region of western North America. Oecologia44:410–417.Google Scholar
  67. —,L. G. Klikoff &K. T. Harper. 1976. Differential resource utilization by the sexes of dioecious plants. Science193:597–599.PubMedGoogle Scholar
  68. —,E. D. McArthur, S. C. Sanderson &A. R. Tiedemann. 1993. The influence of topography on male and female fitness components ofAtriplex canescens. Oecologia93:538–547.Google Scholar
  69. Gehring, J. L. &R. K. Monson. 1994. Sexual difference in gas exchange and response to environmental stress in dioeciousSilene latifolia (Caryophyllaceae). Amer. J. Bot.81:166–174.Google Scholar
  70. Ghiselin, M. T. 1969. The evolution of hermaphroditism among animals. Quart. Rev. Biol.44:189–208.PubMedGoogle Scholar
  71. Givnish, T. J. 1980. Ecological constraints on the evolution of breeding systems in seed plants: Dioecy and dispersal in gymnosperms. Evolution34:959–972.Google Scholar
  72. Grant, V. 1951. The fertilization of flowers. Sci. Amer.184:52–56.Google Scholar
  73. —. 1995. Sexual selection in plants: Pros and cons. Proc. Natl. Acad. U.S.A.92:1247–1250.Google Scholar
  74. Gregg, K.B. 1973. Studies on the control of sex expression in the generaCychnoches andCatesetum, subtribe Catasetinae, Orchidaceae. Ph.D. dissertation, University of Miami, Coral Gables.Google Scholar
  75. —. 1975. The effect of light intensity on sex expression in species ofCychnoches andCatesetum (Orchidaceae). Selbyana1:101–113.Google Scholar
  76. —. 1978. Ethylene physiology, sunlight intensity and sex in the orchid generaCychnoches (Orchidaceae). Selbyana2:212–223.Google Scholar
  77. —. 1982. Sunlight-enhanced ethylene evolution by developing inflorescences ofCatasetum andCychnoches and its relation to female flower production. Bot. Gaz.143:466–475.Google Scholar
  78. Heinrich, B. 1975. Energetics of pollination. Annual Rev. Ecol. Syst.6:139–170.Google Scholar
  79. Hoffmann, M. T. 1992. Functional dioecy inEchinocereus coccineus (Cactaceae): Breeding system, sex ratios and geographical range of floral dimorphism. Amer. J. Bot.79:1382–1388.Google Scholar
  80. Holtsford, T. P. &N. C. Ellstrand. 1992. Genetic and environmental variation in floral traits affecting outcrossing rate inClarkia tembloriensis. Evolution46:216–255.Google Scholar
  81. Horowitz, A. 1978. Is the hermaphroditic flowering plant equisexual? Amer. J. Bot.65:485–486.Google Scholar
  82. — &R. Dulberger. 1983. The genetic basis of gender inSilene vulgaris. Heredity51:371–376.Google Scholar
  83. Irish, E. &T. Nelson. 1989. Sex determination in monoecious and dioecious plants. Pl. Cell1:737–744.Google Scholar
  84. Kessili, R. &S. K. Jain. 1984. An ecological genetic study of gynodioecy inLimnanthes douglassi (Limnanthaceae). Amer. J. Bot.71:775–786.Google Scholar
  85. Kohn, J. R. 1989. Sex ratio, seed production, biomass allocation and the cost of male function inCucurbita foetidissma HBK (Cucurbitaceae). Evolution43:1424–1434.Google Scholar
  86. Lloyd, D. G. 1975. The maintenance of gynodioecy and androdioecy in angiosperms. Genetica45:325–339.Google Scholar
  87. —. 1979. Evolution towards dioecy in heterostylous populations. Pl. Syst. Evol.131:71–80.Google Scholar
  88. — &K. S. Bawa. 1984. Modification of gender of seed plants in varying conditions. Evol. Biol.17:255–338.Google Scholar
  89. — &C. J. Webb. 1977. Secondary sex characters in plants. Bot. Rev. (Lancaster)43:177–215.Google Scholar
  90. Lovett Doust, J. &P. B. Cavers. 1982. Sex and gender dynamics in jack-in-the-pulpit,Arisaema triphyllum (Araceae). Ecology63:797–808.Google Scholar
  91. — &L. Lovett Doust. 1985. Sex ratios, clonal growth and herbivory inRumex acetosella. Pages 327–341in J. White (ed.), Studies on plant demography: A festschrift for John L. Harper. Academic Press, London.Google Scholar
  92. ——. 1988. Sociobiology of plants: An emerging synthesis. Pages 5–29in J. Lovett Doust & L. Lovett Doust (eds.), Plant reproductive ecology: Patterns and strategies. Oxford University Press, New York.Google Scholar
  93. Lovett Doust, L. 1981. Population dynamics and local specialization in a clonal perennial (Ranunculus repens). 1. The dynamics of ramets in contrasting habitats. J. Ecol.69:743–755.Google Scholar
  94. Mayer, S. S. &D. Charlesworth. 1991. Cryptic dioecy in flowering plants. Tree6:320–325.Google Scholar
  95. McArthur, E. D. 1977. Environmental induced changes of sex expression inAtriplex canescens. Heredity38:97–103.Google Scholar
  96. —. 1989. Breeding systems in shrubs. Pages 341–361in C. M. McKell (ed.), The biology and utilization of shrubs. Academic Press, San Diego.Google Scholar
  97. — &D. C. Freeman. 1982. Sex expression inAtriplex canescens, genetics and environment. Bot. Gaz.143:476–482.Google Scholar
  98. — &S. C. Sanderson. 1984. Distribution, systematics, and evolution of Chenopodiaceae: An overview. Pages 14–24in A. R. Tiedemann, E. D. McArthur, H. C. Stutz, R. Stevens & K. L. Johnson (compilers), Proceedings—Symposium on the biology ofAtriplex and related chenopods, 2–6 May 1983, Provo, Utah. Gen. Tech. Rep. INT-172. U.S.D.A. Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah.Google Scholar
  99. —,D. C. Freeman, L. Luckinbill, S. C. Sanderson &G. L. Noller. 1992. Are trioecy and sexual lability inAtriplex canescens genetically based: Evidence from clonal studies. Evolution46:1708–1721.Google Scholar
  100. -,McArthur, E. D., A. P. Plummer, G. A. Van Epps, D. C. Freeman & K. R. Jorgensen. 1978. Producing fourwing saltbush seed in seed orchards. Pages 406–410in Proceedings of the First International Rangeland Congress.Google Scholar
  101. Miglia, K. J. &D. C. Freeman. 1996. The effect of delayed pollination on stigma length, sex expression, and progeny sex ratio in spinach,Spinacia oleracea (Chenopodiaceae). Amer. J. Bot. 83:326–332.Google Scholar
  102. Miller, J. &J. Lovett Doust. 1987. The effects of plant density and snail grazing on female and male spinach plants. New Phytol.107:613–621.Google Scholar
  103. Moore, D. M. &H. Lewis. 1965. The evolution of self-pollination inClarkia xantiana. Evolution19:104–114.Google Scholar
  104. Nakamura, R. R., M. L. Stanton &S. J. Mazer. 1989. Effects of mate size and mate number on male reproductive success in plants. Ecology70:71–76.Google Scholar
  105. Niklas, K. J. 1985. The aerodynamics of wind pollination. Bot. Rev. (Lancaster)51: 328–386.Google Scholar
  106. Peitgen, H., H. Jurgens &D. Saupe. 1992. Chaos and fractals, new frontiers of science. Springer-Verlag, New York.Google Scholar
  107. Pendleton, R., E. D. McArthur, A. C. Blauer &D. C. Freeman. 1989. Heterodichogamy inGrayia brandegii. Amer. J. Bot.75:267–274.Google Scholar
  108. Ramadan, A. A., A. El-Keblawy, K. H. Shaltout &J. Lovett Doust 1994. Sexual polymorphism, growth and reproductive effort in EgyptianThymelaea hirsuta (Thymelaeaceae). Amer. J. Bot.81:847–857.Google Scholar
  109. Reinartz, J. A. &D. H. Les. 1994. Bottleneck-induced dissolution of self-incompatibility and breeding system consequences inAster furcatus. Amer. J. Bot.81:446–455.Google Scholar
  110. Renner, S. S. &R. E. Ricklefs. 1995. Dioecy and its correlates in the flowering plants. Amer. J. Bot.82:596–606.Google Scholar
  111. Rick, C. M., M. Holle &R. W. Thorp. 1978. Rates of cross pollination inLycopersicon pimpinellifolium. Impact of genetic variation in floral characters. Pl. Syst. Evol.129:31–44.Google Scholar
  112. Ritland, C. &K. Ritland. 1989. Variation of sex allocation among eight taxa of theMimulus guttatus species complex (Scrophulariaceae). Amer. J. Bot.76:1731–1739.Google Scholar
  113. Ross, M. D. 1970. Evolution of dioecy from gynodioecy. Evolution30:425–441.Google Scholar
  114. —. 1982. Five evolutionary pathways to subdioecy. Amer. Naturalist119:297–318.Google Scholar
  115. — &R. F. Shaw. 1971. Maintenance of male sterility in plant populations. Heredity26:1–8.Google Scholar
  116. Schaffner, J. H. 1925. Experiments with various plants to produce change of sex in the individual. Bull. Torrey Bot. Club52:35–47.Google Scholar
  117. Shaw, R. F. &J. D. Mohler. 1953. The selective advantage of the sex ratio. Amer. Naturalist87:337–342.Google Scholar
  118. Shea, M. M., P. M. Dixon &R. R. Sharitz. 1993. Size differences, sex ratio, and spatial distribution of male and female water tupelo,Nyssa aquatica (Nyssaceae). Amer. J. Bot.80:26–30.Google Scholar
  119. Shmida, A. & H. Leschner. In review. About humble females and dandy males: Why do old red crown anemones have a white ring?Google Scholar
  120. Shoen, D. J. 1982. The breeding system ofGilia achilleifolia: Variation in floral characteristics and outcrossing rate. Evolution36:352–360.Google Scholar
  121. Smith, B. N. 1982. General characteristics of terrestrial plants (agronomic and forests)—C3, C4 and Crassulacean acid metabolism plants. Pages 99–118in O. R. Zaborsky (ed.), CRC handbook of biosolar resources. Vol. 1. CRC Press, Boca Raton, Florida.Google Scholar
  122. Solomon, B. P. 1985. Environmentally influenced changes in sex expression in an andromonoecious plant. Ecology66:1321–1223.Google Scholar
  123. Snow, A. 1994. Postpollination selection and male fitness in plants. Amer. Naturalist144(Suppl.):S69-S83.Google Scholar
  124. Stebbins, G. L. 1974. Flowering plants: Evolution above the species level. Harvard University Press, Cambridge.Google Scholar
  125. Sutherland, S. &L. F. Delph. 1984. On the importance of male fitness in plants: Patterns of fruit-set. Ecology65:1093–1104.Google Scholar
  126. Takhtajan, A. L. 1980. Outline of the classification of flowering plants (Magnoliophyta). Bot. Rev. (Lancaster)46:225–359.Google Scholar
  127. Thomas, S. M. &B. G. Murray. 1981. Breeding systems and hybridization inPetrorhagia sect.Kohlrauschia (Caryophyllaceae). Pl. Syst. Evol.139:77–94.Google Scholar
  128. Tiedemann, A. R., E. D. McArthur &D. C. Freeman. 1987. Variation in physiological metabolites and chlorophyll in sexual phenotypes of “Rincon” fourwing saltbush. J. Range Managern.40:151–155.Google Scholar
  129. Vasek, F. C. 1977. Phenotypic variation and adaptation inClarkia sectionPhaeostoma. Syst. Bot.2:251–279.Google Scholar
  130. Vitale, J. J. &D. C. Freeman. 1985. Secondary sex characteristics inSpinacia oleracea L.: Quantitative evidence for the existence of at least three sexual morphs. Amer. J. Bot.72:1061–1066.Google Scholar
  131. ——. 1986. Partial niche separation inSpinacia oleracea L.: An examination of reproductive allocation. Evolution40:426–430.Google Scholar
  132. ——,L. Merlotti &M. Delassandro. 1987. Resource allocation inSpinacia oleracea. Amer. J. Bot.74:1049–1054.Google Scholar
  133. Wachocki, B. A. 1992. Maternal effects on sex ratio and sex expression in spinach. Ph.D. dissertation, Wayne State University, Detroit.Google Scholar
  134. Warner, R. R., D. R. Robertson &E. G. Leigh. 1975. Sex change and sexual selection. Science190:633–638.PubMedGoogle Scholar
  135. Watson, M. 1995. Sexual differences in plant developmental phenology affect plant-herbivore interactions. Tree10:180–182.Google Scholar
  136. Welkie, G.W. &M. Caldwell. 1970. Leaf anatomy of species in some dicotyledon families as related to the C3 and C4 pathways of carbon fixation. Canad. J. Bot.48:2135–2146.Google Scholar
  137. Weller, S. G. &R. Ornduff. 1977. Cryptic self-incompatibility inAmsinckia grandiflora. Evolution31:47–51.Google Scholar
  138. Westergaard, M. 1958. The mechanisms of sex determination in dioecious flowering plants. Adv. Genet.9:217–281.PubMedGoogle Scholar
  139. Willson, M. F. 1979. Sexual selection in plants. Amer. Naturalist113: 777–790.Google Scholar
  140. —. 1983. Plant reproductive ecology. John Wiley, New York.Google Scholar
  141. —. 1994. Sexual selection in plants: Perspective and overview. Amer. Naturalist144(Suppl.):S13-S39.Google Scholar
  142. — &P. W. Price. 1977. The evolution of inflorescence size inAsclepias (Asclepiadaceae). Evolution31:495–511.Google Scholar
  143. Wolfe, L. M. &A. Shmida. 1996. Regulation of gender and flowering behavior in a sexually dimorphic desert shrub (Ochradenus baccatus ssp.delete (Resedaceae)). Israel J. Pl. Sci.43: 325–337.Google Scholar
  144. Wyatt, R. 1982. Inflorescence architecture: How flower number, arrangement and phenology affect pollination and fruit set. Amer. J. Bot.69:585–594.Google Scholar
  145. Yeo, P. F. 1975. Some aspects of heterostyly. New Phytol.75:147–153.Google Scholar
  146. Yin, T. &J. A. Quinn. 1992. A mechanistic model of a single hormone regulating both sexes in flowering plants. Bull. Torrey Bot. Club119:431–441.Google Scholar
  147. ——. 1994. Effects of exogenous growth regulators and a gibberellin inhibitor on the sex expression and growth form of buffalograss (Buchloe dactyloides) and their ecological significance. Bull. Torrey Bot. Club1221:170–179.Google Scholar
  148. ——. 1995. Tests of a mechanistic model of one hormone regulating both sexes inBuchloe dactyloides (Poaceae). Amer. J. Bot.82:745–751.Google Scholar
  149. Zaharan, M. A. &A. J. Willis. 1992. The vegetation of Egypt. Chapman & Hall, London.Google Scholar
  150. Zimmerman, J. K. &M. J. Lechowicz. 1982. Responses to moisture stress in male and female plants ofRumex acetosella L. (Polygonaceae). Oecologia53:305–309.Google Scholar

Copyright information

© The New York Botanical Garden 1997

Authors and Affiliations

  • D. Carl Freeman
    • 1
  • Jon Lovett Doust
    • 2
  • Ali El-Keblawy
    • 3
  • Kathleen J. Miglia
    • 1
  • E. Durant McArthur
    • 4
  1. 1.Department of Biological SciencesWayne State UniversityDetroitUSA
  2. 2.Department of Biological SciencesUniversity of WindsorWindsorCanada
  3. 3.Department of BiologyUniversity of Suez CanalEl-ArishEgypt
  4. 4.Shrub Sciences LaboratoryU.S. Department of Agriculture Forest ServiceProvoUSA

Personalised recommendations